JPH03128447A - Insulation inspecting method for power cable and connection part thereof - Google Patents
Insulation inspecting method for power cable and connection part thereofInfo
- Publication number
- JPH03128447A JPH03128447A JP1266809A JP26680989A JPH03128447A JP H03128447 A JPH03128447 A JP H03128447A JP 1266809 A JP1266809 A JP 1266809A JP 26680989 A JP26680989 A JP 26680989A JP H03128447 A JPH03128447 A JP H03128447A
- Authority
- JP
- Japan
- Prior art keywords
- image
- picture
- power cable
- ray
- cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000009413 insulation Methods 0.000 title description 3
- 239000012212 insulator Substances 0.000 claims abstract description 24
- 230000007547 defect Effects 0.000 claims abstract description 15
- 238000003909 pattern recognition Methods 0.000 claims description 2
- 239000011800 void material Substances 0.000 abstract description 15
- 238000003384 imaging method Methods 0.000 abstract description 10
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000004958 brain cell Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電力ケーブルやその接続部の絶縁体の検査
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inspecting insulators of power cables and their connections.
近年、電力ケーブルの代表的なものとしてC■ケーブル
、CDケーブル等が用いられており、これらの電力ケー
ブルの絶縁体にはX線吸収率が空気に近いポリエチレン
が用いられている。In recent years, C* cables, CD cables, etc. have been used as typical power cables, and polyethylene, which has an X-ray absorption rate close to that of air, is used as the insulator of these power cables.
このようなポリエチレン絶縁体を用いた電力ケーブルの
絶縁体中に欠陥となるボイド(空泡)や有害異物が含ま
れていると重大事故になる可能性がある。そこで、これ
らの欠陥を検出する方法として、従来はX線透視撮像法
でフィルムやイメージングプレート上に壜影した像を目
視で確認するか、又はノイマン形のコンピュータや画像
処理等の専用装置を用いて画像状態を改善しつ一人間が
目視選別していた。If the insulator of a power cable using such a polyethylene insulator contains defective voids (air bubbles) or harmful foreign matter, a serious accident may occur. Therefore, the conventional methods for detecting these defects have been to visually confirm the image projected onto a film or imaging plate using X-ray fluoroscopic imaging, or to use specialized equipment such as a Neumann-type computer or image processing. The images were visually sorted by one person while improving the image quality.
上記従来法のX線透視撮像法でも、電カケープル絶縁体
中の微小金属等の有害異物は発見し易い。Even with the above-mentioned conventional X-ray fluoroscopic imaging method, harmful foreign substances such as minute metals in the capacitor insulator can be easily detected.
しかし、上述した絶縁体中に出来たボイド(空泡)の場
合は、ボイドの有る部分を通過するχ線量と、ボイドの
ない健全部を通過するX*Iでは大きな透過X線量差を
生じないためボイド部の画像信号が絶縁体等から発生す
る散乱線やフィルムの粒状度、量子モトル、構造モトル
等による画像雑音信号中に埋没してしまい、識別し難い
からである。However, in the case of the above-mentioned voids (air bubbles) formed in the insulator, there is no large difference in the transmitted X-ray dose between the χ rays that pass through the voided part and the X*I that passes through the healthy part without voids. This is because the image signal of the void portion is buried in the image noise signal due to scattered radiation generated from the insulator, granularity of the film, quantum mottle, structural mottle, etc., and is difficult to identify.
因に、150口の絶縁体厚さ中に0.5Mの径のボイド
が生じた場合、ボイド部透過XLS量は健全部の透過X
線量の約1/100程度増加する。Incidentally, if a void with a diameter of 0.5M occurs in the insulator thickness of 150 holes, the amount of XLS transmitted through the void portion is equal to the amount of XLS transmitted through the healthy portion.
The amount increases by approximately 1/100 of the dose.
