JPH03130102A - Treatment of lumber - Google Patents

Treatment of lumber

Info

Publication number
JPH03130102A
JPH03130102A JP26879889A JP26879889A JPH03130102A JP H03130102 A JPH03130102 A JP H03130102A JP 26879889 A JP26879889 A JP 26879889A JP 26879889 A JP26879889 A JP 26879889A JP H03130102 A JPH03130102 A JP H03130102A
Authority
JP
Japan
Prior art keywords
ammonium
wood
compd
lumber
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26879889A
Other languages
Japanese (ja)
Inventor
Takahisa Kitano
北野 孝久
Kozo Onoda
小野田 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKIWA MOKUZAI KOGYO KK
Original Assignee
TOKIWA MOKUZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKIWA MOKUZAI KOGYO KK filed Critical TOKIWA MOKUZAI KOGYO KK
Priority to JP26879889A priority Critical patent/JPH03130102A/en
Publication of JPH03130102A publication Critical patent/JPH03130102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

PURPOSE:To enhance hygroscopicity, coating properties and adhesive properties of a dimension stabilizing agent by treating lumber and ligneous material wherein ammonium compd. has been introduced thereinto at the temp. lower than the decomposition point of ammonium compd. CONSTITUTION:One part or all parts of hydrogen of NH4<+> are substituted by hydrocarbon group, etc. A compd. having this substituted HN4<+> is introduced into lumber and ligneous material. At a time of introduction or after introduction, this lumber and ligneous material are treated at the temp. lower than the decomposition point of this ammonium compd. Further the ammonium compd. such as alkyl ammonium salt, amide-bonded ammonium salt, ester-bonded ammonium salt, ether-bonded ammonium salt, hydroxyl ammonium salt, pyridinium salt and amine salt is shown. This ammonium compd. generally shows surface activity by substituting hydrogen of NH4<+> with hydrocarbon group, etc. Water absorption properties and hygroscopicity thereof are lowered in proportion to the degree of hydrophobic property. Thereby the stable dimension stability can be obtained in the whole relative temp. region.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は木材並びに本質材にアンモニウム化合物を効果
的に吸着させ、木材並びに木質材の寸法安定化を図るた
めの方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for effectively adsorbing ammonium compounds to wood and essential materials, thereby stabilizing the dimensions of wood and wood materials.

[従来の技術長その問題点] 木材並びに木質材の化学反応を伴わない寸法安定化剤と
してPEG(Polyethylen Gly−col
lやNaC1のような蒸気圧降下を伴う不揮発性膨潤剤
が用いられている。
[Problems with conventional technology] PEG (Polyethylene Gly-col) is used as a dimensional stabilizer for wood and wood materials that does not involve chemical reactions.
Non-volatile swelling agents with vapor pressure drop such as NaCl and NaCl are used.

これらの薬剤の水溶液を導入した木材はその水溶液の蒸
気圧が低下するため、脱湿過程において相対湿度が薬剤
の飽和水溶液の持つ蒸気圧に低下するまでは水分は蒸発
せず木材は収縮することがなくなる。そのため寸法安定
化剤にはその水溶液に十分な蒸気圧降下をもたらすもの
が必要であり。
When an aqueous solution of these chemicals is introduced into wood, the vapor pressure of the aqueous solution decreases, so during the dehumidification process, water does not evaporate and the wood shrinks until the relative humidity drops to the vapor pressure of a saturated aqueous solution of the agent. disappears. Therefore, the dimensional stabilizer must have a sufficient vapor pressure drop in its aqueous solution.

