JPH03130236A - Catalytic conversion of hydrocarbon - Google Patents

Catalytic conversion of hydrocarbon

Info

Publication number
JPH03130236A
JPH03130236A JP1266303A JP26630389A JPH03130236A JP H03130236 A JPH03130236 A JP H03130236A JP 1266303 A JP1266303 A JP 1266303A JP 26630389 A JP26630389 A JP 26630389A JP H03130236 A JPH03130236 A JP H03130236A
Authority
JP
Japan
Prior art keywords
zeolite
pyridine
catalyst
hydrocarbon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1266303A
Other languages
Japanese (ja)
Other versions
JP2801686B2 (en
Inventor
Hitoshi Nakajima
斉 中島
Masahiko Furuya
方彦 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1266303A priority Critical patent/JP2801686B2/en
Publication of JPH03130236A publication Critical patent/JPH03130236A/en
Application granted granted Critical
Publication of JP2801686B2 publication Critical patent/JP2801686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a lower olefin and monocyclic aromatic hydrocarbon by contacting a hydrocarbon raw material composed mainly of paraffins, under a specific contact condition, with an aluminosilicate zeolite having medium pore size fulfilling a specific condition. CONSTITUTION:A lower olefin and a monocyclic aromatic hydrocarbon can be produced by contacting a hydrocarbon raw material (e.g. propane, butane, butene, pentane, pentene or petroleum naphtha fraction) with an aluminosilicate zeolite having medium pore size in the presence of steam at 550-700 deg.C and a weight time space velocity of 0.5-20/hr. It is necessary to use a zeolite having a pyridine desorption of 40-180mumol per 1g of the zeolite measured at 500-900 deg.C using pyridine at a heating rate of 15 deg.C/min and the zeolite satisfying the condition is e. g. a ZSM-5 zeolite containing alkali metal or alkaline earth metal. The deterioration of catalyst can be suppressed by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パラフィン類を主成分とする炭化水素の接触
転化法に関するものであり、更に詳しくは、特定の中間
細孔径アルミノシリケートゼオライトを触媒として用い
ることにより、パラフィン類を主体とする炭化水素原料
から、化学原料として有用な低級オレフィンおよび単環
芳香族を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for catalytic conversion of hydrocarbons mainly composed of paraffins. This invention relates to a method for producing lower olefins and monocyclic aromatics useful as chemical raw materials from hydrocarbon raw materials mainly consisting of paraffins.

〔従来の技術〕[Conventional technology]

従来より種々の炭化水素原料を固体酸触媒、特に結晶性
アルミノシリケートゼオライトと接触させ、クラッキン
グ、異性化、不均化、ノ1イドロクラッキング等の反応
により転化させることはよく知られている。
It is well known that various hydrocarbon raw materials are brought into contact with a solid acid catalyst, particularly a crystalline aluminosilicate zeolite, and converted by reactions such as cracking, isomerization, disproportionation, and hydrocracking.

代表的なものとしては、Y型ゼオライトを用い、軽油、
重質油等をガソリン留分に転化する方法であり、石油精
製で広(実施されている。また、ZSM−5型ゼオライ
トを用いて、軽質炭化水素を芳香族化合物に転化する方
法も提案されている。
Typical examples include Y-type zeolite, light oil,
It is a method of converting heavy oil etc. into gasoline fraction, and is widely practiced in petroleum refining.A method of converting light hydrocarbons into aromatic compounds using ZSM-5 type zeolite has also been proposed. ing.

例えば、特開昭49−41322号公報、特開昭50−
49233号公報、特開昭50−4029号公報等に開
示されている方法である。
For example, JP-A-49-41322, JP-A-50-
This method is disclosed in Japanese Patent Application Laid-open No. 49233, Japanese Unexamined Patent Publication No. 50-4029, and the like.

更に、特開昭60−222428号公報には、ZSM−
5型ゼオライトを用いて、高温、高WH8Vの条件下で
軽質炭化水素を低級オレフィンおよび芳香族化合物に転
化する方法が開示されている。
Furthermore, in Japanese Patent Application Laid-open No. 60-222428, ZSM-
A method is disclosed for converting light hydrocarbons into lower olefins and aromatic compounds under conditions of high temperature and high WH8V using type 5 zeolite.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の方法は、いずれも化学原料として有用な低級オレ
フィン類(炭素数2〜4のオレフィンで、例えばエチレ
ン、プロピレン、ブテン等)ならびに単環芳香族炭化水
素類(炭素数6〜9の芳香族でベンゼンおよびアルキル
ベンゼン)を効率よく、かつ低級オレフィン類を単環芳
香族炭化水素より高収率で得る方法としては満足できる
方法とはなっていない。
The above-mentioned methods all apply to lower olefins (olefins having 2 to 4 carbon atoms, such as ethylene, propylene, butene, etc.) and monocyclic aromatic hydrocarbons (aromatic olefins having 6 to 9 carbon atoms), which are useful as chemical raw materials. However, there is no satisfactory method for obtaining lower olefins (benzene and alkylbenzene) efficiently and in a higher yield than monocyclic aromatic hydrocarbons.

例えば、Y型ゼオライトを用いる接触転化法では、価値
の低い軽質パラフィンガスの生成が多い上、芳香族炭化
水素類の生成は極めて少ない。また、ZSM−5型ゼオ
ライトを用いる方法では一般に芳香族炭化水素類の収率
は比較的高いが、分解ガス組成はエタン、プロパン等の
軽質パラフィン類が主体で、低級オレフィンの選択性に
劣る。また低級オレフィンの選択性を上げようとすると
反応条件を過酷にしなければならない等の問題を有して
いる。
For example, in the catalytic conversion method using Y-type zeolite, a large amount of low-value light paraffin gas is produced, and the production of aromatic hydrocarbons is extremely small. Further, in the method using ZSM-5 type zeolite, the yield of aromatic hydrocarbons is generally relatively high, but the cracked gas composition is mainly light paraffins such as ethane and propane, and the selectivity for lower olefins is poor. Furthermore, in order to increase the selectivity of lower olefins, there are problems such as the need to make the reaction conditions harsher.

