JPH03130067A - Device of immobilizing single stranded dna and immobilization - Google Patents

Device of immobilizing single stranded dna and immobilization

Info

Publication number
JPH03130067A
JPH03130067A JP26957189A JP26957189A JPH03130067A JP H03130067 A JPH03130067 A JP H03130067A JP 26957189 A JP26957189 A JP 26957189A JP 26957189 A JP26957189 A JP 26957189A JP H03130067 A JPH03130067 A JP H03130067A
Authority
JP
Japan
Prior art keywords
tank
solution
stranded dna
reaction liquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26957189A
Other languages
Japanese (ja)
Inventor
Kinya Kato
欽也 加藤
Nobuko Yamamoto
伸子 山本
Harumi Iwashita
岩下 晴美
Masanori Sakuranaga
桜永 昌徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26957189A priority Critical patent/JPH03130067A/en
Publication of JPH03130067A publication Critical patent/JPH03130067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To reduce the labor in a process from preparing single stranded DNA to fixing thereof to a treating film by separating a double stranded DNA into the single stranded DNA in a treating tank equipped with a specimen where target microorganisms are held on a substrate film. CONSTITUTION:Various kinds of reaction solutions in containers 2-1 to 2-8 are sent by a supply pump 2-17 through a feed system 2-27 to a treating tank 2-25. The pump 2-17 is linked to solenoid valves 2-9 to 2-16 by a controller 2-20 corresponding to an order from cpu 2-21 and a necessary amount of a given solution is sent to the treating tank in a desired timing. A heat exchanger 2-22 to be switched on-and-off depending upon signals from a drain pump 2-24, a stirrer 2-18 and a temperature sensor 2-19 is regulated by the cpu and the controller. A treating filter 2-23 is fixed to a holder 2-26 and the filter is sandwiched between meshes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はハイブリダイゼーションへの前処理として一本
鎖DNAの調整を行い処理膜上に固定させるための装置
及び方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus and method for preparing and immobilizing single-stranded DNA on a treatment membrane as a pretreatment for hybridization.

さらに具体的には、ハイブリダイゼーション反応を行う
ため、フィルター上に一本鎖DNAを固定するための諸
反応及び処理の工程を、マイコン等により温度、時間等
が制御された系を用いて、処理過程の最適条件を自動的
にかつ正確に行うための装置及び方法を提供するもので
ある。
More specifically, in order to perform a hybridization reaction, various reactions and processing steps for immobilizing single-stranded DNA on a filter are performed using a system in which temperature, time, etc. are controlled by a microcomputer, etc. An object of the present invention is to provide an apparatus and a method for automatically and accurately determining the optimum conditions for a process.

〔従来の技術〕[Conventional technology]

核酸の中から特定の配列をもつDNAフラグメントを検
出する代表的な方法としてハイブリダイゼーション反応
があげられる。この方法の概要は、分離したDNAフラ
グメントをアルカリ処理等によって一本鎖DNAとし、
これを固定相としてのニトロセルロースメンブレン等へ
移したあと、何らかの標識した特定のDNA或いは、R
NAプローブを含む溶液で処理することによりハイブリ
ッドを形成させ、未反応のプローブを洗浄除去後ノ\イ
ブリッドを形成したDNAフラグメントを検出する。
A hybridization reaction is a typical method for detecting a DNA fragment having a specific sequence from among nucleic acids. The outline of this method is to convert the separated DNA fragments into single-stranded DNA by alkali treatment, etc.
After transferring this to a nitrocellulose membrane etc. as a stationary phase, some labeled specific DNA or R
Hybrids are formed by treatment with a solution containing an NA probe, and after washing and removing unreacted probes, DNA fragments that have formed hybrids are detected.

これらの方法は、これまでクローニングの際に所望の形
質転換体クローンをスクリーニングするために利用され
ている。
These methods have been used to screen desired transformant clones during cloning.

また、プローブの標識には、通常、放射性同位元素が用
いられてきた。しかしながら、これらの放射性化合物は
高価なうえその取り扱い及び貯蔵の不便さという欠点を
有する。
Furthermore, radioactive isotopes have generally been used to label probes. However, these radioactive compounds have the disadvantage of being expensive and inconvenient in their handling and storage.

