JPH03128795A - Submerged measuring station - Google Patents

Submerged measuring station

Info

Publication number
JPH03128795A
JPH03128795A JP26506489A JP26506489A JPH03128795A JP H03128795 A JPH03128795 A JP H03128795A JP 26506489 A JP26506489 A JP 26506489A JP 26506489 A JP26506489 A JP 26506489A JP H03128795 A JPH03128795 A JP H03128795A
Authority
JP
Japan
Prior art keywords
cable
water
station
underwater
balloon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26506489A
Other languages
Japanese (ja)
Inventor
Jiro Segawa
瀬川 爾朗
Fukuhiro Nishihira
西平 福宏
Masaaki Nakane
中根 正章
Koji Kidokoro
城所 孝治
Yoshio Nakazawa
中沢 好夫
Ryusuke Hayashi
隆介 林
Hisashi Soma
相馬 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMATSU KENSETSU KK
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Steel Corp
Nishimatsu Construction Co Ltd
Fudo Tetra Corp
Original Assignee
NISHIMATSU KENSETSU KK
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Steel Corp
Nishimatsu Construction Co Ltd
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMATSU KENSETSU KK, Mitsui Engineering and Shipbuilding Co Ltd, Nippon Steel Corp, Nishimatsu Construction Co Ltd, Fudo Construction Co Ltd filed Critical NISHIMATSU KENSETSU KK
Priority to JP26506489A priority Critical patent/JPH03128795A/en
Publication of JPH03128795A publication Critical patent/JPH03128795A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide stereo observation data by which various changes in chemical and physical environment in water in the vicinity of a sea bottom are detected by a method wherein various measuring devices are mounted at intervals of a given distance to the lock cable of an underwater balloon floating from a seat bottom station in a kinetic dynamically stable shape secured on a sea bottom. CONSTITUTION:A kinetic dynamically stable shape is selected so that azimuth and vertical movement of an underwater balloon 1 are stably effected and vibration and hunting phenomenon are prevented from occurring. By measuring azimuth of the under water balloon 1 and a moving amount from a seat bottom station 3, the direction and the speed of the flow of sea water on a seat bottom B can be measured. Various measuring devices 4 are mounted at intervals of a given distant to the under balloon 1 and a cable 2 being a lock cable in water, data obtained therefrom is electrically transmitted to the recording device of a station 3 through the cable 2 to record the data, which is accumulated for a long period. Further, the cable 2 is sufficiently lengthened, and various measuring data of a layer further upper than a sea bottom B surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主に、海底などの水中の化学的環境及び物理
的環境の変化を長期的に計測する水中計測ステーション
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention mainly relates to an underwater measuring station that measures changes in the chemical environment and physical environment in water such as the seabed over a long period of time.

〔従来の技術〕[Conventional technology]

近年、海洋開発が脚光をあびてくるに伴い、海底面附近
の水温、水質、水流、流速などその水中の各種の化学的
及び物理的環境の変化の観測データを収集する必要性が
生じてきた。
In recent years, as marine development has been in the spotlight, there has been a need to collect observational data on changes in various chemical and physical environments near the ocean floor, such as water temperature, water quality, water current, and velocity. .

そこで、従来、この種のデータ収集のためには、海底面
に海底ステーションを強固に固着し、その海底ステーシ
ョンに各種計測機器類を取付けることにより、計測した
データを収集するようにしている。
Conventionally, in order to collect this type of data, a submarine station is firmly fixed to the seabed surface, and various measuring instruments are attached to the submarine station to collect measured data.

しかしながら、このような従来の観測は、海底面におけ
るデータ収集であり、海底近傍の三次元などの立体的デ
ータの入手ができないという問題があった。
However, such conventional observations collect data on the ocean floor, and there is a problem in that three-dimensional data such as three-dimensional data near the ocean floor cannot be obtained.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記従来の問題点を解決するためになされた
ものであり、海底面近傍の水中の各種化学的及び物理的
環境の変化を知るために立体的な観測データが得られる
水中計測ステーションを提供することを解決課題とした
ものである。
The present invention was made in order to solve the above-mentioned conventional problems, and is an underwater measurement station that can obtain three-dimensional observation data in order to know changes in various chemical and physical environments underwater near the seafloor. The problem to be solved is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するための手段として、本発明の水中
計測ステーションは、流体内で運動力学的に安定した形
状、例えば、飛行船形状を有し、かつ、水底に固着され
た水底ステーションから係止索であるテザーケーブル等
を介して水中の所定位置に水平浮上状態を保持できる水
中バルーンの係止索の上下方向に所定間隔で各種計測機
器を取付けることにより構成され、これらの各種計測機
器から得られる立体的な観測データを、係止索であるテ
ザーケーブル等を通じて海底ステーションに設けた記録
装置に電送記録し、長期間にわたりそのデータを蓄積で
きる。
As a means for solving the above problems, the underwater measurement station of the present invention has a kinematically stable shape in a fluid, for example, an airship shape, and is anchored from an underwater station fixed to the bottom of the water. It is constructed by attaching various measuring devices at predetermined intervals in the vertical direction of the anchoring rope of an underwater balloon that can maintain a horizontal floating state at a predetermined position in the water via a tether cable, etc. The three-dimensional observation data obtained can be electronically transmitted and recorded to a recording device installed at an undersea station via a tether cable, etc., and the data can be stored over a long period of time.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例における水中計測ステーショ
ンの設置状態を示す側面図、第2図は第1図の水中バル
ーンの正面図、第3図は第1図の水中計測ステーション
を複数個水平面上の一定間隔に配置した斜視図である。
FIG. 1 is a side view showing the installed state of the underwater measurement station in one embodiment of the present invention, FIG. 2 is a front view of the underwater balloon shown in FIG. 1, and FIG. It is a perspective view arranged at regular intervals on a horizontal plane.

