JPH03129729A - Electrode plate for plasma etching - Google Patents

Electrode plate for plasma etching

Info

Publication number
JPH03129729A
JPH03129729A JP28437289A JP28437289A JPH03129729A JP H03129729 A JPH03129729 A JP H03129729A JP 28437289 A JP28437289 A JP 28437289A JP 28437289 A JP28437289 A JP 28437289A JP H03129729 A JPH03129729 A JP H03129729A
Authority
JP
Japan
Prior art keywords
electrode plate
base material
graphite base
plasma etching
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28437289A
Other languages
Japanese (ja)
Other versions
JP2609932B2 (en
Inventor
Taishin Horio
堀尾 泰臣
Seiji Minoura
誠司 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Publication of JPH03129729A publication Critical patent/JPH03129729A/en
Application granted granted Critical
Publication of JP2609932B2 publication Critical patent/JP2609932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent a warp and a local consumption of an electrode plate by a local load caused when a plasma is generated and to execute an accurate etching treatment by a method wherein a thermally decomposed carbon film is formed on the surface of a graphite base material which is provided with a specific coefficient of thermal expansion and whose anisotropy ratio is 1.25 or lower. CONSTITUTION:A thermally decomposed carbon film is formed on the surface of a graphite base material whose average coefficient of thermal expansion at 20 to 400 deg.C is 1.3 to 7.0X10<-6>/ deg.C and whose anisotropy ratio is 1.25 or lower. The average coefficient of thermal expansion of the graphite base material is set within a specific range in order to prevent a crack from being caused in an electrode plate by a difference in thermal expansion even when the electrode plate is heated locally at a plasma etching treatment. In addition, it is intended to prevent the electrode plate from being stripped off by a difference in thermal expansion between the plate and the thermally decomposed carbon film formed on the surface of the graphite base material. The anisotropy ratio of the graphite base material is set at 1.25 or lower in order to prevent a warp from being caused in the electrode plate by keeping its physical properties uniform even when a stress is generated only on one side of the electrode plate at the plasma etching treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ICやLSI等の半導体集積回路をプラズマ
エツチング処理によって形成する際に使用するプラズマ
エツチング用電極板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrode plate for plasma etching used when forming semiconductor integrated circuits such as ICs and LSIs by plasma etching processing.

(従来の技術) プラズマエツチング装置は、図に示すように、円板形状
の陽極板(10)と、これと対向する陰極板(20)と
を反応チャンバー(30)内に備え、電極板(1G)(
20)間に数十ボルトから数百ポルトの電位差の電場を
つくり、反応チャンバー(30)内にCF。
(Prior Art) As shown in the figure, a plasma etching apparatus is equipped with a disk-shaped anode plate (10) and a cathode plate (20) facing the anode plate (20) in a reaction chamber (30). 1G)(
20) Create an electric field with a potential difference of several tens of volts to several hundred ports between the CFs in the reaction chamber (30).

等の反応ガスを供給してプラズマ状態とし、陰極板(2
0)上に載置したウェハ(40)にエツチング処理をほ
どこす構造となっている。
etc., to create a plasma state, and the cathode plate (2
0) It has a structure in which an etching process is applied to the wafer (40) placed thereon.

従来、このようなプラズマエツチング装置に用いられる
電極としては、一般に高密度黒鉛よりなる円板が使用さ
れている。高密度黒鉛は、優れた導電性と化学的安定性
を備え、高密度化も容易であることから、プラズマエツ
チング用電極とじては特性的に極めて好適な電極材料で
ある。
Conventionally, a disk made of high-density graphite has generally been used as an electrode for such a plasma etching apparatus. High-density graphite has excellent conductivity and chemical stability, and can be easily increased in density, making it an extremely suitable electrode material for plasma etching electrodes.