一方、低級オレフィンを収率よく得る方法としては、熱
分解法が広(用いられているが、熱分解法であるが故に
過酷な反応条件を必要とするため、化学原料としては使
いにくいメタンの副生が多い。
On the other hand, the thermal decomposition method is widely used as a method for obtaining lower olefins in good yield, but since it is a thermal decomposition method, it requires harsh reaction conditions, so methane is difficult to use as a chemical raw material. There are many side products.

更に分解生成物中のエチレン、プロピレン等のオレフィ
ン類、ベンゼン、トルエン等の単環芳香族炭化水素類の
製品得率は、はぼ限定された割合を有しており、収率構
造上の融通性に乏しい等の問題を有している。
Furthermore, the product yield of olefins such as ethylene and propylene, and monocyclic aromatic hydrocarbons such as benzene and toluene in the decomposition products has a very limited ratio, and flexibility in the yield structure is limited. They have problems such as poor sexuality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、少なくとも炭素数2以上の炭化水素原料
より低級オレフィンおよび単環芳香族炭化水素を効率よ
く、かつ低級オレフィンを単環芳香族炭化水素より高収
率に得る方法について鋭意検討を重ねた。その結果、特
定の中間細孔径アルミノシリケートゼオライトを触媒と
して用いると、低級オレフィンおよび単環芳香族炭化水
素を効率よく、かつ低級オレフィンを単環芳香族炭化水
素より高収率に得られること、更にこの触媒系は安定で
あり、経時劣化が少ないことを見い出し本発明を完成し
た。
The present inventors have conducted intensive studies on a method for efficiently producing lower olefins and monocyclic aromatic hydrocarbons from hydrocarbon raw materials having at least 2 or more carbon atoms, and at a higher yield than monocyclic aromatic hydrocarbons. Layered. As a result, when a specific intermediate pore diameter aluminosilicate zeolite is used as a catalyst, lower olefins and monocyclic aromatic hydrocarbons can be obtained efficiently, and lower olefins can be obtained in higher yield than monocyclic aromatic hydrocarbons. The present invention was completed by discovering that this catalyst system is stable and exhibits little deterioration over time.

すなわち本発明は、少なくとも炭素数2以上の炭化水素
原料を低級オレフィンおよび単環芳香族炭化水素に転化
する方法において、該原料を下記(i)を満たす中間細
孔径アルミノシリケートゼオライトと、550〜700
℃の温度、0.5〜20hr’の重量時間空間速度で接
触させることを特徴とする前記該原料炭化水素の接触転
化法を提供するものである。
That is, the present invention provides a method for converting a hydrocarbon raw material having at least 2 carbon atoms into a lower olefin and a monocyclic aromatic hydrocarbon, in which the raw material is an aluminosilicate zeolite with an intermediate pore diameter that satisfies the following (i), and a 550-700
The present invention provides a method for the catalytic conversion of the feedstock hydrocarbons, characterized in that the contact is carried out at a temperature of 0.5°C and a weight hourly space velocity of 0.5 to 20 hr'.

(1)ピリジンを用い、昇温速度を15℃/分とした場
合の昇温脱離法による500〜900℃における当該中
間細孔径アルミノシリケートゼオライト1g−当りのピ
リジンの脱離量が40〜180μmop 本発明における少なくとも炭素数2以上の炭化水素は、
炭素数2〜約25のノルマルパラフィン、イソパラフィ
ン、オレフィン、シクロパラフィン、側鎖アルキル基を
有するシクロパラフィン類等を主成分として含むもので
あり、例えば、エタン、プロパン、ブタン、ブテン等の
ガス類、ペンタン、ペンテン、ヘキサン、ヘプタン、オ
クタン単独およびこれらの混合物を主体とする軽質ナフ
サ、重質ナフサ、直留ナフサ、C10” C20を主に
含む灯軽油留分、C19〜C2,からなる水添処理した
減圧軽油等が挙げられる。特にプロパン、ブタン、ブテ
ン、ペンタン、ペンテン、ナフサ留分が好ましいものと
して挙げられる。
(1) The amount of pyridine desorbed per 1 g of the intermediate pore size aluminosilicate zeolite is 40 to 180 μmop at 500 to 900 °C by the temperature-programmed desorption method when pyridine is used and the heating rate is 15 °C/min. The hydrocarbon having at least 2 or more carbon atoms in the present invention is
It mainly contains normal paraffins having 2 to about 25 carbon atoms, isoparaffins, olefins, cycloparaffins, cycloparaffins having side chain alkyl groups, etc., such as gases such as ethane, propane, butane, butene, etc. Hydrogenation treatment consisting of light naphtha, heavy naphtha, straight-run naphtha, mainly composed of pentane, pentene, hexane, heptane, octane alone or a mixture thereof, kerosene fraction mainly containing C10"C20, C19 to C2, In particular, propane, butane, butene, pentane, pentene, and naphtha fractions are preferred.

