JPH03126296A - Lightweight conductive composite molding - Google Patents

Lightweight conductive composite molding

Info

Publication number
JPH03126296A
JPH03126296A JP1263809A JP26380989A JPH03126296A JP H03126296 A JPH03126296 A JP H03126296A JP 1263809 A JP1263809 A JP 1263809A JP 26380989 A JP26380989 A JP 26380989A JP H03126296 A JPH03126296 A JP H03126296A
Authority
JP
Japan
Prior art keywords
resin
carbon
graphite intercalation
graphite
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1263809A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugiura
勉 杉浦
Maki Sato
真樹 佐藤
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP1263809A priority Critical patent/JPH03126296A/en
Publication of JPH03126296A publication Critical patent/JPH03126296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a lightweight, improved conductivity, and enhanced friction property by blending a carbon particle and a fiber-shaped graphite interlayer compound into a thermoset resin and by orientating the fiber-shaped graphite interlayer compound into the thermoset resin in a constant direction. CONSTITUTION:A fiber-shaped graphite interlayer compound 1 is blended in a constant direction along the longer direction within a thermoset resin 3 where carbon particles 2 are scattered and blended uniformly. Conductivity in this direction is large since it is in the same direction as the fiber of the graphite interlayer compound. The amount of blend of the graphite interlayer compound is 1-70 pts.wt., preferably 30-50 pts.wt., the amount of blend of the carbon particle is 1-30 pts.wt., preferably 3-20 pts.wt., and the remainder is a thermoset resin, thus totaling 100 pts.wt. Since the carbon particles are scattered in resin, no conductivity of the molding can be lost even if no contact occurs between the orientated fibers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マトリクスとなる熱硬化性樹脂と繊維状の黒
鉛層間化合物を組合せた導電性複合成形体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a conductive composite molded article that combines a thermosetting resin as a matrix and a fibrous graphite intercalation compound.

本発明の軽量導電性複合成形体は、金属に比べて軽量で
、かつ従来の導電性樹脂に比べて高強度かつ導電性が高
いことから、モーターブラシ、電磁波シールド材料、導
電性フンバウンド等、これまでに導電性樹脂組成物が用
いられている、あるいは将来用いられることが期待され
ている分野にて利用されるものである。
The lightweight conductive composite molded article of the present invention is lighter than metal, and has higher strength and conductivity than conventional conductive resins, so it can be used in motor brushes, electromagnetic shielding materials, conductive humpbacks, etc. It is used in fields where conductive resin compositions have been used or are expected to be used in the future.

従来の技術 従来、樹脂にカーボンブラックまたは粉末黒鉛を配合す
ることにより、樹脂に導電性を付与することが知られて
いる。これらの導電性樹脂または導電性ゴムは、高圧ケ
ーブルの導電性材料、発熱体等の導電性材料、IC等の
電磁遮蔽材、ビデオディスク用導電材料、包装材や建築
材等の帯電防止材、導電性印刷インク、導電性塗料、導
電性接着剤、入力用鍵盤、スイッチ、圧力センサーなど
として広く使用されている。
BACKGROUND ART Conventionally, it has been known to impart electrical conductivity to a resin by adding carbon black or powdered graphite to the resin. These conductive resins or conductive rubbers can be used as conductive materials for high-voltage cables, conductive materials for heating elements, electromagnetic shielding materials for ICs, conductive materials for video discs, antistatic materials for packaging materials, construction materials, etc. It is widely used as conductive printing ink, conductive paint, conductive adhesive, input keyboards, switches, pressure sensors, etc.

導電性樹脂または導電性ゴムに配合する導電性付与物質
としてのカーボンブラックは1通常、アセチレンブラッ
ク、副生カーボンブラック、あるいは導電性ファーネス
ブラックが用いられている。ところが、これらのカーボ
ンブラックを樹脂やゴムに配合して、充分なる導電性を
付与するためには、相当量のカーボンブラックを配合し
なければならない0例えばポリエチレンの体積固有抵抗
を104Ω・cm以下にするには、ポリエチレン100
重量部に対してケッチエンブラックEC(ライオンアク
ゾ社製、副生カーボンブラック)を15重量部以上、配
合することが必要とされている(特公昭83−5146
7号公報)。
Carbon black as a conductivity imparting substance to be blended into a conductive resin or conductive rubber is usually acetylene black, by-product carbon black, or conductive furnace black. However, in order to blend these carbon blacks into resins and rubbers to impart sufficient electrical conductivity, a considerable amount of carbon black must be blended. To do this, use polyethylene 100
It is required to blend 15 parts by weight or more of Ketchen Black EC (manufactured by Lion Akzo, by-product carbon black) to parts by weight (Japanese Patent Publication No. 83-5146).
Publication No. 7).