しかしながら、この高密度黒鉛は、コークスあるいはカ
ーボンの微粉をタールピッチなどのバインダー成分と共
に高密度に形成して、焼成した後黒鉛化したものであり
、巨視的には黒鉛の粒体集合による組織構造を有してい
るため、プラズマエツチングのような高エネルギーを発
生させるところでは、粒体脱落による消耗が激しく、ま
た、脱落した黒鉛粒子がウェハ上面を汚染して所定パタ
ーンの形成を阻害する等の欠点を招く不都合がある。こ
の不都合を解消するものとして、特開昭62−2529
42号公報に開示されているガラス状カーボンがあるが
、このガラス状カーボンは、高密度黒鉛に比べ加工が困
難であり、コスト高となるという問題があった。
However, this high-density graphite is made by forming coke or carbon fine powder into a high density together with a binder component such as tar pitch, and graphitizing it after firing.Macroscopically, it has a microstructural structure formed by aggregation of graphite particles. Because of this, when high energy is generated, such as in plasma etching, there is severe wear due to falling particles, and falling graphite particles can contaminate the top surface of the wafer and inhibit the formation of a predetermined pattern. There are inconveniences that lead to drawbacks. As a solution to this inconvenience, Japanese Unexamined Patent Publication No. 62-2529
There is a glassy carbon disclosed in Japanese Patent No. 42, but this glassy carbon is difficult to process compared to high-density graphite and has the problem of high cost.

また、電極板の片側には高エネルギーのプラズマによる
局所負荷を生じ、しかもチャンバー内は400℃〜50
0℃の加熱状態におかれるため、電極板がそりを生じた
り、局所的な消耗が起こったりして、正確なエツチング
処理がほどこせなくなるという問題があった。
In addition, a local load is generated on one side of the electrode plate due to high-energy plasma, and the temperature inside the chamber is 400°C to 50°C.
Since the electrode plate is heated to 0° C., there is a problem in that the electrode plate warps and local wear occurs, making it impossible to perform accurate etching.

(発明が解決しようとする課題) 本発明はこのような事情に鑑みなされたものであり、そ
の目的は、プラズマの発生時の局所負荷による電極板の
そりや局所消耗を防止して正確なエツチング処理がほど
こせるようにするとともに、粒体脱落をなくして長寿命
のプラズマエツチング用電極板を提供することにある。
(Problems to be Solved by the Invention) The present invention was made in view of the above circumstances, and its purpose is to prevent warpage and local wear of the electrode plate due to local loads during plasma generation, and to achieve accurate etching. It is an object of the present invention to provide an electrode plate for plasma etching that can be easily processed and has a long life by eliminating drop-off of particles.

(課題を解決するための手段) 上記課題を解決するため、第一請求項に係る発明が採っ
た手段は、 「20℃〜400℃における平均熱膨張係数が1.3〜
?、0×10−’/’C1異方比が1.25以下の黒鉛
基材表面に熱分解炭素被膜を形成して戒ることを特徴と
するプラズマエツチング用電極板」 である。
(Means for Solving the Problems) In order to solve the above problems, the means taken by the invention according to the first claim are as follows.
? , 0x10-'/'C1 anisotropy ratio of 1.25 or less by forming a pyrolytic carbon film on the surface of a graphite base material.

ここで、黒鉛基材の平均熱膨張係数を1.3〜7、  
OX 10−’/’Cの範囲としたのは、プラズマエツ
チング処理時に電極板が局所的に加熱されても、熱膨張
の違いから、電極板に亀裂を発生させないためである。
Here, the average coefficient of thermal expansion of the graphite base material is 1.3 to 7,
The reason why the range is OX 10-'/'C is to prevent cracks from occurring in the electrode plate due to differences in thermal expansion even if the electrode plate is locally heated during the plasma etching process.

さらに、黒鉛基材表面に形成した熱分解炭素被膜との熱
膨張差による剥離を防止するためである。
Furthermore, this is to prevent peeling due to a difference in thermal expansion from the pyrolytic carbon film formed on the surface of the graphite base material.

また、黒鉛基材を、その異方比が1.25以下のものと
したのは、プラズマエツチング処理時に電極板の片側の
みに応力が生じても、物性を均一にしておくことによっ
て、電極板にそりを発生させないためである。
In addition, the reason why the graphite base material is made to have an anisotropy ratio of 1.25 or less is that even if stress is generated only on one side of the electrode plate during plasma etching treatment, by keeping the physical properties uniform, the electrode plate This is to prevent warping from occurring.