本発明における中間細孔径アルミノシリケートゼオライ
トは、A型ゼオライトで代表される小細孔径ゼオライト
、X型、Y型ゼオライトで代表される大細孔径ゼオライ
トの中間の細孔径を有するもので、有効細孔径として約
5λ〜6.5人の範囲のものである。これらの代表例と
しては、ZSM−5,ZSM−11,ZSM−12,Z
SM−21、ZSM−23,ZSM−35,ZSM−3
8等が挙げられるが、好ましいものとしては、ZSM−
5゜ZSM−11,ZSM−38であり、ZSM−5が
特に好ましい。
The intermediate pore size aluminosilicate zeolite in the present invention has a pore size intermediate between small pore size zeolite represented by A-type zeolite, and large pore size zeolite represented by X-type and Y-type zeolites, and has an effective pore size. It is in the range of about 5λ to 6.5 people. Representative examples of these include ZSM-5, ZSM-11, ZSM-12, Z
SM-21, ZSM-23, ZSM-35, ZSM-3
8 etc., but preferred ones are ZSM-
5°ZSM-11, ZSM-38, and ZSM-5 is particularly preferred.

また、これらゼオライトのケイ素/アルミニウムの原子
比は10〜75、好ましくは12〜60である。
Moreover, the silicon/aluminum atomic ratio of these zeolites is 10-75, preferably 12-60.

この比が10を下廻るものは、触媒としての安定性が悪
く、75を上廻るものは触媒活性が不充分である。
If this ratio is less than 10, the stability as a catalyst is poor, and if this ratio is more than 75, the catalytic activity is insufficient.

本発明に用いられる中間細孔径アルミノシリケートゼオ
ライト触媒は、ピリジンを用い、昇温速度を15℃/分
とした場合の昇温脱離法による500〜900℃におけ
る当該ゼオライト1g当りのピリジンの脱離量が40〜
180μmofiである。昇温脱離法については、安盛
により「化学と工業」。
The intermediate pore size aluminosilicate zeolite catalyst used in the present invention uses pyridine to desorb pyridine per gram of the zeolite at 500 to 900°C by a temperature-programmed desorption method at a heating rate of 15°C/min. The amount is 40~
It is 180μmofi. Regarding the temperature-programmed desorption method, see "Chemistry and Industry" by Yasumori.

第19巻、第10号、 1208〜1214頁(196
6)に説明されており、ZSM−5型ゼオライトの昇温
脱離法は、「触媒J 、 25.97〜99頁(198
3)等に記載されている。
Volume 19, No. 10, pp. 1208-1214 (196
6), and the temperature-programmed desorption method for ZSM-5 type zeolite is described in "Catalyst J, pp. 25.97-99 (198
3) etc.

本発明でいうピリジンを用いた昇温脱離法とは、まず、
180℃で被測定触媒にピリジンを飽和吸着させ、それ
を毎分15℃の一定速度で昇温させて、昇温に伴って脱
離してくるピリジンを、500〜900℃の間に限って
水素炎イオン化検出器により検出し、脱離量をピリジン
の検量線を用いてピリジン換算量として求めることを指
す。
The temperature programmed desorption method using pyridine as used in the present invention is, firstly,
Pyridine is saturated adsorbed onto the catalyst to be measured at 180°C, and the temperature is raised at a constant rate of 15°C per minute. Pyridine, which is desorbed as the temperature rises, is absorbed into hydrogen only between 500 and 900°C. This refers to detecting with a flame ionization detector and determining the amount of desorption as the equivalent amount of pyridine using a pyridine calibration curve.

本発明で用いる昇温脱離法の測定装置を第1図に示す。FIG. 1 shows a measuring device for the temperature-programmed desorption method used in the present invention.

試料すなわち被測定触媒4は20〜30メツシユに破砕
して、内径6fllfllφ、外径8關φ、1501■
長のステンレス鋼製の試料管3に入れる。キャリアガス
としてボンベ詰の窒素を、質量流量計1で調節し、80
m1/分の流量で流す。ピリジンはマイクロシリンジを
用いて2μgずつシリコンゴム製の注入口5より注入す
る。はぼ全量吸着した場合には10分後に、また、未成
着分が認められる場合は流出の完了が検出器で確認され
た時点で次の注入を行い、飽和吸着に達するまで注入を
くり返す。ピリジンの触媒への飽和吸着が完了したなら
ば、炉芯管内径25mmφ、長さ100mnの管状電気
炉2で15℃/分の速度で昇温する。ここで、ピリジン
注入口5の周りから水素炎イオン化検出器(FID検出
器)6までの流路は、電気炉内の部分を除き、リボンヒ
ーター8等で加温し、外側を保温材9で覆って300℃
に保温する。温度検出は試料管外部に密着設置した温度
検出端7の位置で行う。温度検出端7における検出温度
が500℃になった時から、更に昇温しで900℃に達
するまでの間に試料4から脱離するピリジンをFID検
出器6で検出し、ピリジンの検量線を用いて、その脱離
量を求める。
The sample, that is, the catalyst 4 to be measured, was crushed into 20 to 30 meshes, with an inner diameter of 6fllfllφ, an outer diameter of 8mm, and a size of 1501 mm.
Place it in a long stainless steel sample tube 3. Cylinder nitrogen was used as a carrier gas, adjusted by mass flow meter 1, and
Flow at a flow rate of m1/min. Pyridine is injected in 2 μg portions through the injection port 5 made of silicone rubber using a microsyringe. If almost the entire amount has been adsorbed, perform the next injection after 10 minutes, or if unadsorbed components are observed, perform the next injection when the completion of outflow is confirmed by the detector, and repeat the injection until saturated adsorption is reached. When the saturated adsorption of pyridine onto the catalyst is completed, the temperature is raised at a rate of 15° C./min in a tubular electric furnace 2 having a core tube inner diameter of 25 mmφ and a length of 100 mm. Here, the flow path from around the pyridine injection port 5 to the flame ionization detector (FID detector) 6 is heated with a ribbon heater 8 or the like, except for the part inside the electric furnace, and the outside is covered with a heat insulating material 9. Cover and heat to 300℃
Keep warm. Temperature detection is performed at the temperature detection end 7 which is installed in close contact with the outside of the sample tube. Pyridine desorbed from the sample 4 is detected by the FID detector 6 from the time when the detected temperature at the temperature detection end 7 reaches 500°C until it reaches 900°C due to further temperature rise, and the calibration curve of pyridine is detected. to determine the amount of desorption.