また、従来より、炭素Ja維をプラスチックに配合した
炭素繊維強化プラスチック(Carbon Fiber
Reinforced Plastic、 CFRP)
が知られており、軽量かつ高強度の機械部品、構造材料
等に用いられている。しかしながら、この炭素繊維強化
プラスチックにおいては1強度、耐衝撃性等の機械的物
性こそ優れているものの、電気伝導性は前述の導電性プ
ラスチックに比べてはるかに劣り、はとんどが絶縁体で
ある。これは、従来用いられている炭素繊維強化プラス
チックの樹脂が、導電性を有しないこと、および用いら
れる炭素繊維の導電性が低いことに起因する。
In addition, carbon fiber reinforced plastics (Carbon Fiber Reinforced Plastics), which are made by blending carbon Ja fibers into plastics
Reinforced Plastic, CFRP)
is known and is used in lightweight and high-strength mechanical parts, structural materials, etc. However, although this carbon fiber reinforced plastic has excellent mechanical properties such as strength and impact resistance, its electrical conductivity is far inferior to that of the conductive plastics mentioned above, and it is mostly an insulator. be. This is due to the fact that conventionally used carbon fiber reinforced plastic resins do not have electrical conductivity, and the carbon fibers used have low electrical conductivity.

即ち、a!l状のフィラーを樹脂に配合させた場合、樹
脂が絶縁性であるために、繊維同志の電気的接触が不良
となり、これを導電体として用いることは困難であった
。また、フィラーの電気抵抗も1炭素m維で200〜数
1000pΩC1mと金属に比べて大きく、導電性付与
体としては不適である。
That is, a! When an L-shaped filler is blended into a resin, since the resin is insulating, electrical contact between the fibers becomes poor, making it difficult to use this as a conductor. Further, the electrical resistance of the filler is 200 to several thousand pΩC1m per carbon m fiber, which is larger than that of metal, and is therefore unsuitable as a conductive material.

従って、これまで炭素慮維強化プラスチックに導電性付
与体、あるいはそれ以上の導電性を付与することは出来
ず、これにより炭素#a維強化プラスチックの用途はも
っばらその機械的特性を利用したものに限定されていた
Therefore, until now, it has not been possible to impart conductivity or even higher conductivity to carbon fiber-reinforced plastics, and as a result, carbon fiber-reinforced plastics are mainly used to utilize their mechanical properties. was limited to.

また、黒鉛層間化合物を複合導電材料として用いた例が
いくつか報告されている(例えば米国特許441414
2、特開昭84−85144号公報、特開平1−101
372号公報、米国特許4799957等)、シかし。
In addition, some examples of using graphite intercalation compounds as composite conductive materials have been reported (for example, U.S. Patent No. 441,414
2. JP-A-84-85144, JP-A-1-101
No. 372, U.S. Pat. No. 4,799,957, etc.), Shikashi.

これらにおいては、黒鉛層間化合物を複合材のフィラー
として用いているものの、樹脂中での配向を制御したり
、導電性粉末を分散させて、マトリクスの導電性、摩擦
特性を制御するなどの試みは行われておらず、また、フ
ィラー形状が粉末であるために多量の配合が必要である
など、実用に供するには問題があった。
In these studies, graphite intercalation compounds are used as fillers in composite materials, but there have been no attempts to control the conductivity and frictional properties of the matrix by controlling the orientation in the resin or dispersing conductive powder. However, since the filler is in the form of a powder, a large amount of the filler must be added, which poses problems for practical use.

発明が解決しようとする課題 本発明の目的は、m綾状の黒鉛層間化合物を用いて、従
来の材料に優り、軽量かつ高い導電性、優れた摩擦特性
を付与した軽量導電性樹脂成形体を提供することにある
Problems to be Solved by the Invention The purpose of the present invention is to provide a lightweight conductive resin molded body using a m-shaped graphite intercalation compound, which is lighter, has higher conductivity, and has superior frictional properties than conventional materials. It is about providing.

