JPH03127607A - Activated carbon structure - Google Patents

Activated carbon structure

Info

Publication number
JPH03127607A
JPH03127607A JP1264769A JP26476989A JPH03127607A JP H03127607 A JPH03127607 A JP H03127607A JP 1264769 A JP1264769 A JP 1264769A JP 26476989 A JP26476989 A JP 26476989A JP H03127607 A JPH03127607 A JP H03127607A
Authority
JP
Japan
Prior art keywords
activated carbon
porous body
structure according
carbon structure
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1264769A
Other languages
Japanese (ja)
Inventor
Shinro Katsura
桂 真郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1264769A priority Critical patent/JPH03127607A/en
Publication of JPH03127607A publication Critical patent/JPH03127607A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To desorb the malodorous component in a heated activated carbon porous body and to improve adsorptivity by providing the porous body obtained by carbonating and activating a foamed plastic and a means for heating the porous body. CONSTITUTION:A rod-shaped activated carbon porous body 5 and a heating element 7 are alternately arranged in parallel in a heat-resistant insulating case 3 with a gap in between. The heating element 7 is connected to a power source 20 through an electric wire 11. Meanwhile, the porous body 5 is obtained by foaming a resol-type phenolic resin with a blowing agent such as paraffinic hydrocarbons and a curing agent such as sulfuric acid, calcining and carbonizing the foamed product in a nonoxidizing atmosphere, heating and activating the product in an oxidizing gas atmosphere. The porous body 5 having adsorbed the malodorous component in a fluid is heated by the energized heating element 7 to desorb the component. The adsorbate can be repeatedly desorbed.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、新規な活性炭構造物に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a novel activated carbon structure.

発明の技術的背景 近年健康への関心から、特に煙草から発生する煙の害に
対する問題意識が高まり、室内空気の浄化に対する要請
が強くなってきた。
TECHNICAL BACKGROUND OF THE INVENTION In recent years, due to concerns about health, awareness of the harmful effects of smoke emitted from cigarettes has increased, and there has been a strong demand for indoor air purification.

このような要請に答えるべく、様々な空気清浄器が販売
されており、最近では脱臭性能を持たせたエアコンも市
販され初めている。
In order to meet such demands, various air purifiers are on the market, and recently, air conditioners with deodorizing performance have also begun to be commercially available.

ところで、煙草の煙に含まれる悪臭成分に対する吸着材
としては、従来より、活性炭素繊維、粒状活性炭などの
活性炭や、活性炭が添着されたウレタンフオームなどが
、最も効果のある材料として知られている。
By the way, activated carbon such as activated carbon fibers and granular activated carbon, and urethane foam impregnated with activated carbon have been known as the most effective adsorbents for the malodorous components contained in cigarette smoke. .

しかし、このような吸着材をエアコンに使用した場合、
きわめて低い圧力損失が要求されるためその使用量が制
限され、その結果、低い脱臭性能しか得ることができな
かった。
However, when such adsorbents are used in air conditioners,
Since extremely low pressure loss is required, the amount of use thereof is limited, and as a result, only low deodorizing performance can be obtained.

また、空気清浄器については、使用量に対する制限は緩
和されるが、いずれにせよ悪臭成分を吸着するにつれ、
吸着性能の低下は不11■避であり、フィルターの定期
的な交換が必要であった。
In addition, restrictions on the amount of air purifiers used will be eased, but in any case, as they absorb odor components,
Deterioration in adsorption performance was inevitable, and periodic replacement of the filter was required.

発明の目的 本発明は、上記のような従来技術に1fう問題点を解決
しようとするものであって、脱臭性能が優れ、かつ脱臭
性能の低下に伴なう交換を必要としない活性炭構造物を
提供することを目的としている。
Purpose of the Invention The present invention aims to solve the problems of the prior art as described above, and provides an activated carbon structure that has excellent deodorizing performance and does not require replacement due to deterioration of deodorizing performance. is intended to provide.

発明の概要 本発明に係る活性炭構造物は、プラスチック発泡体が炭
化、賦活されてなる活性炭素多孔体と、該活性炭素多孔
体を加熱する加熱手段とを篩えたことを特徴としている
Summary of the Invention The activated carbon structure according to the present invention is characterized by having an activated carbon porous body formed by carbonizing and activating a plastic foam, and a heating means for heating the activated carbon porous body.

本発明に係る活性炭構造物によれば、活性炭素多孔体を
加熱手段で加熱し昇温させることにより、この活性炭多
孔体に吸着した悪臭成分を脱着できるため、低下した脱
臭性能を回復することができる。
According to the activated carbon structure according to the present invention, by heating the activated carbon porous body with a heating means to raise the temperature, it is possible to desorb the malodorous components adsorbed to the activated carbon porous body, so that the deteriorated deodorizing performance can be recovered. can.

発明の詳細な説明 以下、本発明に係る活性炭構造物について具体的に説明
する。
Detailed Description of the Invention The activated carbon structure according to the present invention will be specifically described below.

本発明に係る活性炭構造物を構成する活性炭素多孔体は
、好ましくはフェノール樹脂発泡体を炭化し、次いで賦
活して得られる。
The activated carbon porous body constituting the activated carbon structure according to the present invention is preferably obtained by carbonizing a phenolic resin foam and then activating it.