そこで、検出したいボイド部の画像の外周を強調するエ
ッヂ強調手法によってボイド部を浮立たせてボイド部と
健全部との画像信号を明確に2つに分ける、いわゆる2
値化することで、ボイドを欠陥として自動識別する方法
も有るが、ボイドは−iに球形をしているため、エッヂ
に相当する部分がなく、この手法を適用することができ
ない。Therefore, an edge enhancement method that emphasizes the outer periphery of the image of the void region to be detected is used to highlight the void region and clearly divide the image signal of the void region and the healthy region into two.
There is also a method of automatically identifying voids as defects by converting them into values, but since the voids are spherical at -i, there is no part corresponding to an edge, and this method cannot be applied.
ところが、人間にはフィルム画像をパターン化して識別
できる能力があるため、2値化をしなくてもパターンか
ら1つの塊となっているボイドを識別できるため、機械
でなく人間がボイドのパターンを覚えるシ11練を積み
重ね、識別せざるを得なかった。However, since humans have the ability to pattern and identify film images, they can identify clusters of voids from patterns without binarizing them, so humans, not machines, can identify void patterns. After doing 11 memorization exercises, I had no choice but to identify them.
しかし、人間が検査することは、検査コストのアップ、
疲労による欠陥検出精度の低下を生じるという問題があ
った。また、人間の目視による検査方法では、ケーブル
製造時等に高速度で長時間に亘り検査することは不可能
なため全長検査等による信鎖性の向上を図りたいと考え
ても実際上できないという問題もあった。However, testing by humans increases testing costs and
There was a problem in that defect detection accuracy decreased due to fatigue. In addition, with human visual inspection methods, it is impossible to conduct high-speed inspections over long periods of time during cable manufacturing, so even if we wanted to improve reliability through full-length inspections, it was practically impossible. There were also problems.
この発明は、上記のような従来の電カケープルの検査方
法の現状に鑑みてなされたものであり、その目的はX線
装置によって画像媒体に記録された撮像を画像読取装置
で読取り、そのti像信号を画像処理装置で処理した上
、有害欠陥のパターンを識別出来るように学習させたニ
ューロコンピュータで有害欠陥を自動識別させる、電カ
ケープル及び同接続部の絶縁体検査方法を提供するにあ
る。This invention was made in view of the current state of the conventional electric cable inspection method as described above, and its purpose is to read the image recorded on an image medium by an X-ray device with an image reading device, and to obtain the TI image. To provide a method for inspecting insulators of electrical cables and connections thereof, in which signals are processed by an image processing device and harmful defects are automatically identified by a neurocomputer trained to identify patterns of harmful defects.
そこで、この発明では上記課題を解決するための手段と
して、電カケープル又はその接続部に対しxLA装置に
よりX線を照射し、画像媒体上に記録された撮像を画像
読取装置により読み取り、その撮像信号を画像処理装置
で処理して画像の濃淡を拡大し、この画像の濃淡信号を
ニューロコンピュータによりパターン認識させて絶縁体
中の有害欠陥を自動識別する電カケープル絶縁体検査方
法を採用したのである。Therefore, in the present invention, as a means for solving the above problems, an xLA device irradiates the power cable or its connection part with X-rays, the image recorded on the image medium is read by the image reading device, and the image signal is The company adopted a power cable insulator inspection method in which the image is processed by an image processing device to enlarge the shading of the image, and the shading signals of this image are pattern-recognized by a neurocomputer to automatically identify harmful defects in the insulator.
上記この発明による方法では、電カケープル又はその接
続部に対しX線を照射し、その撮像を読取装置で読取っ
た後、画像処理で画像の濃淡を拡大し、この画像の濃淡
信号をパターン識別出来るように学習させたニューロコ
ンピュータで絶縁体中の有害欠陥を自動識別する。In the above-mentioned method according to the present invention, the electric cable or its connection part is irradiated with X-rays, the image is read by a reading device, and then the shading of the image is expanded by image processing, and the shading signal of this image can be identified as a pattern. A neurocomputer trained to automatically identify harmful defects in insulators.