上記方法で求めたピリジンの脱離量がゼオライトigに
つき40μmoρを下廻ると、触媒活性が不充分であり
、ピリジン脱離量が180μIIIo1を上廻ると、オ
レフィン収率が低下し、触媒の経時安定性も悪くなる。
When the amount of pyridine eliminated by the above method is less than 40μmoρ per zeolite ig, the catalyst activity is insufficient, and when the amount of pyridine eliminated is more than 180μIIIo1, the olefin yield decreases and the catalyst becomes unstable over time. Sex also gets worse.

本発明に用いられる触媒は、例えばプロトン型のゼオラ
イトに、イオン交換法、含浸法等の方法によりアルカリ
金属および/またはアルカリ土類金属を含有させること
によって、あるいは、プロトン型のゼオライトを加熱処
理、好ましくは水蒸気共存下で加熱処理することにより
調製する。
The catalyst used in the present invention can be produced, for example, by incorporating an alkali metal and/or alkaline earth metal into a proton-type zeolite by a method such as an ion exchange method or an impregnation method, or by heat-treating a proton-type zeolite. Preferably, it is prepared by heat treatment in the coexistence of steam.

アルカリ金属および/またはアルカリ土類金属を含有さ
せる場合の含有量は、添加金属/アルミニウム(原子比
) = 0.2〜1.5、好ましくは0.3〜1.2で
ある。この比が0.2を下廻ると、オレフィン生成の選
択性が悪化し、1゜5を上廻ると触媒活性が低下する。
When containing an alkali metal and/or an alkaline earth metal, the content is such that the additive metal/aluminum (atomic ratio) is 0.2 to 1.5, preferably 0.3 to 1.2. When this ratio is less than 0.2, the selectivity for olefin production deteriorates, and when it exceeds 1.5, the catalyst activity decreases.

水蒸気共存下で加熱処理する場合の好適な条件は、60
0〜800℃の温度、0.1〜1気圧の水分圧、0.2
〜20時間の処理時間である。水蒸気は空気あるいは窒
素等の不活性ガスで希釈して使用してもよい。。
Suitable conditions for heat treatment in the coexistence of water vapor are 60%
Temperature from 0 to 800°C, water pressure from 0.1 to 1 atm, 0.2
~20 hours processing time. Water vapor may be used after being diluted with air or an inert gas such as nitrogen. .

なお、使用に際し、適切な触媒粒子形状を付与するため
、アルミナ、シリカ等通常用いられている多孔性無機質
バインダーを配合したり、水添/脱水素金属成分を更に
添加して用いてもよい。
In addition, in order to impart an appropriate catalyst particle shape during use, a commonly used porous inorganic binder such as alumina or silica may be blended, or a hydrogenation/dehydrogenation metal component may be further added.

本発明における反応条件は、原料炭化水素により異なる
が、550〜700℃の温度、0.5〜20hr−1の
重量空間速度(WH3V)、0.5〜10気圧の圧力、
好ましくは、550〜680℃の温度、0.5〜10h
r’の重量空間速度(WHS V)、0.8〜8気圧の
圧力が採用される。
The reaction conditions in the present invention vary depending on the raw material hydrocarbon, but include a temperature of 550 to 700°C, a weight hourly space velocity (WH3V) of 0.5 to 20 hr, a pressure of 0.5 to 10 atm,
Preferably at a temperature of 550-680°C for 0.5-10h
A weight hourly space velocity (WHS V) of r' and a pressure of 0.8 to 8 atmospheres are employed.

反応は原料炭化水素単独で実施することもできるが、窒
素、水蒸気等の共存下で実施することが好ましく、特に
好ましくは水蒸気の共存下で反応を実施する。この場合
の好適な水蒸気量は水蒸気/原料炭化水素の重量比で0
.1〜1.0である。
Although the reaction can be carried out using the raw material hydrocarbon alone, it is preferably carried out in the presence of nitrogen, steam, etc., and particularly preferably in the presence of water vapor. In this case, the preferred amount of steam is 0 in terms of the steam/raw material hydrocarbon weight ratio.
.. 1 to 1.0.

〔発明の効果〕〔Effect of the invention〕

本発明によりパラフィン類を主成分とする幅広い原料よ
り効率よく、化学原料として有用な低級オレフィンなら
びに単環芳香族炭化水素類が得られ、かつ低級オレフィ
ンを単環芳香族炭化水素より高収率に得ることができる
。しかも触媒の劣化が少なく、安定的に用いることがで
きる。更に、従来低級オレフィンの製造法として広く用
いられている熱分解法に比べて、化学原料として使用が
難しいメタンの副生が著しく少ないため、高選択的に化
学原料として有用な低級オレフィンおよび芳香族炭化水
素類を得ることができる。
According to the present invention, lower olefins and monocyclic aromatic hydrocarbons useful as chemical raw materials can be obtained more efficiently than a wide range of raw materials mainly containing paraffins, and lower olefins can be obtained in higher yield than monocyclic aromatic hydrocarbons. Obtainable. Furthermore, the catalyst does not deteriorate much and can be used stably. Furthermore, compared to the pyrolysis method that has traditionally been widely used to produce lower olefins, there is significantly less methane by-product, which is difficult to use as chemical raw materials. Hydrocarbons can be obtained.