こうした薬剤の導入された木材は大変高い吸湿性を持つ
ようになる。またこれらの薬剤が木材に対して膨潤性を
持つ時、膨潤してできた細胞の一時空隙より薬剤は細胞
壁に浸透して行き、低相対湿度域では水分並びにこれら
の薬剤が壁中に吸着されて膨潤状態を保持し収縮を防い
でいる。ところが吸着力が小さいため、高相対湿度域で
は水分が優先的に吸着されて薬剤は吸着されにくくなり
、−時空隙から内腔へと押しやられやがて木材表面に流
出することとなる。
Wood treated with these chemicals becomes highly hygroscopic. In addition, when these chemicals have swelling properties in wood, they penetrate into the cell walls through the temporary voids in the cells created by swelling, and in low relative humidity regions, water and these chemicals are adsorbed into the walls. It maintains a swollen state and prevents shrinkage. However, because the adsorption force is small, water is preferentially adsorbed in a high relative humidity region, making it difficult for the drug to be adsorbed, forcing it through the space-time space into the internal cavity and eventually flowing out onto the wood surface.

このように従来用いられている寸法安定化剤で処理され
た木材は吸湿性が高いため表面の質感が低下し、木材表
面への流出によって接着不良や塗装不良を引き起こしや
すいため、ごく限られた用途での使用を強いられている
のが現状である。
Wood treated with conventionally used dimensional stabilizers has high hygroscopicity, which reduces the surface texture, and tends to cause poor adhesion and painting due to leakage onto the wood surface. The current situation is that we are forced to use it for specific purposes.

[発明が解決しようとする問題点] そこで本発明者は前記したような従来技術に鑑みて、木
材並びに木質材の表面の質感を変えることなくさらには
流出を引き起こすことのない寸法安定化のための薬剤処
理を鋭意研究した結果、かかる問題点をことごとく解決
しさらに全相対湿度域で安定した寸法安定性を発揮する
ことのできる全く新しい木材の処理法を初めて見出し本
発明を完成するに至ったのである。
[Problems to be Solved by the Invention] Therefore, in view of the prior art as described above, the present inventor has developed a method for dimensional stabilization that does not change the surface texture of wood or wood materials and does not cause spillage. As a result of intensive research into chemical treatment of wood, we discovered for the first time a completely new wood treatment method that can solve all of these problems and exhibit stable dimensional stability in all relative humidity ranges, leading to the completion of the present invention. It is.

[問題を解決するための手段] すなわち本発明はNH,”″の水素の一部または全部を
炭化水素基等で置換した化合物を木材並びに木質材に導
入し、導入時または導入後アンモニウム化合物の持つ分
解点未満の温度で処理することを特徴とする木材の処理
法に関する。
[Means for Solving the Problem] That is, the present invention introduces a compound in which part or all of the hydrogen of NH, ``'' is replaced with a hydrocarbon group, etc., into wood and wood materials, and at the time of or after the introduction, the ammonium compound is This invention relates to a method for treating wood, characterized by treating it at a temperature below its decomposition point.

[作用] 本発明におけるアンモニウム化合物とはアルキルアンモ
ニウム塩、アミド結合アンモニウム塩、エステル結合ア
ンモニウム塩、エーテル結合アンモニウム塩、ヒドロキ
シルアンモニウム塩、ピリジニウム塩、アミン塩等のア
ンモニウム化合物を指すが、NH4”の水素を炭化水素
基等で差換することによってアンモニウム化合物は一般
に界面活性を示し、疎水化度に比例してその吸水・吸湿
性は減少する。こうしたアンモニウム化合物を木材や木
質材に導入する場合、誘電率の高い水や低級アルコール
のような高極性溶剤を溶解したちのを用いるとよいこれ
は細胞壁に対する溶剤の膨潤性が壁中に一時空隙を形成
し薬剤の拡散を容易にすると同時に、細胞壁と溶剤の間
の誘電率差によって細胞壁に生じる負の電荷がアンモニ
ウム化合物のカチオン部を強く引き付は選択的な吸着を
行なうからである。
[Function] The ammonium compound in the present invention refers to ammonium compounds such as alkylammonium salts, amide-bonded ammonium salts, ester-bonded ammonium salts, ether-bonded ammonium salts, hydroxylammonium salts, pyridinium salts, and amine salts. Ammonium compounds generally exhibit surface activity by replacing them with hydrocarbon groups, etc., and their water absorption and hygroscopicity decrease in proportion to the degree of hydrophobicity.When such ammonium compounds are introduced into wood or wood materials, dielectric It is advisable to use a highly polar solvent such as water or a lower alcohol to dissolve the cell wall.This is because the swelling property of the solvent against the cell wall forms temporary voids in the wall, making it easier for the drug to diffuse, and at the same time, the cell wall and This is because the negative charge generated on the cell wall due to the dielectric constant difference between the solvents strongly attracts the cation moiety of the ammonium compound and selectively adsorbs it.