熱分解炭素の被膜層を黒鉛基材の表面に形成させる方法
としては、各種化学蒸着法により行なうことができる。
Various chemical vapor deposition methods can be used to form the pyrolytic carbon coating layer on the surface of the graphite substrate.

通常は、黒鉛基材を加熱し、メタン、プロパン等の炭化
水素ガスを高温の黒鉛基材に接触させることにより反応
させ、黒鉛基材の表面に熱分解炭素を生成させる方法に
よる。この場合、炭化水素ガスの濃度調整、あるいはキ
ャリアガスには水素ガスが適している。また、反応は常
圧もしくは減圧下で行なわれるが、被膜の均一性、平滑
性を得るため減圧下で行なうのが好ましく、300To
 r r以下で行なうのが望ましい。
Usually, a method is used in which a graphite base material is heated and a hydrocarbon gas such as methane or propane is brought into contact with the high temperature graphite base material to cause a reaction, thereby generating pyrolytic carbon on the surface of the graphite base material. In this case, hydrogen gas is suitable for adjusting the concentration of hydrocarbon gas or as a carrier gas. Further, the reaction is carried out under normal pressure or reduced pressure, but in order to obtain uniformity and smoothness of the film, it is preferable to carry out the reaction under reduced pressure.
It is desirable to carry out the process at r r or less.

また、第二請求項に係る発明の採った手段は、120℃
〜400℃における平均熱膨張係数か1゜3〜7.  
OX 10−’/’C1異方比が1.25以下であり、
かつ水銀圧入法で測定される75Å〜75000Aの径
を有する微細気孔の占める容積が0.02cc/g〜0
.20cc/gの黒鉛基材表面に、厚さが50〜800
μmの熱分解炭素被膜を形成して成ることを特徴とする
プラズマエツチング用電極板」 である。
Moreover, the means taken by the invention according to the second claim is
The average coefficient of thermal expansion at ~400°C is 1°3~7.
OX 10-'/'C1 anisotropy ratio is 1.25 or less,
and the volume occupied by micropores having a diameter of 75 Å to 75000 A measured by mercury porosimetry is 0.02 cc/g to 0.
.. 20cc/g graphite base material surface, thickness 50~800mm
"An electrode plate for plasma etching characterized by forming a pyrolytic carbon film of micrometers."

ここで、黒鉛基材が上記第一請求項における物性を有し
たものとする他に、特に、黒鉛基材の水銀圧入法で測定
される75Å〜75000Aの径を有する微細気孔の占
める容積を0.02cc/g〜0.20cc/gとした
のは、黒鉛基材に適当量の気孔が存在することにより、
これら気孔内に熱分解炭素被膜の一部が入り込む。その
ためアンカー効果により黒鉛基材と熱分解炭素被膜の密
着性を高めることができるのである。
Here, in addition to assuming that the graphite base material has the physical properties in the first claim, in particular, the volume occupied by micropores having a diameter of 75 Å to 75000 A measured by mercury intrusion method of the graphite base material is 0. The reason for the range of .02cc/g to 0.20cc/g is that the graphite base material has an appropriate amount of pores.
A portion of the pyrolytic carbon film enters into these pores. Therefore, the anchor effect can improve the adhesion between the graphite base material and the pyrolytic carbon coating.

0.02cc/g未満であるとアンカー効果が小さくな
り被膜との密着性が弱くなり、また0、20cc/gを
超えると基材表面の凹凸が大きくなる結果、そこに被覆
される膜の微少な部位で応力が集中し、ハクリ、クラッ
クが生じ易くなる。
If it is less than 0.02 cc/g, the anchor effect will be small and the adhesion with the film will be weak, and if it exceeds 0.20 cc/g, the irregularities on the surface of the base material will become large, resulting in fine particles of the film coated there. Stress is concentrated in certain areas, making peeling and cracking more likely.

また、黒鉛基材を被覆する熱分解炭素の被膜層は、50
μm〜800μmの範囲の厚さが必要である。50μm
未満では十分な耐消耗性がえられないからで、また80
μmを超えると基材との熱膨張差により被膜の剥離やク
ラックを生じる可能性か大きくなる。
Moreover, the coating layer of pyrolytic carbon covering the graphite base material was 50%
Thicknesses in the range μm to 800 μm are required. 50μm
If it is less than 80, sufficient wear resistance cannot be obtained.
If it exceeds μm, the possibility of peeling or cracking of the coating increases due to the difference in thermal expansion with the base material.