このため最近ビオチン試薬を初めとする各種の非放射性
物質による核酸の標識が開発されてきている。そしてク
ローニング等に利用されているだけでなく、遺伝子診断
にも応用され、既に感染症及び遺伝疾患の診断用のDN
Aプローブも開発され市販化されるに至っている。
For this reason, labeling of nucleic acids with various non-radioactive substances including biotin reagents has recently been developed. In addition to being used for cloning, etc., it has also been applied to genetic diagnosis, and has already been used to diagnose infectious and genetic diseases.
A probe has also been developed and commercialized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記工程のうち一本鎖DNAの調整を行い処理膜上に固
定する工程に至るまでの諸反応は、当初実験室において
手作業により行われた。この手作業による方法は多数繰
り返される液体取り扱い工程及び制御された温度におけ
るインキュベーションを含むものである。これらの反応
過程は多大な時間と繁雑な取り扱いを要する。さらにそ
の結果として生じる低い再現性は試薬や労働力を損失さ
せるばかりでなく、貴重なりNAを失い、以後の研究を
困難なものにしたり、誤った遺伝子診断を生じる危険性
がある。また、最近安全性・利便性・安価・などの観点
から急速に注目されている非放射性物質によって標識さ
れたプローブを用いたハイブリダイゼーション反応にお
いては、その感度補填の意味から、とりわけDNAの精
製純度を高める必要が増してきている。そのため、従来
の処理に加えて新たな処理を付加せざるを得ずその全工
程はより煩雑な物となり、もはや人間の手に負える状況
でなくなってきている。
Among the above steps, the reactions up to the step of preparing the single-stranded DNA and immobilizing it on the treated membrane were initially performed manually in the laboratory. This manual method involves multiple repeated liquid handling steps and incubations at controlled temperatures. These reaction processes require a lot of time and complicated handling. Moreover, the resulting low reproducibility not only results in the loss of reagents and labor, but also the loss of valuable NA, complicating subsequent research and risking erroneous genetic diagnoses. In addition, in hybridization reactions using probes labeled with non-radioactive substances, which have recently been attracting attention from the viewpoint of safety, convenience, and low cost, it is especially important to improve the purity of DNA in order to compensate for the sensitivity. There is an increasing need to improve Therefore, new processing has to be added in addition to conventional processing, making the entire process more complicated, and it is no longer possible for humans to handle it.

特に、本反応では反応支持体を含む反応物を迅速に適正
温度状態にすることが、その後の検出反応の精度に大き
な影響を与える。
In particular, in this reaction, quickly bringing the reactants, including the reaction support, to an appropriate temperature has a large effect on the accuracy of the subsequent detection reaction.

従って、本発明ではハイブリダイゼーション反応以前の
、−本鎖DNAの調整を行い処理膜上に固定するまでの
工程を人手に頼らず自動的に行い、より速くしかも誤差
なく再現性のある結果を得ることが目的である。
Therefore, in the present invention, the steps before the hybridization reaction, from preparing the double-stranded DNA to immobilizing it on the processing membrane, are performed automatically without relying on manual labor, thereby achieving faster, error-free and reproducible results. That is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点を解決するために、本鎖DNA
の抽出及び固定化の自動化を鋭意検討した結果達成され
たものである。すなわち、−本鎖DNAの抽出及び固定
化の処理の自動化装置を提供することが一点である。
In order to solve such problems, the present invention aims to
This was achieved as a result of intensive research into automating the extraction and immobilization of That is, one point is to provide an automated device for extraction and immobilization of double-stranded DNA.

本発明の装置は、支持膜上に固定された、対象微生物を
植えついだ物、若しくは対象微生物それ自体と、一槽か
らなる処理槽で2本鎖DNAを一本鎖DNAに分離し、
支持膜上に固定させる装置である。その構成は以下の様
である。一槽の処理槽からなり、槽は断熱材で被覆され
ている。かつ対象微生物を植えついだ物若しくは対象微
生物それ自体を支持膜上に保持させたサンプルを装着す
る手段;複数容器に、該対象微生物を変性、溶解する溶
液、該溶液に対し中和を行う第二の溶液、溶解溶液、D
NAの精製を行う溶液及び複数種の洗浄液(以下これら
を反応液と総称する)を分別貯蔵する手段;複数種の該
反応液を選別し、かつ槽内への反応液流入量を制御する
給送手段:槽内反応液の加熱及び冷却手段及び温度検知
手段を備えた温度制御手段:槽内溶液を撹拌あるいは振
とうする手段;槽内反応液の排送手段;槽内の制御温度
、給送反応液種及び流入量と給排送のタイミングの信号
を利用者により設定する手段;を有することを特徴とす
る一本鎖DNAの抽出及び固定化を行う自動化装置。
The device of the present invention separates double-stranded DNA into single-stranded DNA in a treatment tank consisting of a target microorganism immobilized on a support membrane, or a target microorganism itself, and one tank.
This is a device for fixing on a support membrane. Its configuration is as follows. It consists of one treatment tank, and the tank is covered with a heat insulating material. and a means for mounting a sample in which the target microorganisms are inoculated or the target microorganisms themselves are held on a support membrane; a solution for denaturing and dissolving the target microorganisms, and a step for neutralizing the solution in multiple containers; Second solution, dissolved solution, D
A means for separately storing a solution for NA purification and a plurality of types of washing liquids (hereinafter collectively referred to as reaction liquids); a supply system for sorting the plurality of reaction liquids and controlling the amount of reaction liquid flowing into the tank; Feeding means: Temperature control means equipped with means for heating and cooling the reaction liquid in the tank and temperature detection means: Means for stirring or shaking the solution in the tank; Means for discharging the reaction liquid in the tank; Control temperature and supply in the tank An automated device for extracting and immobilizing single-stranded DNA, comprising means for a user to set signals for the type of reaction liquid to be fed, the amount of inflow, and the timing of supply and discharge.