〔実 施 例〕〔Example〕

以下、実施例を挙げて本発明を具体的に示すが、本発明
は、こ′れに限定されるものではない。
The present invention will be specifically illustrated below with reference to Examples, but the present invention is not limited thereto.

実施例 1 プロトン型25M−5結晶アルミノシリケート(ケイ光
X線分析で測定したSiO3/Ag2O3モル比38、
BET表面! 360m’/g−cat)を圧縮成型後
、破砕して9〜20メツシユにそろえたちの20gを内
径24mmφの石英ガラス製反応器に充填し、水蒸気を
80容口%含む水蒸気−窒素混合ガス中で、大気圧下6
50°C,2,2時間熱処理した。熱処理後の触媒を、
昇温脱離法によりピリジンの脱離量を測定したところ、
500〜900℃での脱離量は145μmoρ/g−触
媒であった。測定試料は20〜30メツシユに整粒した
ものを400°Cで1時間乾燥して用いた。測定方法、
条件は本文前記記載の方法によった。管状電気炉および
温度制御装置は品性製作所製熱分析装置(DT−30)
を用い、FID検出器は日立製作所製ガスクロマトグラ
フ(GC−183)の検出器を用いた。以下の例で示す
ピリジンの脱離量は、特に記載のない場合、全て前述の
方法および条件下で測定した、500〜900℃でのピ
リジンの昇温脱離口である。
Example 1 Proton type 25M-5 crystalline aluminosilicate (SiO3/Ag2O3 molar ratio determined by fluorescent X-ray analysis 38,
BET surface! 360m'/g-cat) was compression molded, crushed and arranged into 9 to 20 meshes, and 20g of the material was packed into a quartz glass reactor with an inner diameter of 24mmφ in a water vapor-nitrogen mixed gas containing 80% by volume of water vapor. So, under atmospheric pressure 6
Heat treatment was performed at 50°C for 2.2 hours. The catalyst after heat treatment,
When the amount of pyridine desorbed was measured by temperature-programmed desorption method,
The amount desorbed at 500-900°C was 145 μmoρ/g-catalyst. The measurement sample was sized to 20 to 30 meshes and dried at 400°C for 1 hour. Measuring method,
The conditions were as described above in the text. The tubular electric furnace and temperature control device are thermal analysis devices (DT-30) made by Kinsei Seisakusho.
The FID detector used was a gas chromatograph (GC-183) manufactured by Hitachi. Unless otherwise specified, the amount of pyridine desorbed in the following examples is the temperature-programmed desorption of pyridine at 500 to 900°C, measured under the method and conditions described above.

次にこの熱処理後の触媒の転化実験を行った。Next, a conversion experiment was conducted on the catalyst after this heat treatment.

すなわち、触媒3gを内径24+nmφの石英ガラス製
反応器に充填し、大気圧下、窒素流量9.5NN /h
r、n−ヘキサン流量20cc/hr、温度650℃の
条件でn−へキサンの転化反応を実施した。反応開始後
1〜1.5時間の反応結果を第1表に示した。なお、第
1表中のn−へキサン転化率、選択率、02〜Cオレフ
ィン/C6〜C8芳香族は以下の式で計算した。
That is, 3 g of catalyst was packed into a quartz glass reactor with an inner diameter of 24+nmφ, and the nitrogen flow rate was 9.5 NN/h under atmospheric pressure.
The conversion reaction of n-hexane was carried out under the conditions of r,n-hexane flow rate of 20 cc/hr and temperature of 650°C. Table 1 shows the reaction results 1 to 1.5 hours after the start of the reaction. Note that the n-hexane conversion rate, selectivity, and 02-C olefin/C6-C8 aromatic group in Table 1 were calculated using the following formulas.

n−ヘキサン転化率= (100−生成物中のベンゼン
を除くC6留分の重量%) 生成物中の各成分の重量% n−ヘキサン転化率 C6〜C8芳香族 C2〜C4オレフインの選択率の和 実施例 2 実施例1で使用したプロトン型25M−5結晶アルミノ
シリケート50g:を、1規定の塩化ナトリウム水溶液
250gを用い、60℃、3時間のイオン交換を3日、
更に室温で8時間イオン交換を行った後、口過、洗浄、
乾燥(120℃、2時間)し、空気中で500℃、3時
間焼成した。このNa含有28M−5のピリジン脱離量
は98μmo1/ gであった。
n-hexane conversion rate = (100 - weight % of C6 fraction excluding benzene in the product) weight % of each component in the product n-hexane conversion rate C6-C8 aromatic C2-C4 olefin selectivity Japanese Example 2 50 g of the proton type 25M-5 crystalline aluminosilicate used in Example 1 was ion-exchanged for 3 days at 60°C for 3 hours using 250 g of a 1N aqueous sodium chloride solution.
After further ion exchange at room temperature for 8 hours, filtration, washing,
It was dried (120°C, 2 hours) and fired in air at 500°C for 3 hours. The amount of pyridine desorbed from this Na-containing 28M-5 was 98 μmol/g.

次にこの触媒を圧縮成型後破砕し、9〜20メツシユに
したちの6gを石英反応管に充填し、実施例1と同一の
方法でn−ヘキサンの転化反応を行った。結果を第1表
に示した。
Next, this catalyst was compression molded and then crushed, and 6 g of the catalyst was packed into 9 to 20 meshes into a quartz reaction tube, and the conversion reaction of n-hexane was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例 3 1規定の塩化リチウム水溶液を用い、実施例2と同一の
イオン交換操作を行うことによって、L1含有ZSM−
5触媒を調製した。この触媒のピリジン脱離量は147
μwon / gであった。
Example 3 L1-containing ZSM-
5 catalysts were prepared. The amount of pyridine eliminated from this catalyst is 147
It was μwon/g.