まず、第1図及び第2図に示すごとく、流体内で運動力
学的に安定した形状、例えば、飛行船形状を有し、流体
内で所定の位置を保持できろ水中バルーン1を水平に水
中に浮上させ、その船首端を係止索を兼ねたテザーケー
ブル2の一端に固着し、必要長さのテザーケーブル2を
介して海底Bに強固に固着された海底ステーション3に
係止している。
First, as shown in FIGS. 1 and 2, an underwater balloon 1 that has a shape that is kinematically stable in the fluid, for example, an airship shape and can maintain a predetermined position in the fluid, is placed horizontally in the water. The boat is floated, its bow end is fixed to one end of a tether cable 2 which also serves as a mooring cable, and the boat is moored to a submarine station 3 firmly fixed to the seabed B via the tether cable 2 of the required length.

以上のごとく、水中バルーン1の方位及び上下動が安定
した動きをして、振動やハンチング現象を起こさないよ
うにするため、上記のごとく運動力学的に安定な形状を
選定し、水中バルーン1の方位及び海底ステーション3
よりの移動量を計測することにより、海底Bの海水の流
れる方向及び速さを計測することができる。
As described above, in order to ensure that the underwater balloon 1 has a stable azimuth and vertical movement and does not cause vibration or hunting phenomena, a kinematically stable shape is selected as described above, and the underwater balloon 1 is Direction and submarine station 3
By measuring the amount of movement, the direction and speed of seawater flow on the seabed B can be measured.

また、この水中バルーン1及び水中の係止索であるテザ
ーケーブル2に一定間隔で各種計測機器4を取付け、こ
れらから得られるデータをテザーケーブル2を通して海
底ステーション3に設けた記録装置にデータを電送記録
し、長期間にわたりデータの蓄積を行う。
In addition, various measuring instruments 4 are attached at regular intervals to the underwater balloon 1 and the tether cable 2, which is an underwater mooring cable, and the data obtained from these is transmitted electronically to a recording device installed at the submarine station 3 through the tether cable 2. record and accumulate data over a long period of time.

さらに、係止索であるテザーケーブル2を十分長くする
ことで海底8面よりさらに上層の各種計測データを人手
可能となるが、第3図に示すごとく複数の水中計測ステ
ーションを水平面上の一定間隔に配置することで、より
立体的な観測データを同時に入手することも可能となる
Furthermore, by making the tether cable 2, which is a mooring cable, sufficiently long, it becomes possible to manually collect various measurement data on the upper layer of the seabed from the 8 surfaces. By placing it in the center, it is also possible to obtain more three-dimensional observation data at the same time.

なお、第3図の各水中計測ステーションでそれぞれ記録
し蓄積された計測データは、定期的に適宜な手段で収集
することになるが、例えば、図中に示すように記録収集
用水中バルーン5により各水中計測ステーション3から
音響電波によって記録を収集することも可能である。
The measurement data recorded and accumulated at each underwater measurement station in Fig. 3 will be collected periodically by an appropriate means. It is also possible to collect records by acoustic radio waves from each underwater measurement station 3.