しかし細胞壁中へ単に静電的吸着をさせるだけでは十分
な寸法安定性は期待できない、これは細胞壁中の水酸基
へのアンモニウム化合物のカチオン部の配向が効果的に
行なわれていないからであり、これを行なうためには細
胞壁を構成するセルロース・ヘミセルロース・リグニン
等のポリマーのガラス転移点(熱軟化点)付近あるいは
熱軟化点以上の温度に木材並びに木質材をさらし、ポリ
マーの分子運動を活発にさせアンモニウム化合物のポリ
マー内の移行を容易にすることによって行なわれる。
However, sufficient dimensional stability cannot be expected simply by electrostatic adsorption into the cell wall. This is because the cation moiety of the ammonium compound is not effectively oriented to the hydroxyl group in the cell wall. In order to do this, wood and wood materials are exposed to temperatures near or above the glass transition point (thermal softening point) of polymers such as cellulose, hemicellulose, and lignin that make up cell walls, thereby activating the molecular movement of the polymers. This is done by facilitating the migration of ammonium compounds into the polymer.

但し細胞を構成するポリマーの熱軟化点は高いため、効
率よく行なうためには温度を上げるに当たって極性物質
を介入させてPA軟化点を下げることが望ましい。
However, since the thermal softening point of the polymer constituting the cells is high, in order to carry out the process efficiently, it is desirable to lower the PA softening point by intervening a polar substance when raising the temperature.

このようにして得られる木材並びに木質材はアンモニウ
ム化合物の吸着力が大変高いため、水分によって置換さ
れることはなく木材表面への流出の危険性はなくなる。
Since the wood and wood materials obtained in this way have a very high adsorption power for ammonium compounds, they will not be replaced by moisture and there is no risk of them leaking onto the wood surface.

さらにアンモニウム化合物の水素を適当な疎水基で置換
したちのを用いることによって、高温度下でも吸湿性の
低い木質感を出なうことのない処理が可能となる。
Furthermore, by using an ammonium compound in which the hydrogen is replaced with an appropriate hydrophobic group, it becomes possible to perform treatment without leaving a woody texture with low hygroscopicity even at high temperatures.

このようにアンモニウム化合物による寸法安定化は従来
の寸法安定化剤の機構と全く異なっており、従来の欠点
であった質感や塗装・接骨性を損なうことのない処理木
材を可能とさせることができる。
In this way, the mechanism of dimensional stabilization using ammonium compounds is completely different from that of conventional dimensional stabilizers, and it is possible to produce treated wood that does not impair the texture, paintability, and bone attachment properties, which were the drawbacks of conventional methods. .

以下、木材並びに木質材と同程度の吸温性を持つLBD
MAC(Laurylbenzyldin+ethyl
am−monium Chloridelを用いて実施
例で説明するが1本発明はかかる実施例のみに限定され
るものではない。
The following are LBDs with heat absorbing properties comparable to wood and wood-based materials.
MAC (Laurylbenzyldin+ethyl
Although the present invention will be explained in Examples using am-monium Chloridel, the present invention is not limited to such Examples.

[実施例1 処理液 LBDIC(30部)、イソプロピルアルコー
ル(5部)、純水(65部)の混 合物。
[Example 1 Treatment liquid A mixture of LBDIC (30 parts), isopropyl alcohol (5 parts), and pure water (65 parts).

試験片二繊維方向100mm、幅120n+m、厚み2
1IIInのナラ、ホワイトアッシュ(以下 WAと記す)、ブナの薄板各5枚を 105℃に保った恒温恒fA器(島津 理化器械(株)製DS−45型)内に 2時間放置し全部としたもの。
Test piece 2 fiber direction 100mm, width 120n+m, thickness 2
5 pieces each of 1IIIn oak, white ash (hereinafter referred to as WA), and beech thin plates were left in a constant temperature FA oven (model DS-45, manufactured by Shimadzu Rika Kikai Co., Ltd.) kept at 105°C for 2 hours. What I did.