このフェノール樹脂発泡体は、フェノール−樹脂を発泡
硬化させることにより得られ、このようなフェノール樹
脂としては、好ましくはレゾール型フェノール樹脂が用
いられる。
This phenolic resin foam is obtained by foaming and curing a phenol resin, and as such a phenol resin, a resol type phenol resin is preferably used.

レゾール型フェノール樹脂は、公知の方法にしたがって
、フェノール類とアルデヒド類とをアルカリ触媒の存在
下で反応させることにより得られる。
A resol type phenolic resin can be obtained by reacting phenols and aldehydes in the presence of an alkali catalyst according to a known method.

フェノール類としては、具体的には、フェノール、クレ
ゾール、キシレノールおよびレゾルシンなどが用いられ
る。
Specifically, phenols include phenol, cresol, xylenol, resorcinol, and the like.

アルデヒド類としては、具体的には、ホルムアルデヒド
、アセトアルデヒドおよびフルフラールなどが用いられ
る。
Specifically, formaldehyde, acetaldehyde, furfural, and the like are used as the aldehydes.

アルカリ触媒としては、具体的には、K OH。Specifically, the alkali catalyst is KOH.

N a OH−N H−N Ha OH、、:c、タノ
ールアミンおよびエチレンジアミンなどが用いられる。
N a OH-N H-N Ha OH, :c, tanolamine, ethylenediamine, and the like are used.

レゾール型フェノール樹脂を発泡させるための発泡剤と
しては、従来公知の種々の分解型発泡剤および蒸発型発
泡剤を用いることができる。
As the foaming agent for foaming the resol type phenolic resin, various conventionally known decomposition type foaming agents and evaporation type foaming agents can be used.

このうち蒸発型発泡剤が好ましく、具体的には、パラフ
ィン系炭化水素、アルコール、エーテル、ハロゲン化炭
化水素を最も好ましく用いることができる。
Among these, evaporative blowing agents are preferred, and specifically, paraffinic hydrocarbons, alcohols, ethers, and halogenated hydrocarbons are most preferably used.

ハロゲン化炭化水素としては、具体的には、クロロホル
ム、四塩化炭素、トリクロロモノフルオロメタン、ジク
ロロモノフルオロメタン、テトラクロロジフルオロエタ
ン、トリクロロトリフルオロメタン、ジクロロテトラフ
ルオロエタン、ジブロモトリフルオロエタンなどが用い
られる。
As the halogenated hydrocarbon, specifically, chloroform, carbon tetrachloride, trichloromonofluoromethane, dichloromonofluoromethane, tetrachlorodifluoroethane, trichlorotrifluoromethane, dichlorotetrafluoroethane, dibromotrifluoroethane, etc. are used.

パラフィン系炭化水素としては、ブタン、ペンタン、ヘ
キサン、シクロペンクン、シクロヘキサンおよびこれら
の混合物で常温ないしそれより若干高い温度に沸点を有
するものが好ましく用いられる。発泡剤量は樹脂にχ=
J L、l〜20が好ましい。
As paraffinic hydrocarbons, butane, pentane, hexane, cyclopenkune, cyclohexane, and mixtures thereof having a boiling point at room temperature or slightly higher than normal temperature are preferably used. The amount of blowing agent is χ=
JL, 1-20 is preferred.

レゾール型フェノール樹脂を発泡硬化させるために発泡
剤とともに硬化剤が用いられるが、このような硬化剤と
しては、従来公知の種々の硬化剤が、プレポリマーの種
類に応じて選択され使用される。具体的には、硫酸、塩
酸、リン酸、フェノールスルホン酸、ベンゼンスルホン
酸、トルエンスルホン酸、メタクレゾールスルホン酸、
レゾルシノールスルホン酸、ブチルスルホン酸、プロピ
ルスルホン酸などが用いられる。
A curing agent is used together with a foaming agent to foam and harden the resol type phenolic resin, and as such curing agents, various conventionally known curing agents are selected and used depending on the type of prepolymer. Specifically, sulfuric acid, hydrochloric acid, phosphoric acid, phenolsulfonic acid, benzenesulfonic acid, toluenesulfonic acid, metacresolsulfonic acid,
Resorcinol sulfonic acid, butyl sulfonic acid, propyl sulfonic acid, etc. are used.

このような硬化剤は、通常レゾール型フェノール樹脂1
00重量部に対して、3〜BOff!量部の量で用いら
れる。また、本発明においては、必要に応じてさらに他
の部分、たとえば整泡剤や充填剤を併用してもかまわな
い。
Such curing agents are usually resol type phenolic resins 1
00 parts by weight, 3~BOff! Used in parts. Further, in the present invention, other parts such as a foam stabilizer and a filler may be used in combination as necessary.

上記のようなレゾール型フェノール樹脂、発泡剤および
硬化剤を一挙にもしくは逐次に混合攪拌して得られた、
クリーム状のフェノール樹脂プレポリマー組成物をたと
えば保温された金型内もしくは2m帯状コンベアー上に
供給すると、フェノール樹脂プレポリマー組成物は発泡
硬化される。
obtained by mixing and stirring the above resol type phenolic resin, blowing agent, and curing agent all at once or sequentially,
When the creamy phenolic resin prepolymer composition is fed into a heat-insulated mold or onto a 2 m belt conveyor, the phenolic resin prepolymer composition is foamed and cured.

得られた樹脂発泡体は、必要に応じて切断してもよい。The obtained resin foam may be cut as necessary.