課題を解決するための手段 本発明は、熱硬化性樹脂中に炭素粒子及び繊維状の黒鉛
層間化合物を配合し、且つ熱硬化性樹脂中に繊維状の黒
鉛層間化合物を一定方向に配向してなる軽量導電性複合
成形体である。
Means for Solving the Problems The present invention comprises blending carbon particles and a fibrous graphite intercalation compound in a thermosetting resin, and orienting the fibrous graphite intercalation compound in a certain direction in the thermosetting resin. It is a lightweight conductive composite molded body.

すなわち本発明では、炭素繊維をホストとし、これまで
に黒鉛層間化合物を生成することが知られている各種の
化合物をゲストとして反応することにより得られる繊維
状の黒鉛層間化合物を、たとえばカーボンブラック、黒
鉛などの炭素粒子を配合した熱硬化性樹脂中に導電性付
与体として配合することを特徴とするものである。
That is, in the present invention, a fibrous graphite intercalation compound obtained by using carbon fiber as a host and reacting various compounds known to produce a graphite intercalation compound as a guest, for example, carbon black, It is characterized by being blended as a conductivity imparter into a thermosetting resin blended with carbon particles such as graphite.

本発明の成形体における黒鉛層間化合物の配合量は1〜
70重量部、好ましくは30〜50重量部、炭素粒子の
配合量は1〜30重量部、好ましくは3〜20重量部で
、残部が熱硬化性樹脂であり、全体を100重量部とす
る。
The blending amount of the graphite intercalation compound in the molded article of the present invention is 1 to 1.
The amount of carbon particles is 1 to 30 parts by weight, preferably 3 to 20 parts by weight, and the remainder is a thermosetting resin, making the total 100 parts by weight.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明においては、炭素m維を原料とした繊維状の黒鉛
層Flff化合物を、導電性付与体として用いている。
In the present invention, a fibrous graphite layer Flff compound made from carbon fibers is used as the conductivity imparting body.

この場合のm綾状とは、繊維径に対する繊維長の比が1
00以上であることをさすものとするが、樹脂中に一定
方向に配向させるためには、その長さが1cm以上であ
ることが望ましい。
In this case, m-twilled means that the ratio of fiber length to fiber diameter is 1.
00 or more, but in order to orient it in a certain direction in the resin, it is desirable that the length is 1 cm or more.

繊維状の黒鉛層間化合物とは、炭素繊維の黒鉛層間に各
種の化合物を挿入することにより得られる。挿入する化
合物としては、これまでに黒鉛層間化合物を生成するこ
とが知られているものであれば金属、金属ハロゲン化物
、ハロゲン、有機物等を問わず何でも良い、これは、い
かなる化合物が黒鉛に挿入された場合でも、黒鉛へ正電
荷あるいは負電荷が移動して、これが黒鉛層面の伝導電
荷(黒鉛へ正電荷が移動した場合には正孔、負電荷が移
動した場合には電子)の増大をもたらすためである。た
だし、大部分の黒鉛層間化合物は大気中での安定性に問
題があり、分解が進行するため、挿入する化合物として
は、これまでに大気中で高い安定性を示すことが知られ
ている金属塩化物、金属フッ化物が望ましい。
A fibrous graphite intercalation compound is obtained by inserting various compounds between graphite layers of carbon fiber. The compound to be inserted may be any compound known to produce graphite intercalation compounds, including metals, metal halides, halogens, organic substances, etc. This means that any compound can be inserted into graphite. Even in the case where a positive charge or a negative charge moves to the graphite, this causes an increase in the conduction charge on the graphite layer surface (holes when a positive charge moves to graphite, electrons when a negative charge moves). It is to bring about. However, most graphite intercalation compounds have stability problems in the atmosphere and decomposition progresses, so as compounds to be inserted, metals that are known to have high stability in the atmosphere are recommended. Chlorides and metal fluorides are preferred.

また、用いる炭素繊維としては、ピッチ系炭素繊維、気
相成長炭素繊維など、これまでに黒鉛層間化合物を生成
することが知られているものであれば良く、PAN系炭
素uIi維などの黒鉛層間化合物を生成しない炭素繊維
は原料として用いることは多くの場合困難であるが、黒
鉛構造が高度に発達したものは、使用可能である。
In addition, the carbon fibers to be used may be those that are known to produce graphite interlayer compounds, such as pitch-based carbon fibers and vapor-grown carbon fibers, and graphite interlayer compounds such as PAN-based carbon uIi fibers. Carbon fibers that do not generate compounds are difficult to use as raw materials in many cases, but carbon fibers with highly developed graphite structures can be used.