このことから中でも50μm〜600μm程度が最適で
ある。
For this reason, the optimum thickness is about 50 μm to 600 μm.

(作用) まず、第一請求項に係るプラズマエツチング用電極板に
あっては、その黒鉛基材として、20’C〜400℃に
おける平均熱膨張係数が1.3〜7、OX 10−’/
℃、異方比が1.25以下のものを採用したから、プラ
ズマエツチング処理時に生じる電極板の局所的な負荷に
よる加熱や応力が生じても、電極板に亀裂を発生させた
り、そりゃ振動を生じさせたりすることがない。
(Function) First, in the electrode plate for plasma etching according to the first claim, the graphite base material has an average thermal expansion coefficient of 1.3 to 7 at 20'C to 400C, and OX 10-'/
℃ and anisotropy ratio of 1.25 or less, even if heating or stress occurs due to local loads on the electrode plate during plasma etching, it will not cause cracks or vibrations in the electrode plate. It never occurs.

また、このプラズマエツチング用電極板にあっては、熱
分解炭素被膜により黒鉛基材の表面は、高密度黒鉛のよ
うな粒体集合系とは異質の緻密組織となっている。この
ため、プラズマエツチングのような高エネルギーを発生
させるところでも、電極材料である黒鉛の粒体脱落によ
る消耗を防止することができる。
In addition, in this electrode plate for plasma etching, the surface of the graphite base material has a dense structure different from a particle aggregate system such as high-density graphite due to the pyrolytic carbon coating. Therefore, even when high energy is generated, such as in plasma etching, it is possible to prevent consumption of graphite, which is an electrode material, due to shedding of particles.

第二請求項に係るプラズマエツチング用電極板にあって
は、その黒鉛基材として、上記第一請求項に係るそれの
物性の他に、特に、水銀圧入法で測定される75入〜7
5000Åの径を有する微細気孔の占める容積を0.0
2cc/g〜0.20cc/gとしたから、これらの気
孔内に熱分解炭素被膜の一部が入り込んで、アンカー効
果によるこの黒鉛基材と熱分解炭素被膜との密着性をよ
り向上したものとしているのである。
In the electrode plate for plasma etching according to the second claim, in addition to the physical properties of the graphite base material according to the first claim, in particular, 75 to 7
The volume occupied by micropores with a diameter of 5000 Å is 0.0
2 cc/g to 0.20 cc/g, a part of the pyrolytic carbon coating enters into these pores, and the adhesion between the graphite base material and the pyrolytic carbon coating is further improved due to the anchor effect. It is said that

また、第二請求項におけるプラズマエツチング用電極板
においては、黒鉛基材の表面に形成した熱分解被膜の厚
さを50μm〜800μmとしたので、黒鉛基材の粒体
脱落を防止して、その消耗を非常に小さくしているので
ある。
In addition, in the plasma etching electrode plate according to the second claim, the thickness of the pyrolytic film formed on the surface of the graphite base material is 50 μm to 800 μm, so that the particles of the graphite base material are prevented from falling off. This results in extremely low consumption.

(実施例) 次に、各請求項に係るプラズマエツチング用電極を実施
例に基づいて説明する。
(Example) Next, the plasma etching electrode according to each claim will be described based on an example.

実施例1 この実施例1は、第一請求項に係るプラズマエツチング
用電極を示すもので、その黒鉛基材として、20℃〜4
00℃の平均熱膨張係数が2.8×10−6/℃、異方
比1.05の黒鉛を使用し、これを反応炉内に入れ、2
000 ’Cに加熱し、水素ガスをキャリアとしてプロ
パンを炉内に供給し、黒鉛基材上に厚さが50μmの熱
分解炭素被膜を形成させた電極板を作製した。
Example 1 This Example 1 shows a plasma etching electrode according to the first claim, in which the graphite base material is 20°C to 4°C.
Graphite with an average thermal expansion coefficient of 2.8 x 10-6/°C and an anisotropy ratio of 1.05 at 00°C was placed in a reactor, and
The electrode plate was heated to 000'C and propane was supplied into the furnace using hydrogen gas as a carrier to form a pyrolytic carbon film with a thickness of 50 μm on the graphite base material.