このようにして得られたフェノール樹脂発泡体の成形棒
は、そのまま直接かもしくは抑制するなどした後、非酸
化性または微酸化性雰囲気下で焼成され炭素化される。
The molded rod of the phenolic resin foam thus obtained is carbonized by firing in a non-oxidizing or slightly oxidizing atmosphere, either directly or after being suppressed.

すなわち、減圧下またはArガス、Heガス、N2ガス
、ハロゲンガス、アンモニアガス、水素ガス、−酸化炭
素等の中で、好ましくは500〜1200℃、特に60
0〜900℃の温度で焼成する。このようにして発泡体
は炭素化され、炭素多孔体が得られる。
That is, under reduced pressure or in Ar gas, He gas, N2 gas, halogen gas, ammonia gas, hydrogen gas, -carbon oxide, etc., preferably at 500 to 1200°C, especially at 60°C.
Calcinate at a temperature of 0 to 900°C. In this way, the foam is carbonized and a porous carbon body is obtained.

焼成時の昇温速度は特に制限はないものの、−般に樹脂
の分M’/が開始される200〜600℃付近にかけて
は徐々に行なうほうが好ましい。
Although there is no particular restriction on the rate of temperature increase during firing, it is preferable to increase the temperature gradually around 200 to 600°C, where the resin content M'/ generally starts to increase.

このようにして得られた炭素多孔体は、さらに酸化性ガ
ス雰囲気下で700〜1000℃の温度で加熱される賦
活処理により活性化される。
The carbon porous body thus obtained is further activated by an activation treatment in which it is heated at a temperature of 700 to 1000°C in an oxidizing gas atmosphere.

酸化性ガスとしては、活性炭の賦活処理に使用される従
来公知の各種酸素含有気体が用いられ、酸素または水蒸
気などの酸化性ガスと不活性ガスとの混合気体などが好
ましく用いられる。
As the oxidizing gas, various conventionally known oxygen-containing gases used in the activation treatment of activated carbon are used, and a mixed gas of an oxidizing gas such as oxygen or water vapor and an inert gas is preferably used.

不活性ガスと酸化性ガスとの混合比は、処理温度に応じ
て決定されるが、作業性を考慮すると、不活性ガス1モ
ルに対し、酸化性ガスは0.01〜0.5モル、好まし
くは0.1〜0,3モルの割合で混合される。
The mixing ratio of inert gas and oxidizing gas is determined depending on the processing temperature, but considering workability, the oxidizing gas should be 0.01 to 0.5 mol per mol of inert gas, Preferably, they are mixed in a proportion of 0.1 to 0.3 mole.

上記のような賦活処理時間は、前述した酸化性ガスの濃
度に応じて変化するが、作業性を考慮すると通常1分〜
24時間の範囲であることが好ましい。
The activation treatment time as described above varies depending on the concentration of the oxidizing gas mentioned above, but considering workability, it is usually 1 minute to 1 minute.
Preferably, the period is within 24 hours.

このようにして得られた活性炭素多孔体は、嵩密度が0
.05〜0.5g/cxlの範囲にあることが好ましい
The activated carbon porous material thus obtained has a bulk density of 0.
.. It is preferably in the range of 0.05 to 0.5 g/cxl.

活性炭素多孔体の重密度をこのような範囲とすることに
より、賦活操作を容易とし、極めて優れた脱臭性能を有
する多孔体を得ることができる。
By setting the density of the activated carbon porous body within such a range, the activation operation can be facilitated and a porous body having extremely excellent deodorizing performance can be obtained.

また活性炭素多孔体の嵩密度を0.05g/d以上とす
ることにより、後述の構造体とするのに十分な自己保持
力および強度を得ることができる。
Furthermore, by setting the bulk density of the activated carbon porous body to 0.05 g/d or more, sufficient self-retention force and strength can be obtained to form a structure described below.

また、活性炭素多孔体の比表面積は、通常500rtf
/g以上であり、この範囲の比表面積を有する活性炭素
多孔体は悪臭等を吸着する能力が極めて優れている。
In addition, the specific surface area of the activated carbon porous material is usually 500rtf
/g or more, and an activated carbon porous material having a specific surface area within this range has an extremely excellent ability to adsorb bad odors and the like.

なお、本発明における比表面積は、BET法によるN2
の等温吸着曲線より求めた値である。
Note that the specific surface area in the present invention is determined by the BET method.
This value was determined from the isothermal adsorption curve.

さらに、活性炭素多孔体の炭素含有率は、好ましくは8
5〜95%、特に好ましくは88〜92%である。活性
炭素多孔体の炭素含有率を上記のような値とすることに
より、脱臭性能が極めて優れた活性炭素多孔体を得るこ
とができる。
Furthermore, the carbon content of the activated carbon porous material is preferably 8
5 to 95%, particularly preferably 88 to 92%. By setting the carbon content of the activated carbon porous body to the above value, an activated carbon porous body having extremely excellent deodorizing performance can be obtained.

本発明で用いられる活性炭素多孔体は、優れた吸着性能
および耐熱性を有するとともに、適度な自己保持力を有
していなければならない。
The activated carbon porous material used in the present invention must have excellent adsorption performance and heat resistance, as well as appropriate self-retention power.

それに対して、従来より空気清浄器に多用されているウ
レタンフオーム添着活性炭は、ウレタンに導電性がなく
、また耐熱性も80℃程度と低いため、本発明のように
加熱手段を設けて加熱し、再生可能とすることができな
い。
On the other hand, activated carbon impregnated with urethane foam, which has conventionally been widely used in air purifiers, has no conductivity and has a low heat resistance of about 80°C, so it cannot be heated by providing a heating means as in the present invention. , cannot be made playable.