以下この発明の実施例について添付図を参照して説明す
る。Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図はこの発明による電カケープル及び同接続部の絶
縁体検査方法を実施するための装置の全体概略ブロック
図を示す、1はX線装置、2はコア導体3上に押出成形
される絶縁体4から成る電カケープル、5はX線装置の
X線を照射された電カケープル1の透過線を受像する画
像媒体である。FIG. 1 shows an overall schematic block diagram of an apparatus for carrying out the method for inspecting the insulation of a power cable and its connection part according to the present invention, 1 is an X-ray device, 2 is an insulator extruded onto a core conductor 3. The electric cable 5 consists of a body 4, and 5 is an image medium that receives the transmitted radiation of the electric cable 1 irradiated with X-rays from an X-ray device.
絶縁体4は、一般に用いられるX線吸収率が空気に近い
ポリエチレンから成杭画像媒体5としてはイメージング
プレート又は高感度撮影フィルムが用いられている。な
お、この媒体としては、X線センサーを用いることも可
能である。The insulator 4 is made of polyethylene, which is commonly used and has an X-ray absorption rate close to that of air.The image medium 5 is an imaging plate or a high-sensitivity photographic film. Note that it is also possible to use an X-ray sensor as this medium.
上記画像媒体5上に、X線装置1により照射されたX線
の透過量によって生じる楊像は読取装置6により読取ら
れ、その画像の濃淡を電気信号に変換して画像処理装置
7へ送る0画像処理装置7はさらにその内部処理によっ
て画像の濃淡を強調拡大したり、周波数処理等の画像改
善処理を施す。The image generated on the image medium 5 by the amount of transmitted X-rays irradiated by the X-ray device 1 is read by the reading device 6, and the shading of the image is converted into an electrical signal and sent to the image processing device 7. The image processing device 7 further enhances and enlarges the shading of the image through its internal processing, and performs image improvement processing such as frequency processing.
上記のように処理された画像の濃淡信号は、ニューロコ
ンピュータ8へ送られる。このニューロコンピュータ8
は、人間の脳細胞の動作と同じような動作をするように
作られている。このため、人間の脳細胞が同じことを何
度も学習してゆく内に、特定の脳神経細胞間の結合が強
くなって、結合の集合体である神経のネットワークその
ものが学習によってフレキシブルに変化してゆくことで
、学習した事をM積し、知識化出来るように、ニューロ
コンピューターも学習してゆくことにより、学習内容を
知識化できる。The gray level signals of the image processed as described above are sent to the neurocomputer 8. This neurocomputer 8
are designed to behave in a manner similar to the behavior of human brain cells. For this reason, as human brain cells learn the same thing over and over again, the connections between specific brain neurons become stronger, and the neural network itself, which is a collection of connections, changes flexibly as a result of learning. By learning, you can multiply what you have learned and turn it into knowledge, and by learning the neurocomputer, you can turn what you have learned into knowledge.
従って、当初は上記画像の濃淡信号を判断できないが、
ニューロコンピュータ8は上記のように構成されている
から、人間が何度もボイドや異物の画像のパターンを二
二一口コンピュータ8に教え学習させてゆ(と、コンピ
ュータ自身がボイドや異物の画像パターンを覚えこみ、
人間の脳が識別するのと同様に、ボイドや異物等電カケ
−プル絶縁体中の有害欠陥を自動的に識別するようにな
る。Therefore, initially it is not possible to judge the gray level signal of the above image, but
Since the neurocomputer 8 is configured as described above, a human being can repeatedly teach the computer 8 patterns of images of voids and foreign objects to the computer 8 (and the computer itself can learn images of voids and foreign objects). memorize the pattern,
It will automatically identify harmful defects in the insulation, such as voids and foreign objects, just as the human brain does.
第2図は電カケープル2の絶縁体4中にボイド9が存在
した場合の光線の透過状態を示している。FIG. 2 shows the state of light transmission when voids 9 exist in the insulator 4 of the power cable 2.