用いる樹脂としてはフェノール樹脂、エポキシ樹脂など
従来知られている熱硬化性樹脂で良いが、炭素粒子や繊
維状黒鉛層間化合物を配合する際、取扱性の点から流動
状、たとえば液状、分散状等であることが望ましい、樹
脂が液状でないとき、溶剤や分散媒を用いて流動状態に
することができる。
The resin to be used may be conventionally known thermosetting resins such as phenol resins and epoxy resins, but when blending carbon particles and fibrous graphite intercalation compounds, it is necessary to use fluidized resins such as liquid, dispersed, etc. for ease of handling. When the resin is not in a liquid state, it can be made into a fluid state using a solvent or a dispersion medium.

本発明で用いる炭素粒子とは、カーボンブラック、粉末
黒鉛、膨張黒鉛などの炭素質の粒子より選ばれた一種類
または二種類以上の粉末粒子である。この炭素粒子を樹
脂に配合する際の配合条件、配合量は、用いる樹脂およ
び炭素粒子の種類により決定されるが、樹脂中のram
状黒鉛層間化合物同志の接触抵抗を小さくするために、
マトリクスを構成する炭素粒子を配合した熱硬化性樹脂
の電気抵抗を低くしておくことが望ましい。
The carbon particles used in the present invention are one or more types of powder particles selected from carbonaceous particles such as carbon black, powdered graphite, and expanded graphite. The blending conditions and blending amount when blending these carbon particles into a resin are determined by the type of resin and carbon particles used, but the ram in the resin
In order to reduce the contact resistance between graphite intercalation compounds,
It is desirable to keep the electrical resistance of the thermosetting resin blended with carbon particles constituting the matrix low.

次に、本発明の導電性複合成形体を製造するには、上記
、炭素m#Iを原料とする繊維状の黒鉛層間化合物と、
炭素粒子を含む硬化前の熱硬化性樹脂より、いわゆるプ
リプレグと呼ばれる前駆体をまず製造する方法が好適で
ある。このプリプレグの製造例を以下に詳細に説明する
Next, in order to produce the conductive composite molded body of the present invention, the above-mentioned fibrous graphite intercalation compound made from carbon m#I as a raw material,
A preferred method is to first produce a precursor called a prepreg from a thermosetting resin containing carbon particles before curing. An example of manufacturing this prepreg will be described in detail below.

まず、硬化前の液状の熱硬化性樹脂を容器中で攪拌しな
がら、炭素粒子を少量づつ添加する。添加が終わった後
も、炭素粒子が樹脂中に均一に分散するよう、30分か
ら1時間程度攪拌を継続する1次に、この導電性樹脂を
分散させた液状の熱硬化性樹脂に、m雄状黒鉛層間化合
物を浸す。
First, while stirring the liquid thermosetting resin before hardening in a container, carbon particles are added little by little. After the addition is finished, stirring is continued for about 30 minutes to 1 hour so that the carbon particles are uniformly dispersed in the resin. Soak graphite intercalation compound.

この際の方法としては、連続繊維の場合であれば、例え
ば、一方で解いた繊維を容器中の液状樹脂に含浸させた
後、もう一方で巻取りを行う連続含浸装置を用いてプリ
プレグ繊維を得ることができる。また、am状の黒鉛層
間化合物が比較的短かい繊維である場合は、これを液状
樹脂に浸した後引き上げ、離型紙で、過剰の樹脂を押し
絞った後に一定方向にそろえることにより、プリプレグ
繊維を得る。
In the case of continuous fibers, for example, prepreg fibers can be made using a continuous impregnation device that impregnates the unraveled fibers in liquid resin in a container on one side, and then winds them up on the other side. Obtainable. In addition, if the am-like graphite intercalation compound is a relatively short fiber, it can be soaked in liquid resin and then pulled up, and after squeezing out the excess resin with release paper, the prepreg fibers can be aligned in a certain direction. get.