また、粒状活性炭や球状活性炭は一定の形状を有さない
ため、活性炭近傍に加熱手段を設けて均一に加熱できる
ような構造とするには、活性炭を収納するハウジングを
必要とする。ところが、このようなハウジングを設けた
場合、IR造が複雑になる他、ハウジングの材質をプラ
スチックとすると耐熱性に問題があり、金属製とすると
ハウジングの熱容量が高いため加熱時の熱量をより多く
必要とし、熱伝導率が高いため他部材への悪影響がある
などの問題がある。さらに、活性炭素繊維も自己保持性
に乏しいため、粒状活性炭と同様の問題がある他、加熱
特に繊維が飛散するなどの問題がある。 本発明に係る
活性炭構造物では、このような活性炭素多孔体は悪臭成
分を含む空気の流路に配設される。
In addition, since granular activated carbon and spherical activated carbon do not have a fixed shape, a housing for storing the activated carbon is required in order to provide a heating means near the activated carbon to provide a structure that can heat the activated carbon uniformly. However, if such a housing is provided, the IR structure becomes complicated, and if the housing is made of plastic, there is a problem with heat resistance, and if the housing is made of metal, the heat capacity of the housing is high, so it requires more heat during heating. However, due to its high thermal conductivity, there are problems such as adverse effects on other components. Furthermore, since activated carbon fibers also have poor self-retention properties, they have the same problems as granular activated carbon, as well as problems such as the fibers scattering, especially when heated. In the activated carbon structure according to the present invention, such an activated carbon porous body is arranged in a flow path of air containing malodorous components.

この際、活性炭素多孔体の形状としては、各種の形状が
考えられ、たとえば板状物、棒状物、あるいは特願平1
−96161号明細書に記載されるような孔を形成した
板状物などを挙げることができる。
At this time, various shapes can be considered as the shape of the activated carbon porous body, such as a plate-like object, a rod-like object, or a
Examples include a plate-like material with holes as described in Japanese Patent No. 96161.

本発明に係る活性炭素構造物では、このような活性炭素
多孔体は、特願平1.−96157号明細書に記載され
るように、所定の間隔を明けて複数並べて構成されるス
リット(1カ造としてもよい。
In the activated carbon structure according to the present invention, such an activated carbon porous body is disclosed in Japanese Patent Application No. Hei 1. As described in Japanese Patent No. 96157, a plurality of slits are arranged side by side at predetermined intervals (it may be one slit).

このようなスリット構造は、圧力損失が小さく、かつ後
述のジュール加熱に好適な形状を取り得るため好ましい
。スリット構造の内では、特に、活性炭素多孔体の棒状
体で構成されたスリット構造が、圧力損失が低いため好
ましい。
Such a slit structure is preferable because it has a small pressure loss and can take a shape suitable for Joule heating, which will be described later. Among the slit structures, a slit structure composed of a rod-like body of porous activated carbon is particularly preferable because of its low pressure loss.

スリット(1■造を構成する111性炭素多孔体は、1
モ意の幅、厚さおよび長さを取り得るが、電気抵抗、吸
着性能の点から見て、十分な構造強度が得られる範囲内
において、できる限り汚くかつ細い形状が好ましい。
The 111 carbon porous material that constitutes the slit (1)
Although the width, thickness, and length can be any desired, from the viewpoint of electrical resistance and adsorption performance, it is preferable that the shape be as dirty and thin as possible within the range that provides sufficient structural strength.

本発明に係る活性炭構造物は、このような活性炭素多孔
体と、この活性炭素多孔体の加熱手段とを備えている。
The activated carbon structure according to the present invention includes such an activated carbon porous body and heating means for the activated carbon porous body.

本発明で用いられる加熱手段としては、■1々な公知発
熱体を利用することができ、例えば、金属材料としてニ
クロム線などが用いられる他、StCを初めとするセラ
ミックヒータ−1赤外線ヒーター、黒鉛等の炭素ヒータ
ーなどを用いることができる。
As the heating means used in the present invention, it is possible to use various known heating elements, for example, a nichrome wire is used as the metal material, a ceramic heater such as StC, an infrared heater, a graphite heater, etc. A carbon heater such as the above can be used.

耐熱性および導電性長杆な硬質材料からなり、必要に応
じて他の素子、たとえばプラグ、コンセント、スイッチ
などを介し、電線、金属棒状体などによって外部電源と
接続される。
It is made of a heat-resistant and conductive long hard material, and is connected to an external power source by an electric wire, a metal rod, etc. via other elements such as a plug, outlet, switch, etc., as necessary.

このような本発明に係る活性炭構造物では、電圧を印加
するなどして発熱体を発熱させ、活性炭素多孔体を加熱
すると、この活性炭素多孔体に吸着された吸着物質は脱
着される・ したがって、本発明に係る活性炭素構想物は、脱臭フィ
ルターとして使用した場合、吸着性能が低下した際に、
発熱体を発熱させ、その結果、活性炭素多孔体を加熱さ
せて吸着物質を脱着し、吸着能力を回復させることがで
きる。
In such an activated carbon structure according to the present invention, when a voltage is applied to the heating element to heat the activated carbon porous body, the adsorbed substance adsorbed to the activated carbon porous body is desorbed. When the activated carbon concept according to the present invention is used as a deodorizing filter, when the adsorption performance decreases,
The heating element generates heat, and as a result, the activated carbon porous body is heated to desorb the adsorbed substance and restore the adsorption capacity.