第1図は、本発明の装置の概念をブロック図として示し
たものである。この図において、1−1は一連の処理・
反応を行う処理槽であり、処理・反応液の給送系1−2
と排送系1−3が接続している。給送系1−2は複数の
反応液の貯蔵容器系1−6から処理槽1−1へ溶液を給
送し、また給送途上において温度制御系1−4により反
応液の液温を制御する。
FIG. 1 shows the concept of the apparatus of the present invention as a block diagram. In this figure, 1-1 is a series of processing
A treatment tank for carrying out a reaction, and a treatment/reaction liquid feeding system 1-2
and discharge system 1-3 are connected. A feeding system 1-2 feeds the solution from a plurality of reaction liquid storage container systems 1-6 to the processing tank 1-1, and also controls the temperature of the reaction liquid by a temperature control system 1-4 during feeding. do.

槽内へ流入した溶液は処理槽に附随した撹拌または振と
う手段1−5の操作を受ける。さらに、1−2゜1−3
. 1−4.  l−5はCPUおよびコントローラー
によってパラメーター及び0N10FFの制御を受け、
このときのパラメーター及びタイミングは利用者によっ
て設定される。
The solution flowing into the tank is operated by stirring or shaking means 1-5 attached to the processing tank. Furthermore, 1-2゜1-3
.. 1-4. l-5 is controlled by parameters and 0N10FF by the CPU and controller,
The parameters and timing at this time are set by the user.

本発明の装置は、操作のための電力供給源、及び利用者
の制御を可能とするキーボードを含むことは言うまでも
なく、利用者の入力信号を確認するためにデイスプレィ
を設けてもよい。
It goes without saying that the device of the invention includes a power supply for operation and a keyboard to allow user control, and may also be provided with a display for confirming user input signals.

本発明の装置に使用され処理反応に供されるサンプルと
しては、ファージによって形成されたプラーク、および
大腸菌や酵母などの細菌によって形成されたコロニーか
らの転写物、若しくはそれ自体を支持膜上に保持させた
ものが良い。
Samples used in the device of the present invention and subjected to processing reactions include plaques formed by phages, transcripts from colonies formed by bacteria such as Escherichia coli and yeast, or samples themselves retained on a support membrane. It's better to let it happen.

本発明のもう一点は、上記の装置によって所望の処理反
応を連続して、均一に達成することができることを見出
したことによる。
Another aspect of the present invention is based on the discovery that desired processing reactions can be continuously and uniformly achieved using the above-mentioned apparatus.

すなわち、対象微生物を植えついだ物、若しくはそれ自
体を支持膜上に保持させたサンプルの1枚あるいは複数
枚を、一槽からなる処理槽内で、該転写物を変性する溶
液、該溶液に対し中和を行う第二の溶液、DNAの精製
を行う溶液及び複数種の洗浄液に逐選的に浸漬してハイ
ブリダイゼーションへの前処理として一本鎖DNAの調
製を行い処理膜上に固定させる工程において、利用者が
設定した信号に従って、該槽内へ給送する反応液の種と
総流量及び槽内維持継続時間間隔と槽内温度を制御する
装置によって、逐次反応を達成する、ことを特徴とする
一本鎖DNAの抽出及び固定化方法。
In other words, one or more samples inoculated with the target microorganisms, or samples in which the target microorganisms themselves are held on a support membrane, are placed in a solution that denatures the transferred material in a treatment tank consisting of one tank. The DNA is then selectively immersed in a second solution for neutralization, a solution for DNA purification, and multiple types of washing solutions to prepare single-stranded DNA as a pretreatment for hybridization and immobilize it on the treated membrane. In the process, successive reactions are achieved by a device that controls the type and total flow rate of the reaction solution fed into the tank, the duration interval for maintaining the tank, and the temperature in the tank according to signals set by the user. Features: Single-stranded DNA extraction and immobilization method.

本発明の方法が適用される例は、従来技術で述べた一般
的なハイブリダイゼーションの前処理に加えて、非放射
性物質、例えばビオチンを組み込んだオリゴヌクレオチ
ドプローブとのハイブリダイゼーションの前処理をあげ
ることができる。
Examples to which the method of the present invention is applied include, in addition to the general hybridization pretreatment described in the prior art, hybridization pretreatment with an oligonucleotide probe incorporating a non-radioactive substance, such as biotin. Can be done.

〔実施例1〕 以下に、本発明の実施例を添付の図面を参照しながら説
明する。
[Example 1] Examples of the present invention will be described below with reference to the accompanying drawings.

先ず、第2図を参照して本発明の基本構成を説明する。First, the basic configuration of the present invention will be explained with reference to FIG.