比較例1 黒鉛基材として、20℃〜400℃の平均熱、膨張係数
が7.’5 X 10−’/℃、異方比1.05の黒鉛
を使用し、以下実施例1と同様の方法で、電極板を作製
した。
Comparative Example 1 As a graphite base material, the average heat and expansion coefficient from 20°C to 400°C is 7. An electrode plate was produced in the same manner as in Example 1 using graphite having a temperature of '5 x 10-'/°C and an anisotropy ratio of 1.05.

比較例2 黒鉛基材として、20℃〜400℃の平均熱膨張係数が
2.8X10−@/℃、異方比1.30の黒鉛を使用し
、以下実施例1と同様の方法で、電極板を作製した。
Comparative Example 2 Graphite having an average thermal expansion coefficient of 2.8X10-@/°C and an anisotropy ratio of 1.30 from 20°C to 400°C was used as the graphite base material, and an electrode was prepared in the same manner as in Example 1. A board was made.

比較例3 黒鉛基材として高密度黒鉛を使用し、電極板を作製した
Comparative Example 3 An electrode plate was produced using high-density graphite as a graphite base material.

上記実施例1及び比較例1,2.3の電極板をそれぞれ
、プラズマエツチング装置にセットし、反応ガスとして
CF、を用い、反応チャンバー中のガス圧を1.0To
rrとし、200個のシリコンウェハのエツチング処理
を行なった。
The electrode plates of Example 1 and Comparative Examples 1 and 2.3 were each set in a plasma etching apparatus, and using CF as a reaction gas, the gas pressure in the reaction chamber was set to 1.0To.
rr, and 200 silicon wafers were etched.

その結果、実施例1については、エツチング処理におけ
る不良品発生はなく、熱分解炭素被膜の剥離、黒鉛の粒
体脱落も認められなかった。また電極板の消耗度合は比
較例3の電極板の1/10程度であった。
As a result, in Example 1, no defective products occurred during the etching process, and neither peeling of the pyrolytic carbon film nor falling off of graphite particles was observed. Further, the degree of wear of the electrode plate was about 1/10 of that of the electrode plate of Comparative Example 3.

なお、比較例1については、不良品発生はなかったが、
熱分解炭素被膜の一部に剥離がみられ、比較例2につい
ては、実施例1の電極板の消耗度合とほとんど変らなか
ったが、プラズマエツチング処理における歩留りが悪く
、比較例3と同程度であった。
Regarding Comparative Example 1, there were no defective products, but
Peeling was observed in some parts of the pyrolytic carbon film, and the degree of wear of the electrode plate in Comparative Example 2 was almost the same as in Example 1, but the yield in the plasma etching process was poor, and it was at the same level as Comparative Example 3. there were.

実施例2 この実施例2は、第2請求項に係るプラズマエツチング
用電極を示すもので、その黒鉛基材として、20℃〜4
00℃の平均熱膨張係数が2,7×10−’/℃、異方
比1.05、水銀圧入法による気孔75λ〜75000
大の容積が0,10cc/gの黒鉛を使用し、これを反
応炉内に入れ、2000℃に加熱し、水素ガスをキャリ
アとしてプロパンを炉内に供給し、黒鉛基材上に厚さが
300μmの熱分解炭素被膜を形成させた電極板を作製
した。
Example 2 This Example 2 shows a plasma etching electrode according to the second claim, in which the graphite base material is 20°C to 4°C.
Average thermal expansion coefficient at 00°C is 2.7 x 10-'/°C, anisotropy ratio 1.05, pores 75λ~75000 by mercury intrusion method
Graphite with a volume of 0.10 cc/g is used, placed in a reactor, heated to 2000°C, and propane is supplied into the furnace using hydrogen gas as a carrier. An electrode plate on which a pyrolytic carbon film of 300 μm was formed was prepared.