次にこの触媒2.8gを用いて実施例1と同様にn−ヘ
キサンの反応を行った。結果を第1表に示す。
Next, n-hexane was reacted in the same manner as in Example 1 using 2.8 g of this catalyst. The results are shown in Table 1.

実施例 4 実施例1で使用したプロトン型23M−5結晶アルミノ
シリケート50gに、6重量%硝酸ストロンチウム水溶
液100gを含浸させ、乾燥(120℃。
Example 4 50 g of the proton type 23M-5 crystalline aluminosilicate used in Example 1 was impregnated with 100 g of a 6% by weight strontium nitrate aqueous solution and dried (120°C).

2時間)、焼成(空気中5006C,3時間)し、Sr
含有28M−5触媒を得た。この触媒のピリジン脱離量
は145μmofl / gであった。
2 hours), fired (5006C in air, 3 hours), and Sr
A catalyst containing 28M-5 was obtained. The amount of pyridine desorbed from this catalyst was 145 μmofl/g.

次にこの触媒1.7gを用いて実施例1と同様にn−ヘ
キサンの反応を行った。結果を第1表に示した。
Next, n-hexane was reacted in the same manner as in Example 1 using 1.7 g of this catalyst. The results are shown in Table 1.

比較例 1 実施例1〜4に使用したプロトン型28M−5結晶性ア
ルミノシリケート1gを用い、実施例1〜4と同様にn
−ヘキサンの反応を行った。結果を第1表に示した。な
お、この触媒のピリジン脱離量は437μmo(J /
 gであった。
Comparative Example 1 Using 1 g of the proton type 28M-5 crystalline aluminosilicate used in Examples 1 to 4, n
-Hexane reaction was carried out. The results are shown in Table 1. The amount of pyridine eliminated by this catalyst was 437 μmo (J/
It was g.

実施例 5 実施例3で調製したL1含有ZSM−5触媒l0g (
9〜20メツシユに整粒)を内径24mmφの石英ガラ
ス製反応器に充填し、大気圧下、n−ヘキサン流量20
cc/hr、 H20流量7 、4cc/ hrs反応
温度約650℃の条件でn−へキサンの反応を行った。
Example 5 10 g of L1-containing ZSM-5 catalyst prepared in Example 3 (
9 to 20 mesh) was packed into a quartz glass reactor with an inner diameter of 24 mm, and the n-hexane flow rate was 20 at atmospheric pressure.
The n-hexane reaction was carried out under conditions of cc/hr, H20 flow rate of 7, 4 cc/hr, and reaction temperature of about 650°C.

反応開始後1〜1.5時間の反応結果と反応条件を第2
表に示す。
The reaction results and reaction conditions for 1 to 1.5 hours after the start of the reaction were
Shown in the table.

実施例 6 実施例2で調製したNa含有25M−510gを使用し
、実施例5と同様の条件でn−ヘキサンの転化を行った
。結果を第2表に示す。
Example 6 Using 510 g of Na-containing 25M prepared in Example 2, n-hexane was converted under the same conditions as in Example 5. The results are shown in Table 2.

実施例 7 1規定の塩化カリウム水溶液を用い、実施例2と同一の
イオン交換操作を行うことによって、K含有ZSM−5
触媒を調製した。この触媒のピリジン脱離量は91gw
on / gであった。
Example 7 By performing the same ion exchange operation as in Example 2 using a 1N potassium chloride aqueous solution, K-containing ZSM-5
A catalyst was prepared. The amount of pyridine eliminated from this catalyst is 91gw.
on/g.

次にこの触媒10gを使用し、実施例5と同様にn−ヘ
キサンの反応を行った。結果を第2表に示す。
Next, using 10 g of this catalyst, n-hexane was reacted in the same manner as in Example 5. The results are shown in Table 2.

実施例 8 実施例4で調製したSr含有28M−5触媒l。Example 8 Sr-containing 28M-5 catalyst l prepared in Example 4.

gを用い、実施例5と同様の条件でn−ヘキサンの転化
を24時間連続で実施した。反応1〜1.5時間後の反
応成績を第2表に示し、またヘキサン転化率の経時変化
を第4表に示した。反応終了後触媒を取り出し、酸素気
流中800℃で触媒上のコークを燃焼させ、生成CO2
を赤外分光計で検出定量化することにより、コーク量を
測定した。この結果を第3表に示す。
Conversion of n-hexane was carried out continuously for 24 hours under the same conditions as in Example 5. The reaction results after 1 to 1.5 hours of reaction are shown in Table 2, and the changes over time in the hexane conversion rate are shown in Table 4. After the reaction is complete, the catalyst is taken out and the coke on the catalyst is burned at 800°C in an oxygen stream to remove the generated CO2.
The amount of coke was measured by detecting and quantifying with an infrared spectrometer. The results are shown in Table 3.

実施例 9 実施例1で調製した水蒸気処理23M−5触媒10gを
使用し、実施例5と同様の条件でn−ヘキサンの転化を
行った。結果を第2表に示した。
Example 9 Using 10 g of the steam-treated 23M-5 catalyst prepared in Example 1, n-hexane was converted under the same conditions as in Example 5. The results are shown in Table 2.

実施例 10 原料をナフサに変え、WHSVを3.2hr−’にした
以外は実施例9と同様にして、ナフサの転化反応を行っ
た。結果を第2表に示した。
Example 10 A naphtha conversion reaction was carried out in the same manner as in Example 9 except that the raw material was changed to naphtha and the WHSV was changed to 3.2 hr-'. The results are shown in Table 2.