対唄片二上記試験片の繊維方向で隣り合った部位の試験
片と同じ犬きさの薄 板各樹IJj5枚づつを試験片と同様 に全部としたもの。
Pair of song pieces 2 Five pieces of each dog-sized thin plate IJj of the same size as the test piece of the above test piece at the adjacent part in the fiber direction were used in the same way as the test piece.

実施例1 圧力容器に上記全部試験片15枚を挿入し50torr
の圧力で30分間静置した後、上記処理液を圧力容器内
に導入し容器内を薬液で満たした。その後10atmの
圧力で2時間静置して薬液を試験片内に導入した。この
後この試験片の全能寸法と全乾重量を求めるため、圧力
容器より取り出した試験片を真空乾燥機(32℃、 2
Jtorrl内に36時間放置して全能試片とした。
Example 1 All 15 of the above test pieces were inserted into a pressure vessel and heated to 50 torr.
After being allowed to stand still for 30 minutes at a pressure of , the treatment liquid was introduced into the pressure vessel, and the inside of the vessel was filled with the chemical solution. Thereafter, the test piece was allowed to stand at a pressure of 10 atm for 2 hours, and the chemical solution was introduced into the test piece. After that, in order to determine the total dimensions and total dry weight of this test piece, the test piece taken out from the pressure vessel was placed in a vacuum dryer (32℃, 2
It was left in Jtorrl for 36 hours to make an omnipotent test piece.

こうしてできた15試片の試験片を50℃。The 15 test pieces thus made were heated to 50°C.

95%RH+;:保った恒温恒湿器(ADVANTEC
製。
95%RH+;: Constant temperature and humidity chamber (ADVANTEC
Made.

^E−204)中に3昼夜放置し、その後真空乾fsc
m<4o℃、24torrl内に19時間放置し再び全
能試片とした。
^E-204) for 3 days and nights, then vacuum drying with fsc
The sample was left at m < 4o C and 24 torrl for 19 hours to be used as an omnipotent test piece again.

このとき薬剤の注入後の全能試片(条件1)と恒温恒温
器中に放置したあとの全能試片(条件2)の薬剤注入前
の全能試片に対する幅寸法増加率並びに重量増加率の平
均値は次の通りであった。
At this time, the average of the width dimension increase rate and weight increase rate of the omnipotent specimen after drug injection (condition 1) and the omnipotent specimen after being left in a constant temperature incubator (condition 2) compared to the omnipotent specimen before drug injection. The values were as follows.

実施例2 実施例1と同様にして処理液を導入した全能試験片を各
樹種ごと作り出したあと、令乾対照片とともに恒温恒温
器(35℃)に入れNet−92%RHf24hr) 
、 Dry−60%rlH+24hrlの乾湿繰り返し
試験を行ない、寸法安定性(ASEI並びに抗吸湿能(
MEEI を評価した。
Example 2 After producing omnipotent test pieces for each tree species into which the treatment solution was introduced in the same manner as in Example 1, they were placed in a constant temperature incubator (35°C) together with a dry control piece (Net-92%RHf24hr).
, Dry-60% rlH + 24 hrl repeated dry-wet test was conducted to determine dimensional stability (ASEI and anti-hygroscopic ability).
MEEI was evaluated.

表2− 表2−2 ちなみに表2における各14f+!の処理液注入後金乾
時の重量増加率はそれぞれブナ−47,8% 、 ナラ
−38,7%、 WA −23,8%であった。
Table 2- Table 2-2 By the way, each 14f+ in Table 2! The weight increase rates during gold drying after injection of the treatment liquid were 47.8% for Buna, 38.7% for Nara, and 23.8% for WA.