比較例4 黒鉛基材として、20℃〜400℃の平均熱膨張係数が
4.5 X 10−’/℃、異方比上、05、水銀圧入
法による気孔75入〜75000人の容積が0.25c
c/gの黒鉛を使用し、以下実施例2と同様の方法で、
電極板を作製した。
Comparative Example 4 As a graphite base material, the average thermal expansion coefficient from 20°C to 400°C is 4.5 x 10-'/°C, the anisotropic ratio is 05, and the volume of 75 to 75,000 pores by mercury intrusion method is 0. .25c
Using c/g graphite, in the same manner as in Example 2,
An electrode plate was prepared.

比較例5 黒鉛基材として、20℃〜400℃の平均熱膨張係数が
2.7xlO−’/’C1異方比1.30、水銀圧入法
による気孔75λ〜75000λの容積が0.25cc
/gの黒鉛を使用し、以下実施例2と同様の方法で、電
極板を作製した。
Comparative Example 5 As a graphite base material, the average thermal expansion coefficient at 20°C to 400°C is 2.7xlO-'/'C1 anisotropy ratio 1.30, and the volume of pores 75λ to 75000λ by mercury intrusion method is 0.25cc.
An electrode plate was produced in the same manner as in Example 2 using /g of graphite.

比較例6 黒鉛基材として高密度黒鉛を使用し、電極板を作製した
Comparative Example 6 An electrode plate was produced using high-density graphite as a graphite base material.

上記実施例2及び比較例4,5.6の電極板をそれぞれ
、プラズマエツチング装置にセットし、反応ガスとして
CF、を用い、反応チャンバー中のガス圧を1.0To
rrとし、200個のシリコンウェハのエツチング処理
を行なった。
The electrode plates of Example 2 and Comparative Examples 4, 5.6 were each set in a plasma etching apparatus, and using CF as a reaction gas, the gas pressure in the reaction chamber was set to 1.0To.
rr, and 200 silicon wafers were etched.

その結果、この実施例2については、エツチング処理に
おける不良品発生はなく、熱分解炭素被膜の剥離、黒鉛
の粒体脱落も認められなかった。
As a result, in Example 2, no defective products occurred during the etching process, and neither peeling of the pyrolytic carbon film nor falling off of graphite particles was observed.

また電極板の消耗度合は比較例3の電極板の1/10程
度であった。
Further, the degree of wear of the electrode plate was about 1/10 of that of the electrode plate of Comparative Example 3.

なお、比較例4については、熱分解炭素被膜の一部に剥
離が、また被膜に局部的な消耗が認められた。比較例5
については、熱分解炭素被膜の剥離は認められなかった
が、被膜に局部的な消耗が認められた。
In Comparative Example 4, peeling was observed in a part of the pyrolytic carbon coating, and local wear was observed in the coating. Comparative example 5
No peeling of the pyrolytic carbon coating was observed, but local wear was observed on the coating.

(発明の効果) 以上説明したように、各請求項に係るプラズマエツチン
グ用電極板により、プラズマエツチング処理時に生じる
電極板の局所的な負荷による局所的な加熱や、応力が生
じても、電極板に亀裂を発生させたり、そりや振動を生
じさせたりすることがなく、正確なエツチング処理を行
なうことができる。
(Effects of the Invention) As explained above, the electrode plate for plasma etching according to each claim allows the electrode plate to remain stable even if local heating or stress occurs due to local load on the electrode plate during plasma etching treatment. Accurate etching can be performed without causing cracks, warpage, or vibration.

また、熱分解炭素被膜により、プラズマエツチングのよ
うな高エネルギーを発生させるところでも、電極材料で
ある黒鉛の粒体脱落による消耗を防止して電極板のライ
フアップを図ることができる。
In addition, the pyrolytic carbon coating can extend the life of the electrode plate by preventing wear due to shedding of particles of graphite, which is the electrode material, even when high energy is generated, such as in plasma etching.