また、本発明に係る活性炭構造物は、ヒーターを兼させ
ることもでき、たとえばエアコンに組込む場合はエアコ
ン用フィルターおよびヒー ターとして機能させること
ができる。
Furthermore, the activated carbon structure according to the present invention can also be used as a heater; for example, when incorporated into an air conditioner, it can function as an air conditioner filter and a heater.

次に本発明に係る活性炭構造物の奸ましい一態様を添付
第1図を参照してさらに具体的に説明する。
Next, one interesting aspect of the activated carbon structure according to the present invention will be explained in more detail with reference to the attached FIG. 1.

第1図は本発明に係る活性炭構造物の好ましい一態様を
示す概略図である。
FIG. 1 is a schematic diagram showing a preferred embodiment of the activated carbon structure according to the present invention.

第1図に示されるように、活性炭構造物1は、耐熱性お
よび絶縁性を有するケース3内に配設される棒状活性炭
素多孔体5,5・・・と、棒状活性炭素多孔体5.5・
・・の間に設けられる加熱手段としての発熱体7,7・
・・とを備えている。そして、ケース3内の棒状活性炭
素多孔体5,5・・・は、間隔を明けて平行に並べられ
ることにより、スリット構造を構成している。
As shown in FIG. 1, an activated carbon structure 1 includes rod-shaped activated carbon porous bodies 5, 5, . . . arranged in a case 3 having heat resistance and insulation properties; 5.
Heating elements 7, 7 as heating means provided between...
It is equipped with... The rod-shaped activated carbon porous bodies 5, 5, . . . in the case 3 are arranged in parallel with intervals, thereby forming a slit structure.

このような活性炭構造物1は、空気清浄器などに用いら
れる場合、悪臭成分などが含まれた空気の流路に配設さ
れ、発熱体7,7・・・には電線]1゜11によって電
源20が接続される。またこの際、電線11には、タイ
マーなどが介設されていてもよい。
When such an activated carbon structure 1 is used in an air purifier or the like, it is arranged in a flow path of air containing malodorous components, and the heating elements 7, 7... are connected by electric wires]1゜11. Power source 20 is connected. Further, at this time, the electric wire 11 may be provided with a timer or the like.

次に、このような空気清浄器に組込まれた活性炭構造物
の作動について説明すると、図示していない空気清浄器
のファンにより空気清浄器内と室内との間を循環させら
れる空気は、清浄器内に113威された空気の流路に配
設された活性炭(d遺物1のスリット間を流れ、この際
、空気中の悪臭成分は、活性炭素多孔体棒状体5.5・
・・に吸着される。
Next, to explain the operation of the activated carbon structure built into such an air purifier, the air that is circulated between the inside of the air purifier and the room by the fan of the air purifier (not shown) is Activated carbon (113) is placed in the flow path of the air flowing between the slits of the relic 1, and at this time, the malodorous components in the air are absorbed by the activated carbon porous rod-shaped body 5.5.
It is absorbed by...

所定時間経過後、タイマー(図示せず)の働きで発熱体
7.7・・・に電圧が印加され、吸着を程度進んだ活性
炭素多孔体棒状体5,5・され、それと同時に悪臭成分
を脱着される。この脱着した成分は、前期流路とは異な
る経路を介して室外に排出される。
After a predetermined period of time has elapsed, a voltage is applied to the heating elements 7, 7... by the action of a timer (not shown), and the activated carbon porous rods 5, 5, which have been adsorbed to a certain degree, are removed, and at the same time, the malodorous components are removed. It is attached and detached. This desorbed component is discharged to the outside through a path different from the previous flow path.

所定時間悪臭成分の脱着を行なった後、タイマーの働に
より、発熱体7,7・・・への電圧の印加が停止され、
適当な放冷期間の後、再びファンが作動して活性炭構造
物1は悪臭成分吸着に洪される。
After the malodorous components have been desorbed for a predetermined period of time, the application of voltage to the heating elements 7, 7... is stopped by the action of the timer.
After a suitable cooling period, the fan is operated again and the activated carbon structure 1 is exposed to adsorption of malodorous components.

本発明の活性炭構造物について、これまで部屋内の脱臭
フィルターとし使用した場合を説明したが、本発明に係
る活性炭構造物は、活性炭が使用される従来公知の用途
、たとえば冷蔵1−ICの脱臭装置として有効に利用で
きる他、溶剤回収や水処理などにも有効に用いることが
できる。
The activated carbon structure of the present invention has been described so far as being used as a deodorizing filter in a room, but the activated carbon structure of the present invention can also be used in conventionally known applications where activated carbon is used, such as deodorizing refrigerators 1-IC. In addition to being effectively used as a device, it can also be effectively used for solvent recovery, water treatment, etc.

また、本発明の係る活性炭構造物は、水処理においても
活性炭素多孔体を加熱することにより吸着された有機物
あるいは塩素等の不純物を脱着、あるいは分躬し、再度
使用することが可能である。
Furthermore, the activated carbon structure according to the present invention can be used again in water treatment by desorbing or separating adsorbed organic substances or impurities such as chlorine by heating the activated carbon porous body.