図中2−1〜2−8の容器には、各種反応液が入ってい
る。標準的には、2−1の容器に2 X SSCが、2
−2の容器にはlX5SCが、2−3の容器には95%
エタノール溶液が、2−4の容器には飽和フェノール溶
液(フェノール:クロロホルム:イソアミルアルコール
25:24:1)、2−5の容器には0 、5 M  
N a OH/ 1 、5 M  N a Cj!溶液
が、2−6の容器には0.5M  Tr、1s−HCf
 (pH8,0) / 1.5MN a C1!なる溶
液が、2−7の容器には0.05M Tris・HCj
! (pH8,0)/25% 5UCRO3E/1.5
μg/m、fリゾチームの割合で溶かしたりゾチーム溶
液が、さらに2−8の容器には200μg / m l
プロテアーゼ/1xsscなるプロテアーゼ溶液が必要
量封入されている。各々の反応はサプライポンプ2−1
7によって給送系2−27を介して処理槽2−25にお
(られるが、その液量とタイミングは例えば中央処理装
置(CPU)2−21からの指令に応じたコントローラ
2−20によって決められる。この指令に従ってサプラ
イポンプ2−17と電磁弁2−9〜2−16が連動して
働き、所望のタイミングで所望の溶液を必要量処理槽2
−25に送り込む。2−24は処理槽のドレインポンプ
で処理槽2−25の溶液を吸引する吸引ポンプからなる
。この吸引のタイミングは上記溶液の送り込み同様CP
U2−21.コントローラ2−20で制御される。サプ
ライポンプ2−17、ドレインポンプ2−24の吸引量
をそれぞれ制御することで、各々の処理液が処理槽にと
どまる時間、流量を自由に制御できる。これらの制御方
法はCPU2−21に依らずロジックコントローラを用
いてもよい。
In the figure, containers 2-1 to 2-8 contain various reaction solutions. Typically, 2 x SSC in 2-1 containers, 2
-2 container contains lX5SC, 2-3 container contains 95%
The ethanol solution was saturated phenol solution (phenol:chloroform:isoamyl alcohol 25:24:1) in container 2-4, and 0,5 M in container 2-5.
N a OH/ 1, 5 M N a Cj! The solution is 0.5M Tr, 1s-HCf in the container 2-6.
(pH8,0) / 1.5MN a C1! Container 2-7 contains 0.05M Tris・HCj
! (pH8,0)/25% 5UCRO3E/1.5
Dissolve the lysozyme solution at the rate of μg/m, f lysozyme, and add 200 μg/ml in 2-8 containers.
A required amount of protease solution called protease/1xssc is enclosed. Each reaction uses supply pump 2-1
7 to the processing tank 2-25 via the feeding system 2-27, the amount and timing of which are determined by the controller 2-20 in response to commands from the central processing unit (CPU) 2-21, for example. According to this command, the supply pump 2-17 and the solenoid valves 2-9 to 2-16 work together to supply the required amount of the desired solution to the processing tank 2 at the desired timing.
-25. Reference numeral 2-24 is a drain pump for the processing tank, which consists of a suction pump that sucks the solution from the processing tank 2-25. The timing of this suction is the same as the above solution feeding.
U2-21. It is controlled by a controller 2-20. By controlling the suction amounts of the supply pump 2-17 and the drain pump 2-24, the time each processing liquid stays in the processing tank and the flow rate can be freely controlled. These control methods may use a logic controller without depending on the CPU 2-21.

2−18は撹拌器であるが処理槽内における液の混和、
均一化を促す役割を担っていればいかなる形態のもので
も良い。撹拌の開始、停止はCPU2−21からの信号
で行われる。
2-18 is a stirrer, which mixes the liquid in the processing tank;
Any form may be used as long as it plays a role in promoting uniformity. The stirring is started and stopped by a signal from the CPU 2-21.

2−25の処理槽は断熱材でできた密閉容器である。給
送系2−27には給送系内を通過する溶液の温度を測定
する温度センサー2−19及び給送系内の溶液の温度を
所望のものとする熱交換器2−22が設けられている。
The processing tank 2-25 is a closed container made of a heat insulating material. The feeding system 2-27 is provided with a temperature sensor 2-19 for measuring the temperature of the solution passing through the feeding system and a heat exchanger 2-22 for adjusting the temperature of the solution in the feeding system to a desired temperature. ing.

この熱交換器は、溶液を冷却・加熱できるものならいか
なる形態のものでも良いが、例えば、加熱はヒータで行
い、冷却は、ペルチェ素子または、フロン等の冷媒を流
す冷却コイルなどがある。熱交換器が給送系に接した形
のみならず、熱交換器が給送系内に含まれる形態でも良
い。熱交換器は、温度センサーからの信号に従ってON
、OFFを行うことによりCPU2−21゜コントロー
ラ2−20で制御されている。
This heat exchanger may be of any type as long as it can cool and heat the solution; for example, heating is performed by a heater, and cooling is performed by a Peltier element or a cooling coil through which a refrigerant such as Freon flows. The heat exchanger may not only be in contact with the feed system, but also may be included in the feed system. The heat exchanger is turned on according to the signal from the temperature sensor.
, OFF, the CPU 2-21 is controlled by the controller 2-20.

2−26は処理を行うフィルターを保持するフィルター
固定器具で、−度に多数枚処理でき、なおかつフィルタ
ー同士が接触しないようメツシュでフィルターをはさみ
フィルターの積層を可能にしたものである。
Reference numeral 2-26 is a filter fixing device that holds filters to be processed.It is capable of processing a large number of filters at a time, and also allows stacking of filters by sandwiching the filters between meshes so that the filters do not come into contact with each other.