第3図は第2図の線■−■から見た画像媒体5の撮像の
概略パターンを示している。9′はボイド9に対応して
X線の透過量が増加し、影となっているボイド撮像点で
ある。図中、A、Cは絶縁体4に対応する領域で、絶縁
体4が厚くなれば比例して白っぽくなる。コア導体3に
対応する領域Bは白に抜ける。FIG. 3 shows a schematic pattern of imaging the image medium 5 as seen from the line ■-■ in FIG. 9' is a void imaging point where the amount of X-ray transmission increases corresponding to the void 9 and is shaded. In the figure, A and C are regions corresponding to the insulator 4, and as the insulator 4 becomes thicker, it becomes whitish in proportion. Area B corresponding to the core conductor 3 appears white.
第4図は第3図のボイド撮像点S′付近の部分拡大図で
ある。第5図に上記第4図のX−X線上の濃度分布を示
す、Y、Y’の領域にも画像雑音によりボイド部と同程
度のフラッキが生じている。FIG. 4 is a partially enlarged view of the vicinity of the void imaging point S' in FIG. FIG. 5 shows the concentration distribution along the line X--X in FIG. 4, in which the same degree of flaking as in the void portion occurs in the Y and Y' regions due to image noise.
このため、a −b間のボイド部とY 、 Y / j
l域とを濃度分布だけで区別することは難かしい。Therefore, the void part between a and b and Y, Y/j
It is difficult to distinguish between the 1 region and the 1 region based on the concentration distribution alone.
以上詳細に説明したように、この発明では電カケープル
又はその接続部に対しX線を照射し、その撮像を読取っ
て画像の濃淡を拡大してこの画像信号をニューロコンピ
ュータが学習シ、パターン認識をして絶縁体中の有害欠
陥を自動識別するよにしたから、ボイド等の欠陥を高速
で自動検知でき、製造中の電カケープルの検知装置に用
いれば電カケープルの全長に亘って高速で連続的に欠陥
を検知することができる。また、現地で組立てられる接
続部についても、この方法を用いれば短時間で高精度に
欠陥を検出でき、従って電カケーフルの信頼性の向上、
電カケープルシステムの信頼性を向上させることができ
る。As explained in detail above, in this invention, an electric cable or its connection part is irradiated with X-rays, the captured image is read, the shading of the image is enlarged, and this image signal is used by a neurocomputer to learn and perform pattern recognition. Since harmful defects in insulators can be automatically identified, defects such as voids can be automatically detected at high speed, and if used in a detection device for power cables being manufactured, it can be detected continuously at high speed over the entire length of power cables. defects can be detected. Furthermore, using this method, defects can be detected in a short time and with high precision even in connection parts that are assembled on-site, thereby improving the reliability of electrical cables.
The reliability of the power cable system can be improved.
第1図はこの発明による電カケープル及び同接続部の絶
縁体検査方法を実施する装置の全体概略ブロック図、第
2図は電カケープル絶縁体中のボイドのX線透過状態を
示す図、第3図は第2図の線■−■から見た画像媒体上
の撮像パターンを示す図、第4図は第3図のボイド撮像
点付近の部分拡大図、第5図は第4図のX−X線上の濃
度分布を示す図である。
1・・・・・・X線装置、
3・・・・・・コア導体、
5・・・・・・画像媒体、
7・・・・・・画像処理装置、
8・・・・・・ニューロコンピュータ、S・・・・・・
ボイド、 9′・・・・・・ボイド撮像点。
2・・・・・・電カケープル、
4・・・・・・絶縁体、
6・・・・・・読取装置、Fig. 1 is an overall schematic block diagram of an apparatus for carrying out the method for inspecting the insulator of a power cable and its connection portion according to the present invention; Fig. 2 is a diagram showing the state of X-ray transmission of voids in the power cable insulator; The figure shows the imaging pattern on the image medium as seen from the line FIG. 3 is a diagram showing concentration distribution on X-rays. 1... X-ray device, 3... Core conductor, 5... Image medium, 7... Image processing device, 8... Neuro Computer, S...