また、水中の所定の位置に浮上する水中バルーン1とし
ては、その海中に浮上している位置周囲の海水の比重よ
り僅かに小さい比重を有する非圧縮性の液体、例えば、
水を充填し密封した伸縮自在の膜製容器からなる水中浮
体を使用することもできる。
The underwater balloon 1 floating at a predetermined position underwater may be made of an incompressible liquid having a specific gravity slightly lower than the specific gravity of the seawater surrounding the floating position, for example.
It is also possible to use underwater floating bodies consisting of retractable membrane containers filled with water and sealed.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明の水中計測ステーションによれば
、海底面近傍における三次元などの立体的なデータの入
手が長期間にわたり比較的安価な装置で可能となり、海
底面近傍の水中の各種化学的及び物理的環境の変化を正
しく知る上で極めて有効である。
As described above, according to the underwater measurement station of the present invention, it is possible to obtain three-dimensional data near the seafloor surface over a long period of time with a relatively inexpensive device, and various chemical phenomena in the water near the seafloor surface can be obtained. It is extremely effective in accurately understanding changes in the physical and physical environment.

特に、本発明の水中計測ステーションは水底に固着され
た水底ステーションから水中に係止されているので、潮
流や風波により影響されずに長期間圧しいデータを得る
ことができる。
In particular, since the underwater measuring station of the present invention is anchored underwater from a bottom station fixed to the bottom of the water, it is possible to obtain powerful data for a long period of time without being affected by tidal currents or wind and waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における水中計測ステーショ
ンの設置状態を示す側面図、第2図は第1図の水中バル
ーンの正面図、第3図は第1図の水中計測ステーション
を複数個水平面上の一定間隔に配置した斜視図である。 1・・・水中バルーン、2・・・テザーケーブル、3・
・・海底ステーション、4・・・各種計測機器、B・・
・海底。
Fig. 1 is a side view showing the installed state of the underwater measurement station in one embodiment of the present invention, Fig. 2 is a front view of the underwater balloon shown in Fig. 1, and Fig. 3 shows a plurality of underwater measurement stations shown in Fig. 1. It is a perspective view arranged at regular intervals on a horizontal plane. 1... Underwater balloon, 2... Tether cable, 3...
...Undersea station, 4...Various measuring instruments, B...
・Undersea.

Claims (1)

【特許請求の範囲】[Claims] 流体運動力学的に安定した形状を有し、かつ、水底に固
着された水底ステーションから係止索を介して水中の所
定位置に浮上する水中バルーンの係止索に、所定間隔で
各種計測機器を取付けなる水中計測ステーション。
The underwater balloon has a hydrodynamically stable shape and floats to a predetermined position in the water from a bottom station fixed to the bottom of the water via a rope. Various measuring instruments are installed at predetermined intervals on the rope. Installable underwater measurement station.
JP26506489A 1989-10-13 1989-10-13 Submerged measuring station Pending JPH03128795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26506489A JPH03128795A (en) 1989-10-13 1989-10-13 Submerged measuring station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26506489A JPH03128795A (en) 1989-10-13 1989-10-13 Submerged measuring station

Publications (1)

Publication Number Publication Date
JPH03128795A true JPH03128795A (en) 1991-05-31

Family

ID=17412087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26506489A Pending JPH03128795A (en) 1989-10-13 1989-10-13 Submerged measuring station

Country Status (1)

Country Link
JP (1) JPH03128795A (en)

Similar Documents

Publication Publication Date Title
Churchill et al. Near-surface measurements of quasi-Lagrangian velocities in open water
CA1067758A (en) Marine buoy
Düing et al. High resolution current profiling in the Straits of Florida
KR101841594B1 (en) The buoyancy device equipped with a waterproof formula ocean observation
MX2013008313A (en) Water-coupled underwater node for seismic surveys.
CN210375200U (en) Water surface or underwater target detecting instrument based on intelligent buoy
US4135394A (en) Wave measuring buoy
Grare et al. Instrumented wave gliders for air-sea interaction and upper ocean research
Larsson et al. A new sediment trap system
US3590635A (en) Pycnocline follower apparatus
CN105253255A (en) GNSS (Global Navigation Satellite System) sea surface geodetic height surveying buoy
RU2294000C1 (en) Marine self-contained bottom station for seismic surveying and seismological monitoring
CN110715648A (en) Ocean monitoring system for realizing intelligent network and ocean monitoring equipment thereof
Centurioni Observations of large-amplitude nonlinear internal waves from a drifting array: Instruments and methods
CN108519621B (en) Submarine seismic detection flight node arrangement method
JP6640421B1 (en) Elastic wave exploration apparatus including self-buoyancy type elastic wave exploration module and method therefor
Folsom Measurement of ocean waves
US3118408A (en) Float for use in water
JPH03128795A (en) Submerged measuring station
Forde Evolution of Veatch, Washington, and Norfolk submarine canyons: Inferences from strata and morphology
CN211336351U (en) Positioning sinking and floating type ocean detection device
KR20120117060A (en) Oceanographic observation station for height and direction measuring of a wave
Richardson Drifters and floats
Siedler Observations of internal wave coherence in the deep ocean
Corredor et al. Platforms for coastal ocean observing