第3図に本実施例におけるCPU2−21のシーフェン
スを示した。
FIG. 3 shows the sea fence of the CPU 2-21 in this embodiment.

第4図は処理槽に振とう器を設けた実施例である。FIG. 4 shows an embodiment in which a shaker is provided in the processing tank.

振とうはフィルター固定器を振とうする方法、処理槽自
体を振とうする方法など処理槽内における溶液の混和、
均一化を促進し、洗浄及び諸反応を促す役割を担ってい
ればいかなる形態のものでも良い。振とうの開始、停止
はCPU2−21からの信号で行われる。第5図に本実
施例におけるCPU2−21のシーフェンスを示した。
Shaking is a method of shaking the filter fixing device, a method of shaking the processing tank itself, etc. Mixing of the solution in the processing tank,
Any form may be used as long as it plays the role of promoting uniformity, cleaning and various reactions. The shaking is started and stopped by a signal from the CPU 2-21. FIG. 5 shows the sea fence of the CPU 2-21 in this embodiment.

次に、さらに具体的な実施例を第2図、第3図に基づい
て説明する。
Next, a more specific embodiment will be described based on FIGS. 2 and 3.

先ず、宿主大腸菌J M I O9にプラスミドpUc
19を常法に従ってトランスフォーメーション(Mol
ecularCloning) L、16コロニー存在
するプレートを作製した。このプレートから常法に従っ
てコロニーをフィルター(W h a t m a n
  541 )に移し取った。
First, plasmid pUc was introduced into host E. coli JMI O9.
Transform 19 according to the conventional method (Mol
ecularCloning) L, a plate containing 16 colonies was prepared. Colonies were filtered from this plate according to the standard method.
541).

上記フィルターを固定器2−26に装着し、反応槽2−
25内に納めた。
The above filter is attached to the fixing device 2-26, and the reaction tank 2-
I paid it within 25.

次に、表1に従って反応を行った。表1は、第3図に示
す手順に従って各ステップの電磁弁の開閉、反応液総量
、反応温度、反応時間の設定値をまとめたものである。
Next, a reaction was carried out according to Table 1. Table 1 summarizes the set values for opening and closing of the solenoid valve, total amount of reaction liquid, reaction temperature, and reaction time in each step according to the procedure shown in FIG.

また、容器2−1〜2−8は第2図の番号に対応し、溶
液の組成は表1の通りである。
Further, containers 2-1 to 2-8 correspond to the numbers in FIG. 2, and the compositions of the solutions are as shown in Table 1.

以上の事柄に従って反応を行った後、DNA量を測定す
るためフィルター上に濃度が既知の一本鎖DNAを段階
的にスポットした。80℃で2時間べ一りし、フィルタ
ー上に一本鎖DNAを充分固定させた後、エチジウムブ
ロマイドで染色しUVを照射したところ、手作業の時と
同等以上のハイブリダイゼーションに充分量の一本鎖D
NAが存在することが確認された。
After carrying out the reaction according to the above-mentioned conditions, single-stranded DNA with a known concentration was spotted on the filter stepwise in order to measure the amount of DNA. After incubating at 80°C for 2 hours to fully fix the single-stranded DNA on the filter, it was stained with ethidium bromide and exposed to UV light. Main strand D
The presence of NA was confirmed.

また、フェノールなどで著しい劣化をうけるニトロセル
ロースフィルター(Schleicher  &  5
chuellBA85)については、表1の反応順序1
0. 11゜12、13を省略して反応を行うことによ
りWhatman541フィルターと同程度のDNA量
が確認された。
In addition, nitrocellulose filters (Schleicher & 5
chuellBA85), reaction order 1 in Table 1
0. By performing the reaction by omitting 11, 12, and 13, the amount of DNA comparable to that of the Whatman 541 filter was confirmed.

〔実施例2〕 先ず、常法(Molecular  Cloning)
に従ってファージを大腸菌p2392に感染させ、lプ
レートにつき20プラ一ク程度となるようなプレートを
作製した。このプレートから常法に従ってプラークをW
 h a t m a n 541フイルターに移し取
った。
[Example 2] First, conventional method (Molecular Cloning)
E. coli p2392 was infected with the phage according to the procedure, and plates were prepared with approximately 20 plaques per plate. Remove the plaque from this plate using the conventional method.
Transferred to a H atman 541 filter.

次に、表1に従って実施例1と同様に反応を行い、エチ
ジウムブロマイドで染色したところ、充分量の一本鎖D
NAの存在が確認された。
Next, a reaction was carried out in the same manner as in Example 1 according to Table 1, and when dyed with ethidium bromide, a sufficient amount of single-stranded D
The presence of NA was confirmed.

なお、実施例1.2で作製した両フィルターについて、
ビオチンで標識したプローブ(実施例1.2のコロニー
およびプラーク中のDNAと相補的な配列を有する)を
用いてハイブリダイゼーションを行ったところ、いずれ
のフィルターにおいてもきわめて良好な発色が得られた
In addition, regarding both filters produced in Example 1.2,
When hybridization was performed using a biotin-labeled probe (having a sequence complementary to the DNA in the colonies and plaques of Example 1.2), extremely good color development was obtained in all filters.