Void, 9'...Void imaging point. 2... Electric cable, 4... Insulator, 6... Reading device,
Claims (1)
りX線を照射し、画像媒体上の撮像を画像読取装置によ
り読み取り、その撮像信号を画像処理装置で処理して画
像の濃淡を拡大し、この画像の濃淡信号をニューロコン
ピュータによりパターン認識を行なって絶縁体中の有害
欠陥を自動識別することを特徴とする電力ケーブル及び
同接続部の絶縁体検査方法。(1) A power cable or its connection part is irradiated with X-rays by an X-ray device, the image captured on the image medium is read by an image reading device, and the image signal is processed by an image processing device to enlarge the shading of the image. A method for inspecting insulators of power cables and their connections, characterized by pattern recognition of the grayscale signals of this image using a neurocomputer to automatically identify harmful defects in the insulators.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1266809A JPH03128447A (en) | 1989-10-13 | 1989-10-13 | Insulation inspecting method for power cable and connection part thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1266809A JPH03128447A (en) | 1989-10-13 | 1989-10-13 | Insulation inspecting method for power cable and connection part thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03128447A true JPH03128447A (en) | 1991-05-31 |
Family
ID=17435978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1266809A Pending JPH03128447A (en) | 1989-10-13 | 1989-10-13 | Insulation inspecting method for power cable and connection part thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03128447A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001016632A1 (en) * | 1999-08-27 | 2001-03-08 | Scc Special Communication Cables Gmbh & Co. Kg | Method and device for determining the quality of a connection between optical waveguides |
-
1989
- 1989-10-13 JP JP1266809A patent/JPH03128447A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001016632A1 (en) * | 1999-08-27 | 2001-03-08 | Scc Special Communication Cables Gmbh & Co. Kg | Method and device for determining the quality of a connection between optical waveguides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Automatic identification of different types of welding defects in radiographic images | |
CN114778574B (en) | Method for identifying internal defects of high-voltage cable in operation by X-ray digital imaging detection | |
JPH0896136A (en) | Evaluation system for welding defect | |
Kumar et al. | Flaws classification using ANN for radiographic weld images | |
JP2010287442A (en) | Inspection method for battery, and inspection device for battery | |
JP2832269B2 (en) | Three-dimensional particle detection method and device | |
DE19525770C1 (en) | Bonding connections testing system for bonded semiconductor wafers | |
DE4130373A1 (en) | TEST METHOD AND TEST DEVICE | |
JPS6120845A (en) | Measuring device for singular part area frequency | |
JPH03128447A (en) | Insulation inspecting method for power cable and connection part thereof | |
Deuszkiewicz et al. | On-line condition monitoring of a power transmission unit of a rail vehicle | |
CN115266774B (en) | Artificial intelligence-based weld joint ray detection and evaluation method | |
Zhang et al. | Quantitative nondestructive testing of broken wires for wire rope based on multi-image fusion | |
Simone et al. | NDT image fusion using eddy current and ultrasonic data | |
Sutcliffe et al. | Automatic defect recognition of single-v welds using full matrix capture data, computer vision and multi-layer perceptron artificial neural networks | |
Mohamad et al. | Image enhancement process on digital radiographic image with weld discontinuities | |
JPH02266248A (en) | Inspection of foreign matter | |
JPH06317544A (en) | Method for examining safety-pad | |
TWM604396U (en) | Weld checking system based on radiography | |
Lawson | Automatic defect detection in industrial radioscopic and ultrasonic images | |
Gunraj et al. | SolderNet: Towards trustworthy visual inspection of solder joints in electronics manufacturing using explainable artificial intelligence | |
JPS61155843A (en) | Radiation inspection device | |
Fadel et al. | Non destructive testing for detection abnormal object in the x-ray images | |
Mery | Automated radioscopic inspection of aluminum die castings | |
JP2000028553A (en) | X-ray transmission inspecting method and device therefor |