このプリプレグ繊維を、プレス成型により、繊維状の黒
鉛層間化合物が成形体の一方向に配向した導電性樹脂成
形体とする。このプレス成型の方法、条件は、使用する
熱硬化性樹脂、炭素粒子粉末の種類および配合割合等に
より決定されるが、多くの場合に、プレスの前段階で、
プレス成型用金型のプレス面と同じ離型紙の型紙状に、
前述のプリプレグ繊維を一方向に配向させて敷つめたも
のを加熱して部分的に硬化させた後、金型に積層させて
、プレス成型する方法が有効である。こうして製造され
た導電性複合成形体は、導電性樹脂中に繊維状の黒鉛層
間化合物が一方向に配向した構造を有している。
This prepreg fiber is press-molded into a conductive resin molded body in which the fibrous graphite intercalation compound is oriented in one direction of the molded body. The method and conditions for this press molding are determined by the thermosetting resin used, the type and blending ratio of carbon particle powder, etc., but in many cases, in the pre-pressing stage,
On the same pattern of release paper as the press surface of the press mold,
An effective method is to heat the aforementioned prepreg fibers oriented in one direction and partially cure them, then laminate them in a mold and press mold them. The conductive composite molded article manufactured in this manner has a structure in which fibrous graphite intercalation compounds are oriented in one direction in a conductive resin.

作用 本発明により得られた複合成形体は、その長さ方向に高
い導電性を示す、その概念図を第1図に示す8図の成形
体中には!a線維状黒鉛層間化合物lが、炭素粒子2を
均一に分散配合した熱硬化性樹脂3の中に、長さ方向に
沿って一定方向に配合されている。この方向の導電性は
、黒鉛層間化合物の繊維方向と同一であるため大きくな
っている。
Function: The composite molded body obtained by the present invention exhibits high electrical conductivity in the longitudinal direction, and the conceptual diagram of the molded body shown in FIG. (a) A fibrous graphite intercalation compound 1 is blended in a constant direction along the length direction in a thermosetting resin 3 in which carbon particles 2 are uniformly dispersed and blended. The conductivity in this direction is high because it is the same as the fiber direction of the graphite intercalation compound.

また、従来、繊維状のフィラーを樹脂に配合させた場合
、樹脂が絶縁性であるために、繊維同志の電気的接触が
不良となり、これを導電性として用いることは困難であ
った。これに対して本発明では、樹脂に炭素粒子を分散
させていることから、配向した繊維同志の接触が起こら
ない場合でも、成形体の導電性は損われない。
Furthermore, conventionally, when a fibrous filler is blended into a resin, since the resin is insulating, electrical contact between the fibers becomes poor, making it difficult to use the filler as a conductive material. In contrast, in the present invention, since carbon particles are dispersed in the resin, the conductivity of the molded body is not impaired even when oriented fibers do not come into contact with each other.

実施例 実施例1 ピッチ系炭素繊維に無水塩化第二銅を挿入することによ
り合成した繊維状の黒鉛層間化合物を長さ50■に切り
そろえ、カーボンブラックを分散させたフェノール樹脂
中に配向配合させて導電性複合成形体を得た。
Examples Example 1 A fibrous graphite intercalation compound synthesized by inserting anhydrous cupric chloride into a pitch-based carbon fiber was cut to a length of 50 cm, and oriented and blended into a phenol resin in which carbon black was dispersed. A conductive composite molded body was obtained.

ピッチ系炭素m維はAmoco社製P 120を、無水
塩化第二銅は和光純薬製の特級試薬を、カーボンブラッ
クはライオンアクゾ社製ケッチエンブラックECを、フ
ェノール樹脂は旭有機材製RM3000を用いた。成形
体中の組成は、mta状の黒鉛層間化合物が40重量部
、フェノール樹脂が54重量部、カーボンブラックが6
重量部であった。以下に製造法を詳細に記す。
The pitch-based carbon fiber was P 120 manufactured by Amoco, the anhydrous cupric chloride was a special grade reagent manufactured by Wako Pure Chemical Industries, the carbon black was Ketchen Black EC manufactured by Lion Akzo, and the phenol resin was RM3000 manufactured by Asahi Yokuzai. Using. The composition of the molded body is 40 parts by weight of mta-like graphite intercalation compound, 54 parts by weight of phenol resin, and 6 parts by weight of carbon black.
Parts by weight. The manufacturing method will be described in detail below.