〔発明の効果〕〔Effect of the invention〕

本発明による装置を用いてハイブリダイゼーション以前
の前処理を行ったところ、従来専任のオペレータが一日
余を要していた作業が人手を全く介することなく良好な
結果が得られた。この結イ)労働力が大幅に軽減された
When pretreatment prior to hybridization was performed using the apparatus of the present invention, good results were obtained without any manual intervention, a task that conventionally required a full-time operator over a day. As a result, a) the labor force was significantly reduced.

口)夜間作業が可能になり実験時間が短縮された。(Example) It became possible to work at night, which shortened experiment time.

二)わずかなりNAをロスすることなく、効率よく抽出
が行えるようになった。
2) Extraction can now be carried out efficiently without a slight loss of NA.

などの効果が得られた。The following effects were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の構成を示すブロック図であ
る。 第2図はさらに具体的な実施例の構成図、第3図は第2
図の制御部(CPU/コントローラ)の動作の一実施例
を示すフローチャートである。 第4図は他の具体的な実施例の構成図、第5図は第4図
の制御部(CPU/コントローラ)の動作の一実施例を
示すフローチャートである。 図中符号 1−1・・・反応槽 1−2・・・給送系 1−3・・・排送系 !−4・・・温度制御系 1−5・・・撹拌/振とう系 1−6・・・貯蔵系 1−7・・・CPUコントローラ 2−1〜2−8・・・反応液貯蔵容器 2−9〜2−16・・・電磁弁 2−17・・・サプライポンプ 2−18・・・振とう撹拌器 2−19・・・温度センサー 2−20・・・コントローラ 2−21・・・CPU 2−22・・・熱交換器 2−23・・・フィルター 2−24・・・ドレインポンプ 2−25・・・処理槽 2−26・・・フィルター固定器 2−27・・・給送系 を表わす。 スタート ↓ 電磁弁2−13を聞く ↓ サプライポンプを所定時間てj働し、処理槽に0.5M
 NaOH/15M NaClを容器2−5から導入す
る↓ 電磁弁2−13を閉じる ↓ 所定時間 待機 ↓ ドレインポンプを所定行間稼働し、 処理槽から吸引、廃棄を行う ↓ 電磁弁2−14を開く ↓ サプライポンプを所定時間稼働し、処理槽に0.5M 
Th1s−HCI (pH8,0) / 15M Na
Clを容器2−6から導入する↓ N磁弁2−14を閉じる ↓ 撹拌器ON ↓ 所定時間 待機 ↓ 撹拌器OFF 姦 ドレインポンプを所定時間稼働し、 処理槽から吸引、廃棄を行う ↓  っづく サプライポンプを所定時間稼働し、処理槽にリゾチーム
溶液を容器2−7から導入する所望1度への温度維持回
路ON 所望温度への温度維持回路OFF 電磁弁2−15を閉じる 撹拌器ON 所定時間 待機 撹拌器OFF ドレインポンプを所定時間稼働し、 処理槽から吸引、廃棄を行う サプライポンプを所定時間稼働し、処理槽にブOテアー
ゼ溶液を容器2−8から導入する所望温度への温度維持
回路ON 所望温度への温度維持回路OFF 電磁弁2−16を閉じる 撹拌器ON 所定時間 待機 撹拌器OFF ドレインポンプを所定時間稼動し、 処理槽から吸引、廃棄を行う 予″3区軸7 スタート ↓ 電磁弁2−13を開く ↓ サプライポンプを所定時間稼働し、処理槽に0.5M 
NaOH/15M NaClを容器2−5から導入する
↓ 電磁弁2−13を閉じる ↓ 所定時間 待機 ↓ ドレインポンプを所定時間稼働し。 処理槽から吸引、廃棄を行う ↓ 電磁弁2−14を開く ↓ サプライポンプを所定時間稼働し、処理槽に0.5M丁
ris−HCI (pH8,0) / + 5M Nl
lClを容器2−6から導入する↓ fEa弁2−14を閉eる ↓ 振とう器ON ↓ 所定時間 待機 ↓ 振とう器OFF ↓ サプライポンプを所定時間稼働し、処理槽にリゾチーム
溶液を容器2−7から導入する所望温度への温度維持回
路ON 所望温度への温度維持回路OFF 電磁弁2−15を閉じる 振とう器ON 所定時間 待機 振とう器OFF ドレインポンプを所定時間稼働し、 処理槽から吸引、廃棄を行う マ サプライポンプを所定時間稼働し、処理槽にプロテアー
ゼ溶液を容器2−8から導入する所望温度への温度維持
口HON 所望温度へのAyi維持回路OFF 電磁弁2−16を閉じる 振とう器ON 所定時間 待機 振とうt! OFF ドレインポンプを所定時間稼働し、 ↓ つづく マ つづく
FIG. 1 is a block diagram showing the configuration of an apparatus according to the present invention. Figure 2 is a configuration diagram of a more specific embodiment, and Figure 3 is a diagram of the second embodiment.
3 is a flowchart showing an example of the operation of the control unit (CPU/controller) shown in the figure. FIG. 4 is a block diagram of another specific embodiment, and FIG. 5 is a flowchart showing one embodiment of the operation of the control section (CPU/controller) in FIG. 4. Code 1-1 in the figure...Reaction tank 1-2...Feeding system 1-3...Discharge system! -4...Temperature control system 1-5...Stirring/shaking system 1-6...Storage system 1-7...CPU controller 2-1 to 2-8...Reaction liquid storage container 2 -9~2-16... Solenoid valve 2-17... Supply pump 2-18... Shaking stirrer 2-19... Temperature sensor 2-20... Controller 2-21... CPU 2-22... Heat exchanger 2-23... Filter 2-24... Drain pump 2-25... Processing tank 2-26... Filter fixture 2-27... Feeding represents a system. Start ↓ Listen to solenoid valve 2-13 ↓ Operate the supply pump for a specified period of time and fill the processing tank with 0.5M