これにより、プラズマエツチング処理における歩留りを
向上させ、大幅なコスト低減を図ることができる。
Thereby, the yield in plasma etching processing can be improved and costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図はプラズマエツチング装置の概要を示す断面図である
。 符号の説明 10・・・陽極板、20・・・陰極板、30・・・反応
チャンバー40・・・ウェハ。 以 上
The figure is a sectional view showing an outline of a plasma etching apparatus. Explanation of symbols 10... Anode plate, 20... Cathode plate, 30... Reaction chamber 40... Wafer. that's all

Claims (1)

【特許請求の範囲】 1).20℃〜400℃における平均熱膨張係数が1.
3〜7.0×10^−^6/℃、異方比が1.25以下
の黒鉛基材表面に熱分解炭素被膜を形成して成ることを
特徴とするプラズマエッチング用電極板。 2).20℃〜400℃における平均熱膨張係数が1.
3〜7.0×10^−^6/℃、異方比が1.25以下
であり、かつ水銀圧入法で測定される75Å〜7500
0Åの径を有する微細気孔の占める容積が0.02cc
/g〜0.20cc/gの黒鉛基材表面に、厚さが50
〜800μmの熱分解炭素被膜を形成して成ることを特
徴とするプラズマエッチング用電極板。
[Claims] 1). The average coefficient of thermal expansion at 20°C to 400°C is 1.
An electrode plate for plasma etching, characterized in that a pyrolytic carbon film is formed on the surface of a graphite base material at a temperature of 3 to 7.0 x 10^-^6/°C and an anisotropy ratio of 1.25 or less. 2). The average coefficient of thermal expansion at 20°C to 400°C is 1.
3 to 7.0 x 10^-^6/℃, anisotropy ratio of 1.25 or less, and 75 Å to 7500 as measured by mercury intrusion method.
The volume occupied by micropores with a diameter of 0 Å is 0.02 cc
/g to 0.20cc/g on the surface of the graphite base material, with a thickness of 50
An electrode plate for plasma etching characterized by forming a pyrolytic carbon film of ~800 μm.
JP1284372A 1989-07-03 1989-10-31 Electrode plate for plasma etching Expired - Lifetime JP2609932B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17262889 1989-07-03
JP1-172628 1989-07-03

Publications (2)

Publication Number Publication Date
JPH03129729A true JPH03129729A (en) 1991-06-03
JP2609932B2 JP2609932B2 (en) 1997-05-14

Family

ID=15945404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284372A Expired - Lifetime JP2609932B2 (en) 1989-07-03 1989-10-31 Electrode plate for plasma etching

Country Status (1)

Country Link
JP (1) JP2609932B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252942A (en) * 1986-04-17 1987-11-04 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPS6459818A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Electrode for dry etching apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252942A (en) * 1986-04-17 1987-11-04 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPS6459818A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Electrode for dry etching apparatus

Also Published As

Publication number Publication date
JP2609932B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US3845738A (en) Vapor deposition apparatus with pyrolytic graphite heat shield
KR100287450B1 (en) CERAMIC ELECTROSTATIC CHUCK WITH BUILT-IN HEATER
KR101355688B1 (en) Actively heated aluminum baffle component having improved particle performance and methods of use and manufacture thereof
US5663865A (en) Ceramic electrostatic chuck with built-in heater
CN101501834B (en) Electrostatic chuck device
US3980854A (en) Graphite susceptor structure for inductively heating semiconductor wafers
US20080141938A1 (en) Processing apparatus, coated article and method
KR101188185B1 (en) A heating apparatus having electrostatic adsorption function
JPH07297268A (en) Ceramic heater with electrostatic chuck
JP3081279B2 (en) Hot plate
JPH05129210A (en) Hot plate
JPH03129729A (en) Electrode plate for plasma etching
JP2516436B2 (en) Electrode plate for plasma etching
JPH0826464B2 (en) Electrode plate for plasma etching
JP3086908B2 (en) Electrode plate for plasma etching
US20200279764A1 (en) Wafer supporting device
JPH05304114A (en) Electrode plate for plasma etching
JP7374351B2 (en) Polycrystalline SiC film and its manufacturing method, plasma etching method
JPH0758086A (en) Electrode plate for plasma etching
JP2517392B2 (en) Electrode plate for plasma etching
EP0757374A1 (en) Etching electrode and manufacturing process thereof
JP3937072B2 (en) Dummy wafer
CA2110414A1 (en) Electrode for use in plasma etching
JP2002037669A (en) Silicon carbide material, plasma-resistant member, and device for producing semiconductor
JPH03162593A (en) Electrode plate for plasma etching and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13