実施例 11 実施例4で調製したSr含有28M−5触媒20gを、
内径3/4BのS U S 316製反応器に充填し、
0.04重量%のジメチルジスルフィド(DMDS)を
添加したn−ヘキサン54g/hrと、H2027g 
/ hrを流し、 600°C,1kg/cJ −Gの
反応条件にて、n−ヘキサンの転化を行った。結果を第
2表に示した。
Example 11 20 g of the Sr-containing 28M-5 catalyst prepared in Example 4 was
Fill a SUS 316 reactor with an inner diameter of 3/4B,
54g/hr of n-hexane added with 0.04% by weight of dimethyl disulfide (DMDS) and 2027g of H
/hr, and n-hexane was converted under the reaction conditions of 600°C and 1 kg/cJ-G. The results are shown in Table 2.

比較例 2 実施例5と同様に、但し触媒のかわりに石英砂を充填し
、熱分解を650. 752℃の条件にて実施した。結
果を第3表に示す。この表より、熱分解では、化学原料
として有用なC2〜C4オレフインおよびC−08芳香
族収率を本発明の方法と同じ程度にした場合、メタンの
副生が著しく、更に原料として使用できる02〜C4パ
ラフイン、C留分、C6〜C8非芳香留分の収率が小さ
いこと、すなわち分解の選択性が低いことがわかる。
Comparative Example 2 Same as Example 5, except that quartz sand was filled instead of the catalyst, and the thermal decomposition was carried out at 650. The test was carried out at 752°C. The results are shown in Table 3. This table shows that in thermal decomposition, when the yield of C2-C4 olefins and C-08 aromatics, which are useful as chemical raw materials, are made to the same level as in the method of the present invention, methane by-products are significant, and 02-C4, which can be further used as raw materials, is produced. It can be seen that the yields of ~C4 paraffin, C fraction, and C6-C8 non-aromatic fraction are low, that is, the selectivity of decomposition is low.

比較例 3 比較例1と同一のプロトン型28M−5触媒3gを使用
し、実施例8と同様にn−ヘキサンの反応を24時間連
続で実施した。ヘキサン転化率の経時変化およびコーク
量を第4表に示した。
Comparative Example 3 Using 3 g of the same proton type 28M-5 catalyst as in Comparative Example 1, the reaction of n-hexane was carried out continuously for 24 hours in the same manner as in Example 8. Table 4 shows the change in hexane conversion rate over time and the amount of coke.

以上のように、本発明の方法は、炭素数2以上の炭化水
素原料から、低級オレフィンおよび単環芳香族を効率よ
く、しかも低級オレフィンと単環芳香族より高い収率で
得ることができる。更に、メタンや重質炭化水素の副生
が少なく、触媒の経時劣化も小さい等の利点を有するこ
とがわかる。
As described above, the method of the present invention can efficiently obtain lower olefins and monocyclic aromatics from a hydrocarbon raw material having 2 or more carbon atoms, and in a higher yield than lower olefins and monocyclic aromatics. Furthermore, it can be seen that it has advantages such as less methane and heavy hydrocarbon by-products and less deterioration of the catalyst over time.

(以下余白) 第 4 表 4、(Margin below) No. 4 table 4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はピリジンを用いて触媒の昇温脱離量を測定する
ための装置の説明図である。
FIG. 1 is an explanatory diagram of an apparatus for measuring the amount of temperature-programmed desorption of a catalyst using pyridine.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも炭素数2以上の炭化水素原料を低級オ
レフィンおよび単環芳香族炭化水素に転化する方法にお
いて、該原料を下記(1)を満たす中間細孔径アルミノ
シリケートゼオライトと550〜700℃の温度、0.
5〜20hr^−^1の重量時間空間速度で接触させ、
低級オレフィンおよび単環芳香族炭化水素を製造するこ
とを特徴とする炭化水素の接触転化法。 (i)ピリジンを用い、昇温速度を15℃/分とした場
合の昇温脱離法による500〜900℃における当該中
間細孔径アルミノシリケートゼオライト1g当りのピリ
ジンの脱離量が40〜180μmol
(1) In a method of converting a hydrocarbon raw material having at least 2 carbon atoms into a lower olefin and a monocyclic aromatic hydrocarbon, the raw material is mixed with an intermediate pore size aluminosilicate zeolite that satisfies the following (1) and at a temperature of 550 to 700°C. ,0.
Contact at a weight time space velocity of 5 to 20 hr^-^1,
A method for the catalytic conversion of hydrocarbons, characterized by producing lower olefins and monocyclic aromatic hydrocarbons. (i) The amount of pyridine desorbed per 1 g of the intermediate pore size aluminosilicate zeolite at 500 to 900°C by the temperature-programmed desorption method using pyridine and a heating rate of 15°C/min is 40 to 180 μmol.
(2)水蒸気の共存下に転化反応を実施する請求項1記
載の炭化水素の接触転化法。
(2) The method for catalytic conversion of hydrocarbons according to claim 1, wherein the conversion reaction is carried out in the presence of water vapor.
(3)炭化水素原料がプロパン、ブタン、ブテン、ペン
タン、ペンテン、石油ナフサ留分およびこれらの混合物
である請求項1または2記載の炭化水素の接触転化法。
(3) The method for catalytic conversion of hydrocarbons according to claim 1 or 2, wherein the hydrocarbon feedstock is propane, butane, butene, pentane, pentene, petroleum naphtha fraction, and mixtures thereof.
(4)アルミノシリケートゼオライトが、アルカリ金属
および/またはアルカリ土類金属を含有するZSM−5
型ゼオライトである請求項1または2または3記載の炭
化水素の接触転化法。
(4) ZSM-5 in which the aluminosilicate zeolite contains an alkali metal and/or an alkaline earth metal
The method for catalytic conversion of hydrocarbons according to claim 1, 2 or 3, wherein the method is a zeolite type zeolite.
JP1266303A 1989-10-16 1989-10-16 Hydrocarbon catalytic conversion Expired - Fee Related JP2801686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266303A JP2801686B2 (en) 1989-10-16 1989-10-16 Hydrocarbon catalytic conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266303A JP2801686B2 (en) 1989-10-16 1989-10-16 Hydrocarbon catalytic conversion