Introduce NaOH/15M NaCl from container 2-5 ↓ Close solenoid valve 2-13 ↓ Wait for a predetermined time ↓ Operate the drain pump for a predetermined interval to suck and discard from the treatment tank ↓ Open solenoid valve 2-14 ↓ The supply pump is operated for a specified period of time, and 0.5M is added to the processing tank.
Th1s-HCI (pH8,0) / 15M Na
Introduce Cl from container 2-6 ↓ Close N-magnetic valve 2-14 ↓ Turn on the stirrer ↓ Wait for the specified time ↓ Turn off the stirrer Operate the drain pump for the specified period of time, suck it out from the treatment tank and dispose of it ↓ Dzuku The supply pump is operated for a predetermined time, and the lysozyme solution is introduced from the container 2-7 into the processing tank.The temperature maintenance circuit to the desired temperature is turned on.The temperature maintenance circuit to the desired temperature is turned off.The agitator is turned on, which closes the solenoid valve 2-15.The agitator is turned on for a predetermined time. Standby stirrer OFF Temperature maintenance circuit to maintain the desired temperature by operating the drain pump for a predetermined time, operating the supply pump for suction and disposal from the processing tank for a predetermined time, and introducing the BuO-tease solution from container 2-8 into the processing tank. ON Turns off the temperature maintenance circuit to the desired temperature Turns on the stirrer that closes the solenoid valve 2-16 Turns off the standby stirrer for a predetermined time The drain pump operates for a predetermined time to suck and dispose of water from the processing tank 3-section axis 7 Start ↓ Solenoid Open valve 2-13 ↓ Operate the supply pump for a specified time and fill the processing tank with 0.5M
Introduce NaOH/15M NaCl from container 2-5 ↓ Close solenoid valve 2-13 ↓ Wait for a predetermined time ↓ Operate the drain pump for a predetermined time. Suction and disposal from the treatment tank ↓ Open solenoid valve 2-14 ↓ Operate the supply pump for the specified time and add 0.5M ris-HCI (pH 8,0) / + 5M Nl to the treatment tank
Introduce lCl from container 2-6 ↓ Close fEa valve 2-14 ↓ Turn on the shaker ↓ Wait for the specified time ↓ Turn off the shaker ↓ Operate the supply pump for the specified time and pour the lysozyme solution into the processing tank in container 2 Turn on the temperature maintenance circuit to the desired temperature introduced from -7 Turn off the temperature maintenance circuit to the desired temperature Turn on the shaker that closes the solenoid valve 2-15 Turn off the standby shaker for a predetermined time Operate the drain pump for a predetermined time to remove the water from the processing tank Operate the mass supply pump for suction and disposal for a predetermined time, and introduce the protease solution into the processing tank from the container 2-8.Temperature maintenance port HON to the desired temperature.Ayi maintenance circuit OFF to the desired temperature.Close the solenoid valve 2-16. Shaker ON, standby shaking for specified time! OFF Operate the drain pump for the specified time, ↓ Continued