■ カーボンブラックを分散させた液状フェノール樹脂
の準備 フェノール樹脂RM3000を200g量り取り、金属
ビーカー中で攪拌されている200gの1wt%水醜化
ナトリウム水溶液中に注ぎ、全量注ぎ込んだ後も、その
まま30分間攪拌を継続した0次に、攪拌を続けながら
、この溶液中にカーボンブラックを15gを加えた後、
そのまま30分間攪拌を継続する。
■ Preparation of liquid phenolic resin in which carbon black is dispersed Weigh 200g of phenolic resin RM3000 and pour it into 200g of 1wt% water oxidizing sodium aqueous solution being stirred in a metal beaker.After pouring the entire amount, continue to stir for 30 minutes. Next, while continuing to stir, 15g of carbon black was added to this solution,
Continue stirring for 30 minutes.

■ 繊維状黒鉛層間化合物の合成 塩化第二銅とピッチ系炭素m維により黒鉛層間化合物を
合成する。mtaは長さ5cmに切りそろえたものを用
いた1合成は、従来の方法(炭素、No。
■ Synthesis of fibrous graphite intercalation compound A graphite intercalation compound is synthesized using cupric chloride and pitch-based carbon fibers. 1 Synthesis using mta cut to a length of 5 cm was performed using a conventional method (carbon, No.

135 、267[1988])に従い、反応後はエタ
ノールで洗?%L120℃、12時間乾燥させた。生成
物の組成がC12CLIC12の繊維状黒鉛層間化合物
を得た。
135, 267 [1988]), wash with ethanol after the reaction. %L 120°C for 12 hours. A fibrous graphite intercalation compound having a product composition of C12CLIC12 was obtained.

■ bステージプリプレグの作成 ■のカーボンブラックを分散させた液状フェノール樹脂
に、■の黒鉛層間化合物を浸した後に離型紙上に置き、
この上から離型紙を一定方向にそろえて置き上から手で
押さえて、離型紙で、過剰の樹脂を押し絞ることにより
プリプレグ繊維を得た。このプリプレグm雄を、離型紙
に多数描かれたプレス面と同型の枠へm!lを一定方向
に薄く敷き詰める。このm型紙ごと120℃の恒温槽に
4分間入れて取り出す、こうして室温で固体状態のbス
テージプリプレグが得られた。
■ Creation of b-stage prepreg After soaking the graphite intercalation compound (■) in the liquid phenol resin in which carbon black is dispersed (■), place it on release paper.
A prepreg fiber was obtained by placing release paper aligned in a certain direction on top of this, pressing it down with your hands, and squeezing out excess resin with the release paper. Place this male prepreg m into a frame of the same type as the press surface drawn on the release paper. Spread l thinly in a certain direction. This M-pattern paper was placed in a constant temperature bath at 120° C. for 4 minutes and then taken out, thereby obtaining a b-stage prepreg that was in a solid state at room temperature.

■ ホットプレス成型 ■で得られたbステージプリプレグをプレス金型の型枠
に積層させ、プレス成型する。この場合の条件として金
型を120℃に加熱後、プレス圧力20〜50kg/c
m2に保って160℃まで昇温、そのまま30分間保っ
た。こうして製造された導電性複合成形体は、導電性樹
脂中に繊維状の黒鉛層間化合物が一方向に配向した構造
を持っていた。
■ Hot press molding The b-stage prepreg obtained in ■ is laminated on the formwork of a press mold and press molded. The conditions in this case are that after heating the mold to 120°C, press pressure is 20 to 50 kg/c.
The temperature was raised to 160° C. and kept at that temperature for 30 minutes. The conductive composite molded article thus produced had a structure in which fibrous graphite intercalation compounds were oriented in one direction in the conductive resin.

得られた、導電性複合成形体を、切断、研磨し、測定し
たところ、密度が1.70g/c塵2、長さ方向の電気
抵抗が400g量cmであった。
The obtained conductive composite molded body was cut, polished, and measured, and the density was 1.70 g/c dust 2 and the electric resistance in the longitudinal direction was 400 g/cm.

実施例2 ピッチ系炭素繊維に無水塩化第二銅を挿入することによ
り合成した繊維状の黒鉛層間化合物を長さ5c篇に切り
そろえ、カーボンブラックおよび粉末黒鉛を分散させた
フェノール樹脂中に配向配合させて導電性複合成形体を
得た。
Example 2 A fibrous graphite intercalation compound synthesized by inserting anhydrous cupric chloride into pitch-based carbon fibers was cut into lengths of 5 cm, and oriented and blended into a phenol resin in which carbon black and powdered graphite were dispersed. A conductive composite molded body was obtained.