また寸法安定性並びに抗吸湿能は次式 %式% ( ) この後さらに恒温恒温器の温度を50℃に上げ、Net
−95%旧1 f24hr) 、 Dry−60%n+
1f24hrlの乾温繰り返し試験を行なった0表3は
その結果である。
In addition, the dimensional stability and anti-moisture absorption ability are calculated using the following formula (% formula) () After this, the temperature of the thermostatic chamber was further increased to 50°C, and the net
-95% old 1 f24hr), Dry-60%n+
Table 3 shows the results of a 1f24hrl dry temperature repeated test.

表3−1 表3−2 実施例1は常温下での処理液注入のみでは十分な水酸基
への吸着が行なわれない様子を示している。含水率20
%でのヘミセルロース並びにリグニンの熱軟化点はそれ
ぞれ54〜142 ’C,72〜128℃と言われ、水
のような高極性物質の介在下では50〜100℃もの塾
軟化点低下を起こす。木材の場合、0℃の全能木材の弾
性率を 100%とした時水で膨潤した木材の弾性率は
0℃で53%20℃で50%、50℃で40%、70℃
で30%に低下すると言われ、ヘミセルロースの熱軟化
点付近の50°C程度から急激に低下し木材を構成する
ポリマー間の分子間結合が弱められる。すなわち50℃
の高湿下に薬剤を注入した木材を放置することによって
急激に木材の膨潤度が変化するのは、より分子間の結合
が弱められるため薬剤の移動が容易となり水酸基への配
向量が高まるからであると思われる。
Table 3-1 Table 3-2 Example 1 shows that sufficient adsorption to hydroxyl groups is not achieved only by injecting the treatment liquid at room temperature. Moisture content 20
The thermal softening points of hemicellulose and lignin are said to be 54 to 142'C and 72 to 128C, respectively, and the softening point decreases by 50 to 100C in the presence of a highly polar substance such as water. In the case of wood, when the elastic modulus of omnipotent wood at 0°C is taken as 100%, the elastic modulus of wood swollen with water is 53% at 0°C, 50% at 20°C, 40% at 50°C, and 40% at 70°C.
It is said that the temperature decreases to 30% at about 50°C, which is around the thermal softening point of hemicellulose, and the intermolecular bonds between the polymers that make up the wood are weakened. i.e. 50℃
The reason why the degree of swelling of wood that has been injected with chemicals changes rapidly when it is left in high humidity conditions is because the bonds between molecules are further weakened, making it easier for the chemicals to move and increasing the amount of orientation toward hydroxyl groups. It seems to be.

実施例2は50℃程度の温度になると薬液を注入した木
材の寸法安定性が急激に上前する様子を示したものであ
る。また抗吸湿能も50℃に至ると高まっている。これ
はLBDMACの50℃、95%RH及び60%RH時
の吸湿率がそれぞれ45%、 14.5%、木材の場合
それぞれ22% 9.5%程度と薬剤の吸湿性が木材の
吸湿性を上よっているにちかかわらず薬剤を導入した木
材が未処理の木材以下の吸湿性しか持たないことからも
理解できるように、薬剤が水酸基に吸着することによっ
て水分の薬剤並びに水酸基への収着が行なわれ難くなり
寸法安定性が発現するのであり、1iii記した通り温
度が高くなるに従ってこの薬剤の水酸基への配向がより
高度に行なわれ寸法安定性並びに抗吸湿能が向上するの
である6 [発明の効果] 上記のように本発明はアンモニウム化合物の木材並びに
木質材への吸着を効果的に行なうことによって従来障害
となっていた寸法安定化剤の吸温性の高さ並びに流出に
よる塗装性・接着性の不良等の問題を解決しながら高い
寸法安定性を期待できるものであり、木材の寸法安定化
法の今後を担う画期的な発明と信じるものである。
Example 2 shows how the dimensional stability of wood injected with a chemical solution changes rapidly when the temperature reaches about 50°C. Moreover, the anti-hygroscopic ability also increases when the temperature reaches 50°C. This means that the moisture absorption rate of LBDMAC at 50℃, 95% RH and 60% RH is 45% and 14.5% respectively, and that of wood is about 22% and 9.5% respectively, and the hygroscopicity of the chemical is higher than that of wood. As can be seen from the fact that the wood into which the chemical has been introduced has a hygroscopicity lower than that of untreated wood, the adsorption of the chemical to the hydroxyl groups causes water to be absorbed by the chemical and the hydroxyl groups. As mentioned in 1iii, as the temperature increases, the orientation of this drug to the hydroxyl group becomes more advanced, improving the dimensional stability and anti-hygroscopic ability.6 [Invention [Effect] As described above, the present invention effectively adsorbs ammonium compounds to wood and wood materials, thereby improving the heat absorbing properties of dimensional stabilizers, which have been problems in the past, and improving paintability and paintability due to spillage. This invention is expected to provide high dimensional stability while solving problems such as poor adhesion, and is believed to be an epoch-making invention that will lead to the future of wood dimensional stabilization methods.