Publications (2)

Publication Number Publication Date
JPH03130236A true JPH03130236A (en) 1991-06-04
JP2801686B2 JP2801686B2 (en) 1998-09-21

Family

ID=17429062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266303A Expired - Fee Related JP2801686B2 (en) 1989-10-16 1989-10-16 Hydrocarbon catalytic conversion

Country Status (1)

Country Link
JP (1) JP2801686B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663434A1 (en) * 1994-01-18 1995-07-19 Total Raffinage Distribution S.A. Fluid catalytic cracking process for hydrocarbon feed, particularly a high basic nitrogen content feed
CN1070733C (en) * 1994-10-28 2001-09-12 旭化成株式会社 Hydrocarbon conversion catalyst and method of catalytic onversion therewith
JP2009544647A (en) * 2006-07-26 2009-12-17 トータル・ペトロケミカルズ・リサーチ・フエリユイ Olefin production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617218A (en) * 1984-06-22 1986-01-13 Res Assoc Util Of Light Oil Catalytic conversion of hydrocarbon
JPS6314732A (en) * 1986-07-08 1988-01-21 Res Assoc Util Of Light Oil Production of aromatic hydrocarbon
JPS6314734A (en) * 1986-07-08 1988-01-21 Res Assoc Util Of Light Oil Production of aromatic hydrocarbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617218A (en) * 1984-06-22 1986-01-13 Res Assoc Util Of Light Oil Catalytic conversion of hydrocarbon
JPS6314732A (en) * 1986-07-08 1988-01-21 Res Assoc Util Of Light Oil Production of aromatic hydrocarbon
JPS6314734A (en) * 1986-07-08 1988-01-21 Res Assoc Util Of Light Oil Production of aromatic hydrocarbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663434A1 (en) * 1994-01-18 1995-07-19 Total Raffinage Distribution S.A. Fluid catalytic cracking process for hydrocarbon feed, particularly a high basic nitrogen content feed
FR2715163A1 (en) * 1994-01-18 1995-07-21 Total Raffinage Distribution Process for catalytic cracking in a fluidized bed of a hydrocarbon feed, in particular a feed with a high content of basic nitrogen compounds.
JPH0834980A (en) * 1994-01-18 1996-02-06 Total Raffinage Distrib Sa Fluidized bed catalytic cracking of hydrocarbon feedstock particularly feedstock having high content of basic nitrogencompound
CN1070733C (en) * 1994-10-28 2001-09-12 旭化成株式会社 Hydrocarbon conversion catalyst and method of catalytic onversion therewith
EP0788838B1 (en) * 1994-10-28 2005-12-28 Asahi Kasei Kabushiki Kaisha Method of catalytic hydrocarbon conversion with a silver zeolite catalyst
JP2009544647A (en) * 2006-07-26 2009-12-17 トータル・ペトロケミカルズ・リサーチ・フエリユイ Olefin production method

Also Published As

Publication number Publication date
JP2801686B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
Choudhary et al. H-gallosilicate (MFI) propane aromatization catalyst: Influence of Si/Ga ratio on acidity, activity and deactivation due to coking
JP3664502B2 (en) Process for producing lower olefins and monocyclic aromatic hydrocarbons
Park et al. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions
Jacobs et al. Shape-selectivity changes in high-silica zeolites
US4554260A (en) Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
US4638106A (en) Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
JPS5940138B2 (en) Olefin manufacturing method
JPS6245278B2 (en)
Zhu et al. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts
US4861932A (en) Aromatization process
Vosmerikova et al. Catalytic aromatization of ethane on zinc-modified zeolites of various framework types
US20100204532A1 (en) Process for producing propylene
EP1307525B1 (en) Catalysts for deep catalytic cracking of hydrocarbon feedstocks for the selective production of light olefins and its preparation
JPH0140656B2 (en)
Lee et al. Enhanced catalytic activity of phosphorus-modified SSZ-13 zeolite in the ethylene-to-propylene reaction by controlling acidity and intracrystalline diffusivity
US6107534A (en) Method of making an improved catalyst containing an acid-treated zeolite, a boron component, and a zinc component, a product from such method, and the use thereof in the conversion of hydrocarbons
Solymosi et al. Aromatization of isobutane and isobutene over Mo2C/ZSM-5 catalyst
Le Van Mao et al. Selective deep catalytic cracking process (SDCC) of petroleum feedstocks for the production of light olefins. I. The Catlever effect obtained with a two reaction-zones system on the conversion of n-hexane
JP3741455B2 (en) Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same
JPH03130236A (en) Catalytic conversion of hydrocarbon
US5157183A (en) Aromatization process using an improved catalyst
JP3905948B2 (en) High silica zeolite catalyst
EP0250879B1 (en) Direct catalytic alkylation of mononuclear aromatics with lower alkanes
Matsuda et al. Effect of Si/O2Al2O3 ratio on the catalytic properties of mordenite for alkylation of biphenyl with propene
JP3966429B2 (en) Aromatic hydrocarbon production catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees