JPH03127032A - Functional optical waveguide medium - Google Patents

Functional optical waveguide medium

Info

Publication number
JPH03127032A
JPH03127032A JP1267106A JP26710689A JPH03127032A JP H03127032 A JPH03127032 A JP H03127032A JP 1267106 A JP1267106 A JP 1267106A JP 26710689 A JP26710689 A JP 26710689A JP H03127032 A JPH03127032 A JP H03127032A
Authority
JP
Japan
Prior art keywords
core
refractive index
optical fiber
optical
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1267106A
Other languages
Japanese (ja)
Other versions
JP2774963B2 (en
Inventor
Masaharu Horiguchi
堀口 正治
Makoto Shimizu
誠 清水
Makoto Yamada
誠 山田
Etsuji Sugita
杉田 悦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1267106A priority Critical patent/JP2774963B2/en
Publication of JPH03127032A publication Critical patent/JPH03127032A/en
Application granted granted Critical
Publication of JP2774963B2 publication Critical patent/JP2774963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve exciting efficiency by specifying the specific refractive index differences to the pure quartz of the 1st core positioned in the central part of cores and the 2nd core formed on the outer periphery thereof. CONSTITUTION:This medium is made of the double structures consisting of the 1st core 1 positioned in the central part of the cores disposed concentrically with each other and the 2nd core 2 formed on the outer periphery thereof. The specific refractive index difference DELTAn1 to the pure quartz of the 1st core is in a 0<=DELTAn1<=0.5% range and the specific refractive index difference DELTAn2 to the pure quartz of the 2nd core 2 is in a 0.7<=DELTAn2<=3.5% range. A rare earth element or transition metal is added only to the 1st core part 1. The scattering losses are, therefore, decreased and the hardening of the laser active material is enhanced. The laser activity effect is executed only in the low-loss central part of the cores where the light energy density is highest. The mechanical waveguide medium having the high efficiency is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い励起効率を得る機能性光導波媒体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a functional optical waveguide medium that obtains high excitation efficiency.

(従来の技術および問題点〉 近年、Nd(ネオジウム) 、Er (エルビウム〉、
Pr(プラセオジウム) 、Yb (イツテリビウム)
などの希土類元素を添加した光ファイバ(以下、希土類
元素添加光ファイバと記す〉をレーザ活性物質とした、
単一モード光ファイバレーザあるいは光増幅器が、光セ
ンサや光通信の分野で多くの利用の可能性を有すること
が報告され、その応用が期待されている。
(Conventional technology and problems) In recent years, Nd (neodymium), Er (erbium),
Pr (praseodymium), Yb (itteribium)
An optical fiber doped with rare earth elements such as (hereinafter referred to as rare earth element doped optical fiber) is used as a laser active material,
It has been reported that single mode optical fiber lasers or optical amplifiers have many possibilities of use in the fields of optical sensors and optical communications, and their applications are expected.

希土類元素添加光ファイバを用いた光フアイバレーザ増
幅器としては、Er添加した石英系光ファイバを、レー
ザ活性物質として用い、半導体レーザを励起光源として
、波長1,54μmで光増幅を確認した例が、アール、
ジェー、メアーズなど(J、Mears他、Elect
ron、Lett、、 23.PP1028−1029
.1987)によって報告されている。
As an optical fiber laser amplifier using a rare earth element-doped optical fiber, an example in which optical amplification was confirmed at a wavelength of 1.54 μm using an Er-doped silica-based optical fiber as a laser active material and a semiconductor laser as an excitation light source is as follows. R,
J, Mears et al. (J, Mears et al., Elect
Ron, Lett, 23. PP1028-1029
.. (1987).

このようなレーザ活性物質を添加した光ファイバを効果
的に利用するためには、光学的に効率よく励起光を入射
させると共に、これらの励起光を効率的に利用する導波
構造が必要となる。
In order to effectively utilize optical fibers doped with such laser-active substances, it is necessary to have a waveguide structure that allows excitation light to enter optically efficiently and efficiently utilizes these excitation lights. .

光ファイバの入射効率を上げる手法としては、一般に光
ファイバのNA(開口数: NA= (nco”−nd
2) 1/2、neo:ファイバのコア屈折率、nd:
クラッドの屈折率)を大きくする方法が知られている。
As a method to increase the incidence efficiency of an optical fiber, the NA (numerical aperture: NA= (nco”-nd
2) 1/2, neo: fiber core refractive index, nd:
A method of increasing the refractive index of the cladding is known.

すなわち、ncoとnclの屈折率を大きくすることが
効果的に入射効率を上げることになる。このため、たと
えば、石英ガラスのコアに高濃度のGeO2を添加し屈
折率を大きくする方法がとられる。
That is, increasing the refractive index of nco and ncl effectively increases the incidence efficiency. For this reason, for example, a method is used in which a high concentration of GeO2 is added to a quartz glass core to increase the refractive index.

しかるに、コアに高濃度のドーピングを行なうとガラス
の散乱損失が著しく増加するという問題があったため、
効率的な機能性導波媒体が得にくいという問題があった
However, there was a problem that the scattering loss of the glass increased significantly when the core was doped at a high concentration.
There was a problem that it was difficult to obtain an efficient functional waveguide medium.

第2図は、GeO2をコアに添加した単一モード光ファ
イバの散乱損失(波長1μm)とGeO2の添加濃度(
比屈折率差に対応〉の関係を調べたものである0図に示
されるように、GeO2の添加濃度5mo1%以上で急
激な散乱損失の増加が現われる。また、Al2O3を添
加剤とした場合は、一般に5mo1%以上の添加でガラ
スの結晶体が生じる問題があった。
Figure 2 shows the scattering loss (wavelength 1 μm) of a single mode optical fiber doped with GeO2 in the core and the doping concentration of GeO2 (
As shown in Figure 0, which is an investigation of the relationship between the relative refractive index difference and the relative refractive index difference, a sharp increase in scattering loss appears when the GeO2 doping concentration is 5 mo1% or more. Further, when Al2O3 is used as an additive, there is a problem in that glass crystals are generally formed when 5 mo1% or more is added.

一方、単一モード光ファイバに励起された光(ポンプ光
)を効率よく使用する方法として、第3図に示すように
、コアの中心部にのみレーザ活性物質(第3図の例では
Er:エルビウム〉を添加する手法が、B、J、A1n
5lieらによって報告されている(1988年欧州光
通信国際会議、論文予稿pp、62〜65,198g)
 、これは、単一モード光ファイバ内の伝搬光エネルギ
ー(励起光)の強い部分(すなわちコア中心部)でEr
を励起することにより、励起効率を上げようとするもの
である。
On the other hand, as a method of efficiently using the light excited (pump light) in a single mode optical fiber, as shown in Fig. 3, a laser active material (Er in the example of Fig. 3) is placed only in the center of the core. The method of adding erbium is B, J, A1n
5lie et al. (1988 European International Conference on Optical Communications, Paper Proceedings pp, 62-65, 198g)
, this is the Er
The aim is to increase the excitation efficiency by exciting the .

しかるに、第3図の構成では、励起効率は上がるが、光
エネルギーの強い部分とコアの高屈折率領域(すなわち
高い散乱損失領域)が光学的に重畳されるため、損失が
大きくなる問題があった。
However, in the configuration shown in Fig. 3, although the excitation efficiency is increased, there is a problem that the loss increases because the portion with high optical energy and the high refractive index region of the core (that is, the high scattering loss region) are optically overlapped. Ta.

さらに、上記例では、希土類元素を高濃度(数百ppm
以上〉に添加しているため、希土類元素の高濃度添加効
果によって散乱損失が大きいという欠点があった。すな
わち、第4図は発明者らがErの添加濃度と1.2μm
における光ファイバの過剰損失(散乱損失〉の関係を調
べたものであるが、Erを150ppm以上に添加した
場合、過剰損失が急激に増加することを示すものである
。このような散乱損失の希土類元素添加・濃度依存性は
、屈折率調整用の他のドーパント(例えば0e02、A
l2O3など)を共添加した場合は、さらに顕著となる
傾向がある。
Furthermore, in the above example, rare earth elements are used at high concentrations (several hundreds of ppm).
Since the rare earth elements are added in the above amount, there is a drawback that scattering loss is large due to the effect of adding a high concentration of rare earth elements. That is, FIG. 4 shows the concentration of Er added by the inventors and the
This study investigated the relationship between excessive loss (scattering loss) of optical fibers in The elemental addition/concentration dependence is different from other dopants for adjusting the refractive index (e.g. 0e02, A
When co-adding 12O3, etc.), the effect tends to become even more pronounced.

(発明の目的) 本発明は上述の問題点に鑑みなされたものであり、散乱
損失を低減すると共にレーザ活性物質の効率を高め、さ
らに高NAを保持しつつ低損失で高光エネルギ密度の機
能性光導波媒体を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and provides functionality for reducing scattering loss, increasing the efficiency of a laser active material, and achieving low loss and high optical energy density while maintaining a high NA. The purpose is to provide an optical waveguide medium.

(問題を解決するための手段〉 本発明は、かかる問題点を解決するため、レーザ遷移を
有する希土類元素または遷移金属をコア部に添加してな
ると共に、このコア外周に形成されて当該コアよりも低
屈折率のクラッドを備える石英系機能性光導波媒体であ
って、上記コアが互いに同心円状に配置され、当該コア
の中心部に位置する第1のコアと、この外周に形成され
た第2のコアとからなる二重構造を威し、前記第1のコ
アの純粋石英に対する比屈折率差 Δn1が 0≦Δn1≦0.5% の範囲にあり、前記第2のコアの純粋石英に対する比屈
折率差Δn2が 0.7≦Δn2≦3.5% の範囲にあって、前記希土類元素または遷移金属は、前
記第1のコア部にのみ添加されてなることを特徴とする
(Means for Solving the Problems) In order to solve these problems, the present invention includes adding rare earth elements or transition metals having laser transition to the core portion, and forming them on the outer periphery of the core so that is a quartz-based functional optical waveguide medium having a cladding with a low refractive index, the cores being arranged concentrically with each other, a first core located at the center of the core, and a first core formed on the outer periphery of the core. The relative refractive index difference Δn1 of the first core with respect to pure quartz is in the range of 0≦Δn1≦0.5%, and the relative refractive index difference Δn1 with respect to the pure quartz of the second core is in the range of The relative refractive index difference Δn2 is in the range of 0.7≦Δn2≦3.5%, and the rare earth element or transition metal is added only to the first core portion.

すなわち、コアの屈折率分布を、レーザ活性物質を添加
する相対的に低屈折率の第1のコア層と、より大きなN
Aを得るための相対的に高屈折率の第2のコア層とから
なるように構成したものである。また、第1のコア層に
添加するレーザ活性物質の濃度を低く抑えることによっ
て散乱損失が小さく、クラスターの発生もなく、かつ屈
折率調整用のドーパント(Ge02、Al2O3、P2
O5など)の濃度も低く抑えているため、光学的に低損
失のガラス層となっている。
That is, the refractive index distribution of the core is changed by adding a first core layer with a relatively low refractive index doped with a laser active substance and a larger N layer.
A second core layer having a relatively high refractive index for obtaining A. In addition, by suppressing the concentration of the laser active substance added to the first core layer, scattering loss is small, clusters do not occur, and dopants for adjusting the refractive index (Ge02, Al2O3, P2
The concentration of O5, etc.) is also kept low, resulting in a glass layer with low optical loss.

この結果、当該構造の光ファイバは、第2のコア層の高
屈折率層の効果によって極めて高い開口数(NA)を有
しながら、光エネルギー密度の高いコア中心部(第1の
コア層〉ではドーパント総量を低く抑えているため散乱
損失が小さく、全体として低損失であり、しかもこの低
損失領域にのみレーザ活性物質が添加されているため、
該レーザ活性物質の励起効率が高く、かつ該レーザ活性
物質に作用する光エネルギー密度が高いのが特徴であり
、極めて高効率の機能性光導波媒体(ファイバ)を提供
できる。
As a result, the optical fiber with this structure has an extremely high numerical aperture (NA) due to the effect of the high refractive index layer of the second core layer, while the center part of the core (first core layer) has a high optical energy density. Since the total amount of dopants is kept low, the scattering loss is small and the loss is low overall, and since the laser active material is added only to this low loss region,
It is characterized by the high excitation efficiency of the laser active substance and the high density of light energy acting on the laser active substance, making it possible to provide a highly efficient functional optical waveguide medium (fiber).

このような構成の機能性光導波媒体は、例えば高増幅度
の光フアイバ増幅器、あるいは光フアイバレーザとして
用いて好適である。
A functional optical waveguide medium having such a configuration is suitable for use as, for example, a high-amplification optical fiber amplifier or an optical fiber laser.

第1図(a)は、本発明の機能性光ファイバの構造概念
図である。ここでΔn1、Δn2、Δn3は純粋石英に
対する第一コア、第二コア、クラッドのそれぞれの比屈
折率である。また、noは純粋石英の屈折率である。
FIG. 1(a) is a conceptual diagram of the structure of the functional optical fiber of the present invention. Here, Δn1, Δn2, and Δn3 are the respective relative refractive indices of the first core, second core, and cladding with respect to pure quartz. Further, no is the refractive index of pure quartz.

ここに、Δnは、該光ファイバの比屈折率差で、Δn=
Δn2+Δn3   (1) である。
Here, Δn is the relative refractive index difference of the optical fiber, and Δn=
Δn2+Δn3 (1).

また、rl、r2はそれぞれ第1のコア層および第2の
コア層の半径であり、r1/r2は、効率の点から0.
2〜0.4程度が望ましい。
Further, rl and r2 are the radii of the first core layer and the second core layer, respectively, and r1/r2 is 0.
Approximately 2 to 0.4 is desirable.

第1図(b)は、第1図(a)の屈折率分布をやや変形
させたもので、屈折率分布形状がステップ状からやや滑
らかな分布としている。第1図(b)のような分布は、
ファイバ製造工程中におけるドーパントの熱拡散やガラ
ス化工程でのドーパントの蒸発の利用によっても作製で
きるが、精密な分布制御技術を用いても形成できる。
FIG. 1(b) shows a slightly modified version of the refractive index distribution in FIG. 1(a), in which the shape of the refractive index distribution is changed from a step-like shape to a slightly smooth distribution. The distribution as shown in Figure 1(b) is
Although they can be produced by thermal diffusion of dopants during the fiber manufacturing process or by utilizing dopant evaporation during the vitrification process, they can also be formed using precise distribution control techniques.

すなわち、第1図(b)のような分布も基本的に本発明
の光ファイバと同一機能を有することを付記する0本発
明で重要な点は、レーザ活性領域として極めて重要な光
エネルギー密度の高いコア中心部に、ドーパント量を低
く抑えた低損失にして高効率の第1のコア層を設け、フ
ァイバ全体の低損失化とレーザ活性領域(レーザ活性物
質添加領域〉の高効率化を遠戚すると同時に、第2のコ
ア層を設けることによって、該ファイバの実効的開口数
(NA)を大きくし、結果として、第1のコア層のエネ
ルギー密度を著しく向上させ、これにより機能性光ファ
イバの励起効率を大幅に改善した点にある。
In other words, it should be noted that the distribution shown in FIG. 1(b) basically has the same function as the optical fiber of the present invention.An important point in the present invention is that the distribution of light energy density, which is extremely important as a laser active region, has the same function as the optical fiber of the present invention. A low-loss, high-efficiency first core layer with a low dopant content is provided in the center of the high core, which significantly reduces the loss of the entire fiber and increases the efficiency of the laser active region (laser active substance doped region). At the same time, by providing the second core layer, the effective numerical aperture (NA) of the fiber is increased, and as a result, the energy density of the first core layer is significantly improved, thereby making the functional optical fiber The key point is that the excitation efficiency has been significantly improved.

前述のように本発明による機能性光導波媒体の第一のコ
アの純粋石英に対する比屈折率Δn1は0≦Δn1≦0
.5%である。第2図より明らかなように、光エネルギ
密度の高い第一コア層に低損失なガラス材料を適用する
には、散乱損失の増加のほとんどない領域Δn1≦0.
5%が必須であるからである。
As mentioned above, the relative refractive index Δn1 of the first core of the functional optical waveguide medium according to the present invention with respect to pure quartz is 0≦Δn1≦0.
.. It is 5%. As is clear from FIG. 2, in order to apply a low-loss glass material to the first core layer with high optical energy density, the range Δn1≦0 where there is almost no increase in scattering loss is required.
This is because 5% is essential.

また第二のコアの純粋石英に対する比屈折率Δn2は0
.7≦Δn2≦3.5%であることが必要である0本発
明者らは比較的低濃度のEr添加ファイバにおいて極め
て高効率の増幅が可能であることを見いだした。こうし
た光増幅器においては、使用するファイバ長は少なくと
も数十m、長い場合には数百mを要するため、高速の光
信号(例えば数G d / s以上〉を伝送する際には
、Er添加ファイバ自身の分散も無視できなくなる。 
Er添加ファイバ増幅器を使用する波長帯の1.53〜
1.57μm帯で零分散の波長を実現するかまたは極め
て低分散値(0,1ps/人・km以下)実現するため
には単一モード光ファイバの比屈折率差は少なくとも0
.7%以上必要である。
Further, the relative refractive index Δn2 of the second core with respect to pure quartz is 0
.. It is necessary that 7≦Δn2≦3.5%.0 The present inventors have found that extremely high efficiency amplification is possible in a relatively low concentration Er-doped fiber. In such optical amplifiers, the length of the fiber used is at least several tens of meters, or even several hundred meters, so when transmitting high-speed optical signals (e.g. several Gd/s or more), Er-doped fibers are used. You can no longer ignore your own dispersion.
Wavelength range from 1.53 using Er-doped fiber amplifier
In order to achieve a wavelength of zero dispersion in the 1.57 μm band or an extremely low dispersion value (less than 0.1 ps/person-km), the relative refractive index difference of a single mode optical fiber must be at least 0.
.. 7% or more is required.

前述のような第一のコアのホスト材料としては、例えば
純粋石英ガラス(Si02) 、 Al2O3P2O5
−SiO2系の石英ガラスなどを使用することができる
As the host material of the first core as described above, for example, pure silica glass (Si02), Al2O3P2O5
-SiO2-based quartz glass or the like can be used.

上記第一のコアに添加される希土類元素、遷移金属は、
上記Erのほか、他の希土類元素、例えばNd、 Tm
、 Ho、 Yb等およびTi、 Ni、 Cr等の遷
移金属元素の一種以上を例としてあげることができる。
The rare earth elements and transition metals added to the first core are:
In addition to the above Er, other rare earth elements such as Nd, Tm
, Ho, Yb, etc., and one or more transition metal elements such as Ti, Ni, and Cr.

前記第一のコアの添加される物質の濃度Nは、好ましく
は、l〜150ppmである。150pp’mを越える
と、ガラスの散乱損失が以上に増加するばかりでなく、
増幅効率が著しく劣化する恐れがあり、一方lppm未
満であると、最大増幅°をえるに必要なファイバ長は、
lkmを越えてしまう、これは小型のファイバ増幅器を
えるなど、装置構成上の障害になる恐れがあるからであ
る。
The concentration N of the substance added to the first core is preferably 1 to 150 ppm. When it exceeds 150 pp'm, not only the scattering loss of the glass increases, but also
There is a risk that the amplification efficiency will deteriorate significantly, while if it is less than lppm, the fiber length required to obtain the maximum amplification is
This is because there is a risk of problems in the equipment configuration, such as the need for a small fiber amplifier.

また、クラッドのホスツ材料としては例えば、フッ素添
加石英ガラス(F−3i02 )などを有効に使用する
ことができる。
Further, as the host material for the cladding, for example, fluorine-doped silica glass (F-3i02) can be effectively used.

以下、具体的な実施例によって詳細に説明する。Hereinafter, a detailed explanation will be given using specific examples.

(実施例1) 第5図は本発明の第1の実施例の光ファイバの構造図で
ある。1は第1のコア層であって、ガラス材料は5i0
2−Er、 Er添加量90ppmである。
(Embodiment 1) FIG. 5 is a structural diagram of an optical fiber according to a first embodiment of the present invention. 1 is the first core layer, and the glass material is 5i0
2-Er, the amount of Er added is 90 ppm.

間部の屈折率はほぼ純粋石英(Si02)の屈折率に等
しい(Δn x七〇 ) −2は第2のコア層であって
、ガラス材料はGeO2−3i02、GeO2のドブ量
は、16.5mo1%、Δn2=1.6%であった。3
はクラッド層であり、ガラス材料は5i02  F、Δ
n3は、0.6%(純粋石英に対して−0,6%)であ
った。
The refractive index of the interspace is almost equal to the refractive index of pure quartz (Si02) (Δn x 70) -2 is the second core layer, the glass material is GeO2-3i02, and the amount of dots of GeO2 is 16. 5mo1%, Δn2=1.6%. 3
is the cladding layer, and the glass material is 5i02F, Δ
n3 was 0.6% (-0.6% relative to pure quartz).

同ファイバの作製は、以下の手順で行なった。The fiber was manufactured using the following procedure.

まず、VAD法により、直径56mmφの多孔質母材を
作製し、これをErの揮発雰囲気中でガラス化し、直径
20mmφの第1のコア層用のEr添加石英ガラス母材
を得た。これを火炎により、近伸加工後、表面をエツチ
ング処理し、VAD法により第2のコア層としてGeO
2−SiO2多孔質体を外付けし、ガラス化処理を行な
った。得られたガラスロッドを火炎延伸後、該ロッド外
周に、さらに5i02の多孔質体を形成し、これをフッ
素雰囲気中でガラス化し、光フアイバ母材を得た。
First, a porous base material with a diameter of 56 mm was produced by the VAD method, and this was vitrified in an Er volatile atmosphere to obtain an Er-doped quartz glass base material with a diameter of 20 mm for the first core layer. After near-stretching with flame, the surface is etched and GeO2 is formed as a second core layer by VAD method.
A 2-SiO2 porous body was attached externally and vitrification treatment was performed. After flame stretching the obtained glass rod, a 5i02 porous body was further formed on the outer periphery of the rod, and this was vitrified in a fluorine atmosphere to obtain an optical fiber base material.

ここに、フッ素添加クラッドガラスの外付は工程は合計
4図行ない、さらにこの外側に石英ガラス管を被覆し、
外径/コア径=D/r2=56の光フアイバ母材を得た
r1/r2は0.28であった。
Here, the process of externally attaching the fluorine-doped clad glass is done in a total of four steps, and the outside is further covered with a quartz glass tube.
An optical fiber base material having outer diameter/core diameter=D/r2=56 was obtained, and r1/r2 was 0.28.

得られた母材を、高純度カーボンヒータを有する光フア
イバ線引き装置を用いて線引きし、コア径(2r2)2
.23μm、外径125μm、カットオフ波長0.89
μmの単一モード光ファイバを得た。この光ファイバの
損失は、波長1.2μmで、1.2dB/kmであった
The obtained base material was drawn using an optical fiber drawing device equipped with a high-purity carbon heater to obtain a core diameter of (2r2) 2
.. 23μm, outer diameter 125μm, cutoff wavelength 0.89
A μm single mode optical fiber was obtained. The loss of this optical fiber was 1.2 dB/km at a wavelength of 1.2 μm.

該光ファイバの機能性を調べるため、第6図に示すよう
な実験系を槽底し、光フアイバ増幅器による光増幅実験
を行なった。
In order to investigate the functionality of the optical fiber, an experimental system as shown in FIG. 6 was installed at the bottom of the tank, and an optical amplification experiment using an optical fiber amplifier was conducted.

第6図において、5は信号光源(被増幅信号)波長λs
=1.537μmのDFBレーザ、6,6′は波長λp
=1.485μmの励起光源、7.7’、7’。
In FIG. 6, 5 is the signal light source (signal to be amplified) wavelength λs
= 1.537 μm DFB laser, 6, 6' are wavelengths λp
= 1.485 μm excitation light source, 7.7', 7'.

71よレーザの集光レンズ、8はレーザ6.6゛の2つ
の光束を偏波合成するための偏波ビームスプリッタ、9
は信号光源5と励起光源6.6′を合成するためのダイ
クロイックミラー、10.10”は光コネクタ、11.
11″。
71 is a laser condensing lens; 8 is a polarization beam splitter for polarizing the two beams of laser 6.6°; 9
10.10" is a dichroic mirror for combining the signal light source 5 and excitation light source 6.6';11.10" is an optical connector;
11″.

11“、11”は単一モード光ファイバコード、12.
12”は偏波無依存光アイソレータ、13は上記の作製
したEr添加単一モード光ファイバ、14はフィルタ、
15はスペクトラムアナライザである。
11", 11" is a single mode optical fiber cord, 12.
12'' is a polarization-independent optical isolator, 13 is the Er-doped single mode optical fiber prepared above, 14 is a filter,
15 is a spectrum analyzer.

ここに、Er添加ファイバの長さは250mであった。Here, the length of the Er-doped fiber was 250 m.

第6図の実験系を以下の手順で動作させた。まず、信号
光源5を点灯し、レンズ7″、7″およびダイクロイッ
クミラー9を介して、光ファイバ11に入射させた。こ
のときのコネクタ10での出力は、54dBmであった
0次いで、励起光源6,6′を点灯し、偏波ビームスプ
リッタ8、グイクロイックミ5−9、レンズ7.7’、
7”を介して、光ファイバ11に入射した。ここに、励
起光のコネクタ10’での出力は18mWであった。上
記の合成された光をコネクタ10″を介してEr添加光
フアイバ13に入射、この増幅特性をスペクトラムアナ
ライザ15を用いて測定したところ、ネットの増幅度で
43dBが得られた。
The experimental system shown in FIG. 6 was operated according to the following procedure. First, the signal light source 5 was turned on, and the light was made to enter the optical fiber 11 via the lenses 7'', 7'' and the dichroic mirror 9. At this time, the output at the connector 10 was 54 dBm. Next, the excitation light sources 6 and 6' were turned on, and the polarization beam splitter 8, the optical microscope 5-9, the lens 7.7',
The output of the excitation light at the connector 10' was 18 mW.The above combined light was input to the Er-doped optical fiber 13 via the connector 10''. When the incident amplification characteristics were measured using the spectrum analyzer 15, a net amplification degree of 43 dB was obtained.

(比較例1) 比較のため、上記ファイバと同一の比屈折率差(2,2
%)を有するステップ形単一モード光ファイバを作製し
、第6図と同様の実験系で光増幅実験を行なった。ただ
し、ここに作製した光ファイバは、ステップ状分布の光
ファイバのコア内にErが均一に分布しているもので、
ガラス組成は、Ge02−Er−3i02であり、上記
実施例と同一濃度(90ppm)のErを含有している
(Comparative Example 1) For comparison, the same relative refractive index difference (2, 2
%) was fabricated, and an optical amplification experiment was conducted using an experimental system similar to that shown in FIG. However, the optical fiber fabricated here has Er uniformly distributed within the core of the optical fiber with a step-like distribution.
The glass composition is Ge02-Er-3i02 and contains Er at the same concentration (90 ppm) as in the above example.

コア内の0e02の添加濃度は第1の実施例と同じ<1
6mo1%、クラッドガラスは5i02  F系のガラ
スであり、純粋石英に対する比屈折率差は−0,62%
、したがってコアとクラッドの比屈折率差は2.22%
であった。なお、ジャケット層には純粋石英を用いた。
The concentration of 0e02 in the core is the same as in the first example <1
6mo1%, the cladding glass is 5i02F type glass, and the relative refractive index difference with respect to pure quartz is -0.62%
, therefore the relative refractive index difference between the core and cladding is 2.22%
Met. Note that pure quartz was used for the jacket layer.

また、同ファイバのコア径は2.19μm、カットオフ
波長は0.9μmであった。損失は、波長1.2μmで
5.6dB/kmであった。また、ファイバ長は、波長
1.485μmで、実施例と同一の吸収を与える180
mとした。
Further, the core diameter of the same fiber was 2.19 μm, and the cutoff wavelength was 0.9 μm. The loss was 5.6 dB/km at a wavelength of 1.2 μm. In addition, the fiber length is 180 μm, which gives the same absorption as in the example at a wavelength of 1.485 μm.
It was set as m.

上記ファイバの増幅特性の測定結果は、入射励起光量1
8mWで32dBにとどまった。
The measurement results of the amplification characteristics of the above fiber are as follows:
It remained at 32dB at 8mW.

(比較例2) コアのガラス組成を0e02−P2O5−Er−3i0
2、クラッドのガラス組成を5i02−P2O5、Δn
=2.20%、コア全体にドープしたEr;fi度90
ppm、λc=0.89μm1コア径2.2μmのステ
ップ型単一モード光ファイバを作製し、上記と同様の光
増幅実験を行なったところ、Pp=18mW増幅度は2
8dBにとどまった。なお、この光ファイバの波長1.
2μmでの損失は、7.8dB/kmと比較例1に比べ
てさらに太きな値を示した。これはコアのQ◇2添加濃
度が20mo1%と大きくなったことと、この高ドープ
領域がコア全体にわたっていることによるものである。
(Comparative Example 2) The glass composition of the core was 0e02-P2O5-Er-3i0
2. The glass composition of the cladding is 5i02-P2O5, Δn
=2.20%, Er doped throughout the core; fi degree 90
ppm, λc = 0.89 μm A stepped single mode optical fiber with a core diameter of 2.2 μm was fabricated and an optical amplification experiment similar to the above was conducted, and the amplification degree of Pp = 18 mW was 2.
It remained at 8dB. Note that the wavelength of this optical fiber is 1.
The loss at 2 μm was 7.8 dB/km, which was larger than that of Comparative Example 1. This is due to the fact that the Q◇2 doping concentration in the core has increased to 20 mo1% and that this highly doped region covers the entire core.

なお、上記実施例および比較例において、波長1.2μ
mで損失比較をしているのは、この波長近傍ではErの
吸収が伝送損失に与える影響がほとんどないので、導波
構造の効果を含めたガラスの損失を評価できるためであ
る。
In addition, in the above examples and comparative examples, the wavelength is 1.2μ.
The reason why the loss is compared using m is that absorption of Er has almost no effect on transmission loss near this wavelength, so it is possible to evaluate the loss of the glass including the effect of the waveguide structure.

(実施例2) 第1図の構造図において、第1のコア層のガラス組成を
Al2O3−P2O5Er−3i02、第2のコア層の
ガラス組成をGeO2−P2O5−3i02、クラッド
層のガラス組成をF−3i02、ジャケット層のガラス
組成を5io2(純粋石英)、Δn2=2.5%、Δn
1=1.0%、Δn3=0.6%の光ファイバを作製し
た0作製方法は、実施例1とほぼ同様である。ここに、
Δn=Δn2+Δn3=3.1%であった。また、rx
/r2=0.32、λC=0.88μm、コア径=1.
85μmであった。
(Example 2) In the structural diagram of FIG. 1, the glass composition of the first core layer is Al2O3-P2O5Er-3i02, the glass composition of the second core layer is GeO2-P2O5-3i02, and the glass composition of the cladding layer is F. -3i02, the glass composition of the jacket layer is 5io2 (pure quartz), Δn2=2.5%, Δn
The manufacturing method for manufacturing the optical fiber with 1=1.0% and Δn3=0.6% is almost the same as in Example 1. Here,
Δn=Δn2+Δn3=3.1%. Also, rx
/r2=0.32, λC=0.88μm, core diameter=1.
It was 85 μm.

損失は波長1.:2tzmで3.1dB/kmであった
The loss is at wavelength 1. : 3.1 dB/km at 2 tzm.

上記第1のコアガラスのAl2O3添加量は2.6mo
1%、P2O5は2.2mo1%であり、Erの濃度は
55ppmであった。なお、ここにAl2O3の添加量
を4.3mo1%以上(比屈折率差で0゜5%以上)に
すると、ガラス化時に一部結晶が現われ安定なガラスは
得られながった。
The amount of Al2O3 added to the first core glass is 2.6 mo
1%, P2O5 was 2.2mol%, and the concentration of Er was 55ppm. Note that when the amount of Al2O3 added was 4.3 mo1% or more (relative refractive index difference of 0.5% or more), some crystals appeared during vitrification, making it impossible to obtain a stable glass.

上記光ファイバを、第7図に示す光フアイバ増幅系を構
成し、光増幅実験を行なった。第7図において、16は
ファイバ延伸形のWPM(0,98μm/1.537μ
m)光フアイバカップラ、17゜17’、17’は10
”に斜め研磨されたジルコニア製ファイバフェルール、
8″は0.98μm帯用偏波ビームスプリッタである。
The above optical fiber was used to construct an optical fiber amplification system shown in FIG. 7, and an optical amplification experiment was conducted. In FIG. 7, 16 is a fiber-stretched WPM (0.98 μm/1.537 μm
m) Optical fiber coupler, 17°17', 17' is 10
Zirconia fiber ferrule with diagonal polishing
8'' is a polarization beam splitter for the 0.98 μm band.

 Erファイバの長さは全長77mであった。これを動
作するには、第1の実施例と同様に、まず信号光5(λ
s=1.537μm〉をカップラ16を介してErファ
イバ13に入射する。ここに、信号光の端子10’での
出力レベルは、−56dBmであった。
The total length of the Er fiber was 77 m. To operate this, first the signal light 5 (λ
s=1.537 μm> is incident on the Er fiber 13 via the coupler 16. Here, the output level of the signal light at the terminal 10' was -56 dBm.

次いで、励起光源6.6’ (λp=0.98μm)を
点灯し、同様にカップラ16に結合させる。ここに、端
子17から端子10′への波長1.537μmの光の結
合率は97%、端子17から17′への波長0.98.
czmの光の結合率は2%(17’+10’は98%〉
であった、また、カップラの光損失は、0.98.cz
mで0.2dB、1.537μmで、0.25dBであ
った。また、励起光源である波長0.98μmLDのコ
ネクタ10て゛の出力量は、11mWであった。これら
合波された光は、コネクタ10.10’を介してEr添
加光フアイバ13に結合された。増幅された信号は、光
ファイバ11’を介して、光スペクトラムアナライザ1
5および光パワーメータ18に導かれ、増幅度が測定さ
れた。
Next, the excitation light source 6.6' (λp=0.98 μm) is turned on and similarly coupled to the coupler 16. Here, the coupling rate of light with a wavelength of 1.537 μm from terminal 17 to terminal 10' is 97%, and the coupling rate of light with a wavelength of 0.98 μm from terminal 17 to terminal 17' is 97%.
The light coupling rate of czm is 2% (17'+10' is 98%)
The optical loss of the coupler was 0.98. cz
It was 0.2 dB at m, and 0.25 dB at 1.537 μm. Further, the output amount of the connector 10 of the LD having a wavelength of 0.98 μm, which is the excitation light source, was 11 mW. These combined lights were coupled to the Er-doped optical fiber 13 via the connector 10.10'. The amplified signal is sent to the optical spectrum analyzer 1 via the optical fiber 11'.
5 and an optical power meter 18, and the amplification degree was measured.

この結果、ネットの増幅度は励起光量11mWで46d
Bが得られた。
As a result, the net amplification degree was 46d at a pumping light intensity of 11mW.
B was obtained.

(比較例3〉 上記実施例の比較例として、Δn=3.1%、コア径1
.82μmのEr添加光ファイバを作製した。 Erは
コア全体に添加されている。コアのガラス組成は、Ge
O2P2O5−3i02、クラッドガラスの組成は、F
−3i02である。
(Comparative Example 3) As a comparative example of the above example, Δn=3.1%, core diameter 1
.. An 82 μm Er-doped optical fiber was produced. Er is added throughout the core. The glass composition of the core is Ge
O2P2O5-3i02, the composition of the cladding glass is F
-3i02.

得られた光ファイバのコア径は1.85μm、Er濃度
900ppm、λc=0.85μmであった。また、損
失(波長1.2μm〉は、120dB/kmで、実施例
2に比較して極めて大きな値を示した。
The obtained optical fiber had a core diameter of 1.85 μm, an Er concentration of 900 ppm, and λc=0.85 μm. Further, the loss (wavelength: 1.2 μm) was 120 dB/km, which was extremely large compared to Example 2.

また、得られた最大増幅度(励起波長0.98、um、
励起光量11mW)は、22dBにとどまった。
In addition, the maximum amplification obtained (excitation wavelength 0.98, um,
The excitation light amount (11 mW) remained at 22 dB.

このように、実施例2に比較して増幅特徴が劣るのは、
本比較例ではコアの中心領域で、高濃度のGeO2とE
r’+のために散乱損失が著しく増加していること、お
よびErの添加濃度が高すぎた結果クラスターが発生し
、増幅効率が劣化したためと結論できる0本発明者らの
一連の検討の結果、Er濃度が150ppm以下の石英
ガラスでは、クラスターの影響がほとんど現われないこ
とが判明している。一方、Er濃度がlppm以下では
、増幅に必要なファイバ長が数kmにも及ぶため、実用
上不適切であり、機能性光ファイバのEr添加濃度とし
ては1≦Er濃度≦150ppmが適切な値であった。
In this way, the reason why the amplification characteristics are inferior to that of Example 2 is that
In this comparative example, high concentrations of GeO2 and E are present in the central region of the core.
As a result of a series of studies by the inventors, it can be concluded that the scattering loss has increased significantly due to r'+, and that clusters have occurred as a result of the addition concentration of Er being too high, and the amplification efficiency has deteriorated. It has been found that in silica glass with an Er concentration of 150 ppm or less, the influence of clusters hardly appears. On the other hand, if the Er concentration is less than 1 ppm, the fiber length required for amplification will be several kilometers, which is inappropriate for practical use.The appropriate value for the Er doping concentration of functional optical fiber is 1≦Er concentration≦150 ppm. Met.

以上の実施例では、機能性光ファイバの応用例として光
フアイバ増幅器を取り上げ、本発明の詳細な説明したが
、他の応用例、例えば光フアイバレーザなどに応用でき
ることは言うまでもない。
In the above embodiments, the present invention has been described in detail by taking up an optical fiber amplifier as an application example of a functional optical fiber, but it goes without saying that the present invention can be applied to other applications, such as an optical fiber laser.

また、他の希土類元素、例えばNd、 Tm、 Ho、
 Yb等およびTi、 Ni、 Cr等の遷移金属元素
にも適用可能であることを付記する。
In addition, other rare earth elements such as Nd, Tm, Ho,
It should be noted that the present invention is also applicable to Yb, etc., and transition metal elements such as Ti, Ni, and Cr.

なお、第2のコア層のドープ量を比屈折率差に換算して
3.5%以上にした場合、光フアイバ母材に応力による
割れが生じ、ファイバ化が困難となり、本発明の適用領
域として不適切な領域であることが判明した。
Note that if the doping amount of the second core layer is 3.5% or more in terms of relative refractive index difference, cracks will occur in the optical fiber base material due to stress, making it difficult to form a fiber, and this will limit the scope of application of the present invention. It turned out to be an inappropriate area.

さらに、クラッドガラスにF−3i02系ガラスを用い
る利点については、同一のNAの光ファイバを得るに際
し、第2のコア層のドープ量を減少させることができる
ため、光ファイバの損失を低減できる効果がある0例え
ば、GeO2を第2のコア層のドーパントとした場合、
6〜7mo1%GeO2の添加量を減少させる(すなわ
ち、F−3i02の石英に対する比屈折率差−0,6〜
−0,7%に相当する分)ことができる。
Furthermore, the advantage of using F-3i02 glass as the cladding glass is that when obtaining an optical fiber with the same NA, the amount of doping in the second core layer can be reduced, which has the effect of reducing loss in the optical fiber. For example, when GeO2 is used as a dopant in the second core layer,
Decrease the amount of GeO2 added by 6 to 7 mo1% (i.e., the relative refractive index difference of F-3i02 to quartz -0.6 to
-0.7%).

(発明の効果〉 以上説明したように、本発明の機能性光導波媒体(ファ
イバ)によれば、単一モード光ファイバのコア部の構造
を、伝搬光エネルギー密度の最も高いコア中心部の第1
のコアと、これを取り囲む第2のコアとからなるように
構成し、第1のコア層のドーパント(屈折率調整用ドー
パントGeO2、P2O5、Al2O3など、レーザ活
性物質ドーパントEr、 Nd、 Tiなど〉の濃度(
比屈折率差)を低く抑えることにより散乱損失を低減す
ると共にレーザ活性物質の効果を高め、さらに相対的に
伝搬光エネルギー密度の小さな第2のコア層のドープ量
を高めることによりファイバのNAを大きくすると同時
に、第2のコア層にはレーザ活性物質を添加しない構造
としているため、高NAでありながら光ファイバの低損
失を保ちつつ極めて高い光エネルギー密度が得られるば
かりでなく、光エネルギー密度が最も高くなる低損失の
コア中心部においてのみレーザ活性作用を行なわせるこ
とができるため、極めて高効率の機能性導波媒体を提供
できる利点がある。
(Effects of the Invention) As explained above, according to the functional optical waveguide medium (fiber) of the present invention, the structure of the core portion of a single mode optical fiber is 1
and a second core surrounding the core, and dopants in the first core layer (refractive index adjusting dopants such as GeO2, P2O5, Al2O3, laser active material dopants Er, Nd, Ti, etc.) The concentration of (
By keeping the relative refractive index difference low, scattering loss is reduced and the effectiveness of the laser active material is increased.Furthermore, by increasing the doping amount of the second core layer, which has a relatively low propagation light energy density, the fiber NA can be increased. At the same time, since the second core layer has a structure in which no laser active substance is added, it is possible not only to obtain extremely high optical energy density while maintaining low loss of the optical fiber despite the high NA, but also to increase the optical energy density. Since the laser activation action can be performed only in the center of the low-loss core where the loss is highest, there is an advantage that a highly efficient functional waveguide medium can be provided.

特に、本発明を光フアイバ増幅器に適用すれば、高性能
・高増倍率の光増幅器を提供できる利点がある。
In particular, if the present invention is applied to an optical fiber amplifier, there is an advantage that an optical amplifier with high performance and high multiplication factor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の機能性光導波媒体の構造図、第2図は
単一モード光ファイバの散乱損失とGeO2ドープ量(
比屈折率差)との関係図、第3図は従来の機能性光ファ
イバの屈折率分布とその動作原理図、第4図はEr添加
光ファイバのEr添加濃度と過剰損失の関係図、第5図
は本発明の光ファイバの構造例、第6図は本発明の光導
波媒体を応用した1、485μm励起光ファイバ増幅器
の実験系、第7図は本発明の光導波媒体を応用した0、
98μm励起光ファイバ増幅器の実験系である。 1・・・第一のコア層 2・・・第二のコア層 3・・・クラッド層 4・・・ジャケット a・・・コアの屈折率分布 b・・・コア内の光エネルギ密度 q・・・SiO2の屈折率 5・・・信号光源 6.6′・・・励起光源 T、7#、7“ゝ、7#“・・・集光レンズ8・・・偏
波ビームスプリッタ 9・・・ダイクロイックミラー 10、10’・・・光コネクタ 11、11’、 11“、111′・・・単一モード光
ファイバコード 12. 13・ 14・ 15・ 16・ 17. 18・ 12′・・・偏波無依存光アイソレータ・・Er添加単
一モード光ファイバ ・・フィルタ ・・スペクトラムアナライザ ・ ・WPM IT、17“・・・光フアイバフェルール・・光パワー
メータ。
Figure 1 is a structural diagram of the functional optical waveguide medium of the present invention, and Figure 2 shows the scattering loss and GeO2 doping amount (
Figure 3 is a diagram of the refractive index distribution of a conventional functional optical fiber and its operating principle. Figure 4 is a diagram of the relationship between Er doping concentration and excess loss of an Er-doped optical fiber. Figure 5 shows an example of the structure of the optical fiber of the present invention, Figure 6 shows the experimental system of 1 and 485 μm pumped optical fiber amplifiers to which the optical waveguide medium of the present invention is applied, and Figure 7 shows the structure of the optical fiber 0 to which the optical waveguide medium of the present invention is applied. ,
This is an experimental system for a 98 μm pumping optical fiber amplifier. 1... First core layer 2... Second core layer 3... Cladding layer 4... Jacket a... Core refractive index distribution b... Light energy density in core q. ...Refractive index of SiO2 5...Signal light source 6.6'...Excitation light source T, 7#, 7"ゝ, 7#"...Condensing lens 8...Polarization beam splitter 9... - Dichroic mirrors 10, 10'... Optical connectors 11, 11', 11'', 111'... Single mode optical fiber cords 12. 13, 14, 15, 16, 17. 18, 12'... Polarization-independent optical isolator...Er-doped single mode optical fiber...Filter...Spectrum analyzer...WPM IT, 17"...Optical fiber ferrule...Optical power meter.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ遷移を有する希土類元素または遷移金属を
コア部に添加してなると共に、このコア外周に形成され
て当該コアよりも低屈折率のクラッドを備える石英系機
能性光導波媒体であって、上記コアが互いに同心円状に
配置され、当該コアの中心部に位置する第1のコアと、
この外周に形成された第2のコアとからなる二重構造を
成し、前記第1のコアの純粋石英に対する比屈折率差Δ
n1が 0≦Δn1≦0.5% の範囲にあり、前記第2のコアの純粋石英に対する比屈
折率差Δn2が 0.7≦Δn2≦3.5% の範囲にあって、前記希土類元素または遷移金属は、前
記第1のコア部にのみ添加されてなることを特徴とする
機能性光導波媒体。
(1) A silica-based functional optical waveguide medium in which a rare earth element or transition metal having a laser transition is added to the core part, and a cladding formed on the outer periphery of the core and having a refractive index lower than that of the core. , the cores are arranged concentrically with each other, and a first core located at the center of the cores;
A double structure is formed with a second core formed on the outer periphery, and a relative refractive index difference Δ of the first core with respect to pure quartz is formed.
n1 is in the range of 0≦Δn1≦0.5%, the relative refractive index difference Δn2 of the second core with respect to pure quartz is in the range of 0.7≦Δn2≦3.5%, and the rare earth element or A functional optical waveguide medium, wherein a transition metal is added only to the first core portion.
(2)前記第1のコア部に添加された希土類元素又は遷
移元素の添加濃度Nが 1≦N≦150ppm の範囲にあることを特徴とする特許請求の範囲第1項記
載の機能性光導波媒体。
(2) The functional optical waveguide according to claim 1, wherein the concentration N of the rare earth element or transition element added to the first core portion is in the range of 1≦N≦150 ppm. Medium.
JP1267106A 1989-10-13 1989-10-13 Functional optical waveguide medium Expired - Lifetime JP2774963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267106A JP2774963B2 (en) 1989-10-13 1989-10-13 Functional optical waveguide medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267106A JP2774963B2 (en) 1989-10-13 1989-10-13 Functional optical waveguide medium

Publications (2)

Publication Number Publication Date
JPH03127032A true JPH03127032A (en) 1991-05-30
JP2774963B2 JP2774963B2 (en) 1998-07-09

Family

ID=17440149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267106A Expired - Lifetime JP2774963B2 (en) 1989-10-13 1989-10-13 Functional optical waveguide medium

Country Status (1)

Country Link
JP (1) JP2774963B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213388A (en) * 1989-02-14 1990-08-24 Brother Ind Ltd Washer-dryer
JPH03229223A (en) * 1990-02-02 1991-10-11 Furukawa Electric Co Ltd:The Quartz system optical fiber
JPH05129708A (en) * 1991-04-22 1993-05-25 Alcatel Nv Telecommunication system with erbium-doped fiber optical amplifier
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
WO2000051213A1 (en) * 1999-02-26 2000-08-31 Sumitomo Electric Industries, Ltd. Optical fiber for optical amplifying and production method therefor
JP2003008114A (en) * 2001-06-25 2003-01-10 Mitsubishi Cable Ind Ltd Rare-earth element-doped optical fiber
JP2015228468A (en) * 2014-06-02 2015-12-17 キヤノン株式会社 Photoelectric conversion device and imaging system
JP2016171296A (en) * 2015-03-09 2016-09-23 株式会社フジクラ Optical fiber for amplification and optical fiber amplifier using the same
US9698557B2 (en) 2015-03-09 2017-07-04 Fujikura Ltd. Optical fiber for amplification and optical fiber amplifier using the same
WO2020203930A1 (en) * 2019-03-29 2020-10-08 株式会社フジクラ Active element added-optical fiber, resonator, and fiber laser device
JP2021057566A (en) * 2019-03-29 2021-04-08 株式会社フジクラ Optical fiber added with active element, resonator and fiber laser device
JP2021155284A (en) * 2020-03-27 2021-10-07 株式会社フジクラ Optical fiber preform, method for manufacturing the same and method for manufacturing optical fiber
EP3952037A4 (en) * 2019-03-29 2022-12-28 Fujikura Ltd. Active element-added optical fiber, resonator, and fiber laser device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213388A (en) * 1989-02-14 1990-08-24 Brother Ind Ltd Washer-dryer
JPH03229223A (en) * 1990-02-02 1991-10-11 Furukawa Electric Co Ltd:The Quartz system optical fiber
JP2749686B2 (en) * 1990-02-02 1998-05-13 古河電気工業株式会社 Silica optical fiber
JPH05129708A (en) * 1991-04-22 1993-05-25 Alcatel Nv Telecommunication system with erbium-doped fiber optical amplifier
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
WO2000051213A1 (en) * 1999-02-26 2000-08-31 Sumitomo Electric Industries, Ltd. Optical fiber for optical amplifying and production method therefor
US6687439B1 (en) 1999-02-26 2004-02-03 Sumitomo Electric Industries, Ltd. Light-amplifying optical fiber and method of making the same
JP2003008114A (en) * 2001-06-25 2003-01-10 Mitsubishi Cable Ind Ltd Rare-earth element-doped optical fiber
JP2015228468A (en) * 2014-06-02 2015-12-17 キヤノン株式会社 Photoelectric conversion device and imaging system
JP2016171296A (en) * 2015-03-09 2016-09-23 株式会社フジクラ Optical fiber for amplification and optical fiber amplifier using the same
US9698557B2 (en) 2015-03-09 2017-07-04 Fujikura Ltd. Optical fiber for amplification and optical fiber amplifier using the same
WO2020203930A1 (en) * 2019-03-29 2020-10-08 株式会社フジクラ Active element added-optical fiber, resonator, and fiber laser device
JP2021057566A (en) * 2019-03-29 2021-04-08 株式会社フジクラ Optical fiber added with active element, resonator and fiber laser device
CN113474952A (en) * 2019-03-29 2021-10-01 株式会社藤仓 Active element-added optical fiber, resonator, and fiber laser device
EP3952037A4 (en) * 2019-03-29 2022-12-28 Fujikura Ltd. Active element-added optical fiber, resonator, and fiber laser device
EP3952036A4 (en) * 2019-03-29 2022-12-28 Fujikura Ltd. Active element added-optical fiber, resonator, and fiber laser device
CN113474952B (en) * 2019-03-29 2024-08-13 株式会社藤仓 Active element-added optical fiber, resonator, and fiber laser device
JP2021155284A (en) * 2020-03-27 2021-10-07 株式会社フジクラ Optical fiber preform, method for manufacturing the same and method for manufacturing optical fiber

Also Published As

Publication number Publication date
JP2774963B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
CN102439805B (en) The filter fiber and manufacturing technology thereof that use in application is launched at raman laser
US7835608B2 (en) Method and apparatus for optical delivery fiber having cladding with absorbing regions
JP5899084B2 (en) Polarization-maintaining mode-locked fiber laser oscillator
US7570856B1 (en) Apparatus and method for an erbium-doped fiber for high peak-power applications
JP2005513562A (en) Raman amplification using microstructured fibers
US6577440B2 (en) Optical fiber for optical amplifier and fiber optic amplifier
JPH03127032A (en) Functional optical waveguide medium
JP2004250251A (en) Fluorescent glass, waveguide for optical amplification and optical amplification module
JP2753539B2 (en) Optical fiber amplifier
JP3006474B2 (en) Multi-core fiber, optical amplifier using the same, and device using the amplifier
Lange et al. High gain coefficient phosphate glass fiber amplifier
Jeong et al. Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers
JP2019535118A (en) ND3 + fiber laser and amplifier
Aleshkina et al. Spectrally selective optical loss in fibers with high-index rods embedded into silica cladding
JPH10242556A (en) Er-doped optical fiber amplifier for wavelength multiplex transmission
JP3078050B2 (en) Optical functional glass
Simonneau et al. High-power air-clad photonic crystal fiber cladding-pumped EDFA for WDM applications in the C-band
JP2744805B2 (en) Functional optical waveguide medium
JP3001675B2 (en) Fiber amplifier and waveguide element amplifier
JPS63220586A (en) Nd-doped fiber laser system
Nemova et al. Dual-Wavelength Bi-Doped Fiber Laser Based on Cascaded Cavities
Jiang Erbium-doped phosphate fiber amplifiers
JPH03287236A (en) Optical fiber component
Dawson et al. Nd 3+ fiber laser and amplifier
Zhang et al. 7-Core Erbium-Ytterbium Co-dopped Microstructured Fiber Amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12