ピッチ系炭素m維はAyaoco社製P 120を、無
水塩化第二銅は和光純薬製の特級試薬を、カーボンブラ
ックはライオンアクゾ社製ケッチエンブラックECを、
粉末黒鉛はLonza社製KS15を、フェノール樹脂
は旭有機材製RM3000を用いた。製造法は、実施例
1に準じた。ただし、用いたカーボンブラックの門をl
Ogとじ、黒鉛粉末の量を30gとした。成形体中の組
成は、繊維状の黒鉛層間化合物が40重量部、フェノー
ル樹脂が47重量部、カーボンブラックが3重量部、粉
末黒鉛が10重量部であった。
The pitch-based carbon fiber was P 120 manufactured by Ayaoco, the anhydrous cupric chloride was a special grade reagent manufactured by Wako Pure Chemical Industries, and the carbon black was Ketchen Black EC manufactured by Lion Akzo.
KS15 manufactured by Lonza was used as the powdered graphite, and RM3000 manufactured by Asahi Yukizai was used as the phenolic resin. The manufacturing method was the same as in Example 1. However, the carbon black gate used
The amount of graphite powder was 30 g. The composition of the molded body was 40 parts by weight of fibrous graphite intercalation compound, 47 parts by weight of phenol resin, 3 parts by weight of carbon black, and 10 parts by weight of powdered graphite.

得られた。導電性複合成形体を、切断、研磨し、測定し
たところ、密度が1.74g/Cm2.長さ方向の電気
抵抗が2801LΩcmであった。
Obtained. When the conductive composite molded body was cut, polished, and measured, the density was found to be 1.74 g/Cm2. The electrical resistance in the length direction was 2801 LΩcm.

実施例3 ピッチ系炭素繊維に無水塩化第二銅を挿入することによ
り合成した繊維状の黒鉛層間化合物を長さ5C厘に切り
そろえ、粉末黒鉛を分散させたフェノール樹脂中に配向
配合させて導電性複合成形体を得た。
Example 3 A fibrous graphite intercalation compound synthesized by inserting anhydrous cupric chloride into pitch-based carbon fibers was cut to a length of 5C, and oriented and blended into a phenol resin in which powdered graphite was dispersed to make it conductive. A composite molded body was obtained.

ピッチ系炭素繊維はAmoco社製P 120を、無水
塩化第二銅は和光純薬製の特級試薬を、粉末黒鉛はLa
nza社製KS社製全S15ノール樹脂は旭有機材製R
M 3000を用いた。製造法は、実施例1に準じた。
The pitch-based carbon fiber was P 120 manufactured by Amoco, the anhydrous cupric chloride was a special grade reagent manufactured by Wako Pure Chemical Industries, and the powdered graphite was La.
All S15 kol resins manufactured by NZA and KS are R manufactured by Asahi Yukizai.
M3000 was used. The manufacturing method was the same as in Example 1.

ただし、黒鉛粉末の量を40gとした。成形体中の組成
は、am状の黒鉛層間化合物が40重量部、フェノール
樹脂が47重量部、粉末黒鉛が13重置部であった・ 得られた、導電性複合成形体を、切断、研磨し、測定し
たところ、密度が1.70 g / am2.長さ方向
の電気抵抗が380ルΩCmlであった。
However, the amount of graphite powder was 40 g. The composition of the molded body was 40 parts by weight of am-shaped graphite intercalation compound, 47 parts by weight of phenolic resin, and 13 parts by weight of powdered graphite.The obtained conductive composite molded body was cut and polished. However, when measured, the density was 1.70 g/am2. The electrical resistance in the longitudinal direction was 380 ΩCml.

実施例4 ピッチ系炭素繊維に無水塩化ニッケルを挿入することに
より合成した繊維状の黒鉛層間化合物を長さ5cmに切
りそろえ、カーボンブラックおよび粉末黒鉛を分散させ
たフェノール樹脂中に配向配合させて導電性複合成形体
を得た。
Example 4 A fibrous graphite intercalation compound synthesized by inserting anhydrous nickel chloride into pitch-based carbon fibers was cut to a length of 5 cm, and oriented and blended into a phenol resin in which carbon black and powdered graphite were dispersed to make it conductive. A composite molded body was obtained.