発明の効果 本発明の活性炭構造物は、プラスチック発泡体が炭化、
賦活されてなる活性炭素多孔体と、この活性炭素多孔体
の加熱手段とを備えているため、活性炭素多孔体を加熱
し、活性炭素多孔体に吸着された物質を脱着あるいは分
角lfさせることができる。したがって、フィルターと
して使用した場合、通電により低下した脱臭性能を回復
することができるため、定期的なフィルター交換が必要
でなく、また活性炭が使用される従来公知の用途、たと
えば溶剤回収や水処理などに有効に用いることができる
Effects of the Invention The activated carbon structure of the present invention has carbonized plastic foam.
Since it is equipped with an activated activated carbon porous body and means for heating the activated carbon porous body, it is possible to heat the activated carbon porous body and desorb or desorb the substance adsorbed on the activated carbon porous body. Can be done. Therefore, when used as a filter, it is possible to restore the deodorizing performance that has been degraded by energization, so periodic filter replacement is not necessary. It can be used effectively.

しかも、本発明で用いる活性炭素多孔体は、吸着性能、
特に煙草の脱臭等の用途において、吸着速度が速く、吸
着量が多い。したがって、本発明に係る活性炭構造物で
は、活性炭素多孔体でスリット構造を構成した場合、ス
リットの間隔を大きくすることができ、吸着工捏におけ
る圧力損失をより小さくすることができる。
Moreover, the activated carbon porous material used in the present invention has excellent adsorption performance.
Especially in applications such as deodorizing cigarettes, the adsorption speed is fast and the adsorption amount is large. Therefore, in the activated carbon structure according to the present invention, when the slit structure is made of a porous activated carbon material, the spacing between the slits can be increased, and the pressure loss during adsorption kneading can be further reduced.

次に実施例を挙げて、本発明の活性炭構造物につきさら
に具体的に説明するが、本発明はその要旨を超えない限
り、これらの実施例に何ら制約されるものではない。
EXAMPLES Next, the activated carbon structure of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.

実施例1 レゾール100重量部、硬化剤としてのパラトルエンス
ルホン酸10重量部および発泡剤としてのフロンガス(
フレオン11) 2重量部を高速ミキサーで充分に攪拌
した後、該混合物を木型内に流し込み、蓋をした後、8
0℃のエアーオーブン内に30分放置することにより、
縦300+11.fM30(1)、厚さ3 cm 、嵩
密度0.10g/cm3の板状フェノール樹脂発泡体を
得た。
Example 1 100 parts by weight of resol, 10 parts by weight of para-toluenesulfonic acid as a curing agent, and chlorofluorocarbon gas (as a blowing agent)
After sufficiently stirring 2 parts by weight of Freon 11) with a high-speed mixer, the mixture was poured into a wooden mold and the lid was closed.
By leaving it in an air oven at 0℃ for 30 minutes,
Vertical 300+11. A plate-shaped phenolic resin foam having fM30(1), thickness of 3 cm, and bulk density of 0.10 g/cm3 was obtained.

この成形板をマツフル炉に入れ、窒素雰囲気下で昇温速
度60℃/時間で温度800℃まで昇温して加熱し、次
いで同温度でN2ガスを水蒸気との混合モル比が0.8
:0.2である混合ガスを流し、30分間賦活処理した
後冷却してこの温度を1時間保持した後冷却して、縦2
5cm、I黄25(7)、厚さ2.6(7)、高密度0
.09g/a!、比表面積が1200rrr/g、炭素
含有率90%の板状炭素多孔体を得た。
This formed plate was placed in a Matsufuru furnace and heated under a nitrogen atmosphere at a rate of 60°C/hour to a temperature of 800°C, and then at the same temperature the molar ratio of N2 gas to water vapor was 0.8.
:0.2 was flowed, activated for 30 minutes, cooled, maintained at this temperature for 1 hour, cooled, and heated vertically.
5cm, I yellow 25 (7), thickness 2.6 (7), high density 0
.. 09g/a! A plate-like carbon porous body having a specific surface area of 1200 rrr/g and a carbon content of 90% was obtained.

[フィルターの製造] 上記板状活性炭素多孔体から厚さ5開、II+ 10−
■、長さ150關の棒を切り出し、耐熱プラスチックの
枠体に間隔を明けて並べてスリット構造とし、第1図に
示されるような活性炭構造物1を作成した。なお、スリ
ットは間隔10間、炭素多孔体の本数は9本とし、発熱
体としてはセラミック薄葉ヒーターを用いた。
[Manufacture of filter] From the above plate-shaped activated carbon porous body, thickness 5 mm, II+ 10-
(2) Rods with a length of 150 mm were cut out and arranged at intervals on a heat-resistant plastic frame to form a slit structure, thereby creating an activated carbon structure 1 as shown in FIG. The slits were spaced at 10 intervals, the number of carbon porous bodies was 9, and a thin ceramic heater was used as the heating element.

[性能評価] 圧力損失 チャンバー(内部寸法1mx1mx1.3m)と、この
チャンバーに連結される67IIIIlφの導管と、こ
の同感の途中に配設されるフィルターホルダーと、この
ホルダーの上下流側の各々に配設される圧力計と、チャ
ンバー内の空気を排出する送風機とを有する装置を用い
て圧力損失を1lF1定した。
[Performance evaluation] A pressure loss chamber (internal dimensions 1m x 1m x 1.3m), a 67IIIlφ conduit connected to this chamber, a filter holder disposed in the middle of this chamber, and a filter holder disposed on each of the upstream and downstream sides of this holder. The pressure loss was determined to be 11 F1 using an apparatus having a pressure gauge and a blower for discharging air from the chamber.