Claims (2)

【特許請求の範囲】[Claims] (1)断熱材で被覆した処理槽一槽からなる処理槽で2
本鎖DNAを一本鎖DNAに分離し、支持膜上に固定さ
せる装置であって、 ファージによるプラークおよび細菌によるコロニー(以
下これらを対象微生物と称する)自体、若しくは対象微
生物を植え継いだ物を支持膜上に保持させたサンプルを
装着する手段;複数容器に、該対象微生物を変性、該溶
液に対し中和を行う第二の溶液、溶解溶液、DNAの精
製を行う溶液及び複数種の洗浄液(以下これらを反応液
と総称する)を分別貯蔵する手段;複数種の該反応液を
選別し、かつ槽内への反応液流入量を制御する給送手段
:槽内反応液の加熱及び冷却手段及び温度検知手段を備
え給送の途上において該反応液の温度を制御する手段:
槽内溶液を撹拌あるいは振とうする手段:槽内反応液の
排送手段;槽内の制御温度、給送反応液種及び流入量と
給排送のタイミングの信号を利用者により設定する手段
; を有することを特徴とする一本鎖DNAの抽出及び固定
化を行う自動化装置。
(1) Two treatment tanks consisting of one treatment tank covered with heat insulating material.
This is a device that separates double-stranded DNA into single-stranded DNA and immobilizes it on a support membrane, and it is used to separate phage plaques and bacterial colonies (hereinafter referred to as target microorganisms), or target microorganisms that have been transplanted. Means for mounting the sample held on the support membrane; a second solution for denaturing the target microorganism and neutralizing the solution, a lysis solution, a solution for DNA purification, and multiple types of washing solutions in multiple containers; Means for separately storing the reaction liquid (hereinafter collectively referred to as reaction liquid); Feeding means for sorting multiple types of reaction liquids and controlling the amount of reaction liquid flowing into the tank: heating and cooling of the reaction liquid in the tank Means for controlling the temperature of the reaction liquid during feeding, comprising:
Means for stirring or shaking the solution in the tank: Means for discharging the reaction liquid in the tank; Means for the user to set the control temperature in the tank, the type of reaction liquid to be fed, the inflow amount, and the timing signals for feeding and discharging; An automated device for extracting and immobilizing single-stranded DNA, comprising:
(2)対象微生物を植えついだ物、若しくは対象微生物
それ自体を支持膜上に保持させたサンプルの1枚あるい
は複数枚を、一槽からなる処理槽内で、該転写物を変性
する溶液、該溶液に対し中和を行う第二の溶液、DNA
の精製を行う溶液及び複数種の洗浄液に逐次的に浸漬し
て一本鎖DNAに分離し、支持膜上に固定させる工程に
おいて、利用者が設定した信号に従って、該槽内へ給送
する反応液の種と総流量及び槽内維持継続時間間隔と槽
内温度を制御する装置によって、逐次反応を達成する、 ことを特徴とする一本鎖DNAの抽出及び固定化方法。
(2) A solution that denatures the transferred material in a treatment tank consisting of one tank, in which one or more sheets of a sample in which the target microorganism is inoculated or the target microorganism itself is held on a support membrane; A second solution that neutralizes the solution, DNA
In the process of sequentially immersing DNA in a purification solution and multiple types of washing solutions to separate it into single-stranded DNA and immobilize it on a support membrane, the reaction is fed into the tank according to a signal set by the user. A method for extracting and immobilizing single-stranded DNA, characterized in that successive reactions are achieved by a device that controls the species and total flow rate of the liquid, the time interval for maintaining the tank, and the temperature in the tank.
JP26957189A 1989-10-16 1989-10-16 Device of immobilizing single stranded dna and immobilization Pending JPH03130067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26957189A JPH03130067A (en) 1989-10-16 1989-10-16 Device of immobilizing single stranded dna and immobilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26957189A JPH03130067A (en) 1989-10-16 1989-10-16 Device of immobilizing single stranded dna and immobilization

Publications (1)

Publication Number Publication Date
JPH03130067A true JPH03130067A (en) 1991-06-03

Family

ID=17474220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26957189A Pending JPH03130067A (en) 1989-10-16 1989-10-16 Device of immobilizing single stranded dna and immobilization

Country Status (1)

Country Link
JP (1) JPH03130067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199991A (en) * 2007-02-22 2008-09-04 Aloka Co Ltd Hybridization treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199991A (en) * 2007-02-22 2008-09-04 Aloka Co Ltd Hybridization treatment apparatus

Similar Documents

Publication Publication Date Title
JP5886787B2 (en) Equipment for processing samples
US10458998B2 (en) Device for processing samples
US7776616B2 (en) Apparatuses and methods for isolating nucleic acid
US6255478B1 (en) Nucleic acid extraction method
EP2306204B1 (en) Nucleic acid analyzer, automatic analyzer, and analysis method
JP2004536567A (en) Multi-sample fermenter and method of using same
JP2004536567A5 (en)
JPH06327476A (en) Analyzer for gene
JPH03130067A (en) Device of immobilizing single stranded dna and immobilization
EP2677321A1 (en) Integrated device for nucleic acid hybridizations and immuno-assays
JPH03133371A (en) Device of immobilizing single-stranded dna and immobilization
CN214427451U (en) Full-automatic western blot processing and detecting device
JPH03127978A (en) Device for fixing single-standard dna and method using same device
US11474121B2 (en) Automated volume saving liquid exchange device in a single rotating cylinder
JPH03127977A (en) Device for immobilizing single-starnded dna and method using same device
JP2000125847A (en) Organism specimen-treating apparatus
CN113308364A (en) Nucleic acid extraction substrate, nucleic acid extraction apparatus, and nucleic acid extraction method
JPH03133370A (en) Color reaction unit for nucleic acid hybrid and method for color reaction
JPH03130068A (en) Color reaction device of nucleic acid hybrid and method of color reaction
JPH03127976A (en) Color reaction device of nucleic acid hybrid and method using same device
CN219194964U (en) In situ hybridization appearance liquid way
JPH03127979A (en) Color reaction device of nucleic acid hybrid and method using same device
AU2003200640B2 (en) Apparatuses and methods for isolating nucleic acid
CN115820403A (en) In-situ hybridization instrument liquid path
CN112126642A (en) Nucleic acid extraction device and method thereof