Claims (1)

【特許請求の範囲】[Claims] アンモニウム化合物を導入した木材並びに木質材をアン
モニウム化合物の分解点未満の温度で処理することを特
徴とする木材の処理法。
A method for treating wood, which comprises treating wood and wood materials into which an ammonium compound has been introduced at a temperature below the decomposition point of the ammonium compound.
JP26879889A 1989-10-16 1989-10-16 Treatment of lumber Pending JPH03130102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26879889A JPH03130102A (en) 1989-10-16 1989-10-16 Treatment of lumber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26879889A JPH03130102A (en) 1989-10-16 1989-10-16 Treatment of lumber

Publications (1)

Publication Number Publication Date
JPH03130102A true JPH03130102A (en) 1991-06-03

Family

ID=17463414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26879889A Pending JPH03130102A (en) 1989-10-16 1989-10-16 Treatment of lumber

Country Status (1)

Country Link
JP (1) JPH03130102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006677A (en) * 2018-06-28 2020-01-16 国立大学法人九州大学 Agent for controlling wood shape and/or wood humidity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006677A (en) * 2018-06-28 2020-01-16 国立大学法人九州大学 Agent for controlling wood shape and/or wood humidity

Similar Documents

Publication Publication Date Title
ES2715184T3 (en) Impregnation of chemical products in wood
BR112014019395B1 (en) process for acetylation of wood, acetylated wood and piece of acetylated wood
CN102604141A (en) Method for preparing antibacterial film of quaternarized chitosan iodine complex
CN109942882A (en) A kind of phosphorous inherent fire-retardant fiber element base heat-barrier material and preparation method thereof
EP2194185A1 (en) Flame retardant processing method, and cellulosic fiber material imparted with flame retardancy
BR112012005825A2 (en) method for treating the surface of a material, material, use of the material and fibrous product
JP6529022B2 (en) Method of producing dry BNC mat
JPH03130102A (en) Treatment of lumber
US2045350A (en) Method of reducing the shrinkage of wood
Saha et al. Improvement of functional properties of jute‐based composite by acrylonitrile pretreatment
CN107062809B (en) A kind of drying means of timber
CN107206617B (en) Fire resisting wooden body and its manufacturing method
BRPI0407089B1 (en) Woodworking process.
US2850405A (en) Method of increasing the immunity of cellulose to decay and treated article
CN111805668A (en) Method for treating willow wood by vapor phase method
RU2229589C1 (en) Method for treatment of thickening admixture to water delivered to oil layer
Shishoo et al. NMR Studies of Cotton and Wool in Sorption Process
Šimkovic et al. New aspects in cationization of lignocellulose materials. IX. Flame retardancy effect of modification with nitrogen and sulfur containing groups
TWI673408B (en) Hygroscopic exothermic agent and method for manufaturing the same
Jeong et al. Improvement in the Superhydrophobicity of Cellulose Aerogels Using Cationic Polymers
TWI429661B (en) Bio-cellulose material having high water absorption and fabricating method thereof
Shenai et al. Reaction of formaldehyde with cellulose in the presence of phosphoric acid
CN113883857A (en) Novel sodium persulfate drying process
CN106084133A (en) A kind of synthetic method of biocidal property high hydroscopic resin
KR20110010175A (en) High performance wood