測定操作は、ホルダーに活性炭構造物を装着した後、送
風機を駆動し、チャンバー内の空気t−100cm/s
ecの速度で導管を通って排出する。
In the measurement operation, after mounting the activated carbon structure on the holder, the blower is driven to blow the air in the chamber at t-100cm/s.
Eject through the conduit at a rate of ec.

この際、フィルターの上流側および下流側の圧力を測定
し、圧力差を圧力損失(開H20)で示す。
At this time, the pressures on the upstream and downstream sides of the filter are measured, and the pressure difference is expressed as pressure loss (opening H20).

脱臭効果 導管をチャンバー内に空気がリサイクルするよう循環式
に設ける。チャンバー内にアセトアルデヒドを濃度が1
00 ppmになるよう導入した後、送風機の回転を開
始する。その後10分、20分、30分経過後のチャン
バー内のアセトアルデヒドの濃度をガス検知管により求
める。
A deodorizing effect conduit is provided in a circulating manner so that air is recycled into the chamber. The concentration of acetaldehyde in the chamber is 1.
After introducing the solution to a concentration of 0.00 ppm, start rotating the blower. After 10 minutes, 20 minutes, and 30 minutes have elapsed, the concentration of acetaldehyde in the chamber is determined using a gas detection tube.

脱臭率−(初期濃度−30分経過後の濃度/初期濃度X
100 (%)) 以上の測定結果を表1に示す。
Deodorization rate - (Initial concentration - Concentration after 30 minutes / Initial concentration
100 (%)) The above measurement results are shown in Table 1.

脱着、再吸着試験 アセトアルデヒド吸着試験を行なった後、発熱体に電流
を印加してセラミック発熱体を発熱させ、活性炭素多孔
体の表面温度を180℃に昇温させて脱着操作をした。
Desorption and re-adsorption test After conducting an acetaldehyde adsorption test, a current was applied to the heating element to cause the ceramic heating element to generate heat, and the surface temperature of the activated carbon porous body was raised to 180°C, and a desorption operation was performed.

次にフィルターの冷却を待って1時間後、再度アセトア
ルデヒド吸着試験を実施した。この操作を5回繰り返し
た後の吸着性能の評価結果を表1に示す。
Next, after one hour of waiting for the filter to cool, the acetaldehyde adsorption test was conducted again. Table 1 shows the evaluation results of adsorption performance after repeating this operation five times.

結果を表1に示す。The results are shown in Table 1.

比較例1 実施例1と同様に圧力損失と脱臭性能とを測定するとと
もに、脱着操作を行なわないでアセトアルデヒド吸着試
験を3度繰り返した1時の吸着性能の評価結果を表1に
示す。
Comparative Example 1 The pressure drop and deodorizing performance were measured in the same manner as in Example 1, and the acetaldehyde adsorption test was repeated three times without performing the desorption operation. Table 1 shows the evaluation results of the adsorption performance at one time.

比較例2 脱臭フィルターとして市販されている、粉末活性炭が添
着されたウレタンフオーム(高密度o、oeg / =
i、厚さ5m+m)を比較例1と同様にして性能評価を
行なった。
Comparative Example 2 Urethane foam impregnated with powdered activated carbon, commercially available as a deodorizing filter (high density o, oeg / =
performance evaluation was performed in the same manner as in Comparative Example 1.

結果を表1に示す。The results are shown in Table 1.

比較例3 市販の活性炭素繊維製脱臭フィルター(x55度0.0
ftg/a+1、厚さ2mr@)を比較例1と同様にし
て性能評価を行なった。
Comparative Example 3 Commercially available activated carbon fiber deodorizing filter (x55 degrees 0.0
ftg/a+1, thickness 2 mr@) in the same manner as in Comparative Example 1, and performance evaluation was performed.

結果を表1に示す。The results are shown in Table 1.

表 4゜table 4゜

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る活性炭構造物の一例を示す概略図
である。 ・・・活性炭構造物 ・5・・・活性炭素多孔体 3・・・ケース 7・・・セラミ ク発熱体 ・・電源 代即人
FIG. 1 is a schematic diagram showing an example of an activated carbon structure according to the present invention. ... Activated carbon structure 5 ... Activated carbon porous body 3 ... Case 7 ... Ceramic heating element ... Power supply fee immediate

Claims (9)

【特許請求の範囲】[Claims] (1)プラスチック発泡体が炭化、賦活されてなる活性
炭素多孔体と、該活性炭素多孔体を加熱する加熱手段と
を備えたことを特徴とする活性炭構造物。
(1) An activated carbon structure comprising an activated carbon porous body formed by carbonizing and activating a plastic foam, and a heating means for heating the activated carbon porous body.
(2)前記加熱手段が、赤外線ヒーターであることを特
徴とする請求項第1項に記載の活性炭構造物。
(2) The activated carbon structure according to claim 1, wherein the heating means is an infrared heater.
(3)前記加熱手段が、通電により発熱する発熱体であ
ることを特徴とする請求項第1項に記載の活性炭構造物
(3) The activated carbon structure according to claim 1, wherein the heating means is a heating element that generates heat when energized.
(4)前記プラスチック発泡体がフェノール樹脂発泡体
であることを特徴とする請求項第1項に記載の活性炭構
造物。
(4) The activated carbon structure according to claim 1, wherein the plastic foam is a phenolic resin foam.
(5)前記活性炭素多孔体は、嵩密度が0.05〜0.
5g/cm^3であることを特徴とする請求項第1項に
記載の活性炭構造物。
(5) The activated carbon porous body has a bulk density of 0.05 to 0.
Activated carbon structure according to claim 1, characterized in that the carbon content is 5 g/cm^3.
(6)前記活性炭素多孔体は、体積固有抵抗率が1〜0
.01Ω・cmであることを特徴とする請求項第1項な
いし第5項に記載の活性炭構造物。
(6) The activated carbon porous body has a specific volume resistivity of 1 to 0.
.. 6. The activated carbon structure according to claim 1, wherein the activated carbon structure has a resistance of 0.01 Ω·cm.
(7)前記活性炭素多孔体は、炭素含有率が85〜95
%の範囲にあることを特徴とする請求項第1項に記載の
活性炭構造物。
(7) The activated carbon porous body has a carbon content of 85 to 95
Activated carbon structure according to claim 1, characterized in that the activated carbon structure is in the range of %.
(8)前記活性炭素多孔体が、間隔を明けて複数並べら
れてなるスリット構造を構成することを特徴とする請求
項第1項に記載の活性炭構造物。
(8) The activated carbon structure according to claim 1, wherein the activated carbon porous body constitutes a slit structure in which a plurality of activated carbon porous bodies are arranged at intervals.
(9)前記活性炭素多孔体が棒状物であることを特徴と
する請求項第8項に記載の活性炭構造物。
(9) The activated carbon structure according to claim 8, wherein the activated carbon porous body is a rod-shaped object.
JP1264769A 1989-10-11 1989-10-11 Activated carbon structure Pending JPH03127607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1264769A JPH03127607A (en) 1989-10-11 1989-10-11 Activated carbon structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1264769A JPH03127607A (en) 1989-10-11 1989-10-11 Activated carbon structure

Publications (1)

Publication Number Publication Date
JPH03127607A true JPH03127607A (en) 1991-05-30

Family

ID=17407935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1264769A Pending JPH03127607A (en) 1989-10-11 1989-10-11 Activated carbon structure

Country Status (1)

Country Link
JP (1) JPH03127607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225272A1 (en) * 1992-07-31 1994-02-03 Bluecher Gmbh Adsorption filter for air purification or off-gases - contains adsorber granules, e.g. active carbon, fixed on a support which can be heated, e.g. electrically, to regenerate the filter
EP0597309A1 (en) * 1992-11-11 1994-05-18 Ekokem Oy Ab Method of purification of a filter material used for cleansing of liquids
JP2007039264A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Wire-shaped carbon particle obtained from resorcinol-based polymer as precursor, its production method, and use thereof
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
JP2013181748A (en) * 2012-03-02 2013-09-12 Hamilton Sundstrand Space Systems Internatl Inc Heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225272A1 (en) * 1992-07-31 1994-02-03 Bluecher Gmbh Adsorption filter for air purification or off-gases - contains adsorber granules, e.g. active carbon, fixed on a support which can be heated, e.g. electrically, to regenerate the filter
DE4225272B4 (en) * 1992-07-31 2006-01-19 Mhb Filtration Gmbh & Co. Kg adsorption
EP0597309A1 (en) * 1992-11-11 1994-05-18 Ekokem Oy Ab Method of purification of a filter material used for cleansing of liquids
JP2007039264A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Wire-shaped carbon particle obtained from resorcinol-based polymer as precursor, its production method, and use thereof
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
JP2013181748A (en) * 2012-03-02 2013-09-12 Hamilton Sundstrand Space Systems Internatl Inc Heat exchanger

Similar Documents

Publication Publication Date Title
Tsutomu et al. Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon
JP3078850B2 (en) Adsorption composition containing zeolite and adsorption decomposition composition containing this adsorption composition
EP0643014B1 (en) Deodorant comprising metal oxide-carrying activated carbon
KR20110095909A (en) Adsorption molded body, adsorption and recovery treatment apparatus, and method for desorping adsorbed substance
US5238888A (en) Carbon molecular sieve
JPH03127607A (en) Activated carbon structure
KR20190064148A (en) Filter for harmful air cleaner
WO2007149418A2 (en) Nucleating agents for plastic foams
Son et al. Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell
JP2009056449A (en) Lower aldehyde adsorbent
JPH03109075A (en) Structural body of activated carbon
JP6350918B2 (en) Adsorption / desorption agent
JPH03217214A (en) Filter structure and method for removing malodorous component
WO2023135839A1 (en) Carbon dioxide adsorbent for air conditioning, adsorption device and air conditioning device
JPH02273169A (en) Filter material for tobacco
JPH0538414A (en) Deodorizing filter
JP2934978B2 (en) Sepiolite porous body, method for producing the same, and adsorption decomposition catalyst using the same
JPS5918094B2 (en) Ozonolysis method
KR20180071111A (en) Process for forming granular foam glass and method for manufacturing a photocatalyst for removing odor
JPH02275711A (en) Cellular substance structure of active carbon
WO2023135837A1 (en) Carbon dioxide adsorbent for air conditioning, adsorption device, and air conditioning device
JP2732652B2 (en) Filter laminate
KR102005016B1 (en) Method manufacturing activated carbon for removal of aldehydes gas
JP7037215B2 (en) Deodorizing material, its manufacturing method, deodorizing method, and deodorizing sheet
JP2820484B2 (en) Adsorbent manufacturing method