ピッチ系炭素繊維はAmoco社製P120を、無水塩
化ニッケルは和光紬薬製の特轟試薬を、カーボンブラッ
クはライオンアクゾ社製ケッチエンブラックECを、粉
末黒鉛はLonza社製KS社製全S15ノール樹脂は
旭有機材製RM3000を用いた。製造法は、実施例1
に準じた。ただし、用いたカーボンブラックの量を10
gとし、黒鉛粉末の量を30gとした。また、黒鉛層間
化合物の合成は従来法に準じ、生成した黒鉛層間化合物
の組成はC、uN i 01□であった1、成形体中の
組成は、繊維状の黒鉛居間化合物が40重量部、フェノ
ール樹脂が47重量部、カーボンブラックが3重量部、
粉末黒鉛が10重量部であった。
The pitch-based carbon fiber was P120 manufactured by Amoco, the anhydrous nickel chloride was Tokudo Reagent manufactured by Wako Tsumugi, the carbon black was Ketchen Black EC manufactured by Lion Akzo, and the powdered graphite was All S15 Nord manufactured by Lonza KS. As the resin, RM3000 manufactured by Asahi Yukizai was used. The manufacturing method is Example 1
According to. However, the amount of carbon black used was
g, and the amount of graphite powder was 30 g. In addition, the graphite intercalation compound was synthesized according to the conventional method, and the composition of the graphite intercalation compound produced was C, uN i 01 □1, and the composition in the molded body was 40 parts by weight of the fibrous graphite living compound, 47 parts by weight of phenolic resin, 3 parts by weight of carbon black,
Powdered graphite was 10 parts by weight.

得られた、導電性複合成形体を、切断、研磨し、測定し
たところ、密度が1.65g / cm2.長さ方向の
電気抵抗が420 LLΩcmであった。
The resulting conductive composite molded body was cut, polished, and measured, and the density was found to be 1.65 g/cm2. The electrical resistance in the longitudinal direction was 420 LLΩcm.

比較例1 ピッチ系炭素繊維に無水塩化第二銅を挿入することによ
り合成した繊維状の黒鉛層間化合物を長さ50層に切り
そろえ、フェノール樹脂中に混練、配合させてプレス成
型を行うことにより複合成形体を得た。
Comparative Example 1 A fibrous graphite intercalation compound synthesized by inserting anhydrous cupric chloride into pitch-based carbon fibers was cut into 50 layers, kneaded and blended into a phenol resin, and press-molded to create a composite. A molded body was obtained.

ビー7チ系炭素繊維はAmoco社製P120を、無水
塩化第二銅は和光紬薬製の特級試薬を、フェノール樹脂
は旭有機材製RM3000を用いた。混線はロールミル
にて行った。黒鉛層間化合物の合成は従来法に準じ、生
成した黒鉛層間化合物の組成はCI2 CuC22であ
った。成形体中組成は、黒鉛層間化合物が40重量部、
フェノール樹脂が60重量部であった。
The Beech carbon fiber used was P120 manufactured by Amoco, the anhydrous cupric chloride used a special grade reagent manufactured by Wako Tsumugi, and the phenol resin used RM3000 manufactured by Asahi Yokuzai. Crosstalk was done using a roll mill. The graphite intercalation compound was synthesized according to a conventional method, and the composition of the graphite intercalation compound produced was CI2 CuC22. The composition of the molded body is 40 parts by weight of graphite intercalation compound,
The phenolic resin was 60 parts by weight.

得られた、複合成形体を、切断、研磨し、長さ方向の電
気抵抗を測定したところ、107ΩC膳であった・ 本比較例1から、導電性の固体粒子を配合することなく
、また、m雄状の黒鉛層間化合物を一定方向に配向させ
ることを行わない場合には、成形体の導電性はきわめて
悪いことがわかる。これは、比較例1の場合に樹脂中に
導電性を改善する炭素粒子が存在しないため黒鉛層間化
合物同志の電気的接触が起こりにくくなっていることに
よると考えられる。
The obtained composite molded body was cut and polished, and the electric resistance in the longitudinal direction was measured, and it was found to be 107 ΩC. From this comparative example 1, without blending conductive solid particles, and It can be seen that when the m-male graphite intercalation compound is not oriented in a certain direction, the conductivity of the molded body is extremely poor. This is considered to be because, in the case of Comparative Example 1, there are no carbon particles that improve conductivity in the resin, making it difficult for the graphite intercalation compounds to make electrical contact with each other.

比較例2 粉末黒鉛に無水塩化第二銅を挿入することにより合成し
た粉末状の黒鉛層間化合物を、フェノール樹脂中に混練
、配合させてプレス成型を行うことにより複合成形体を
得た。
Comparative Example 2 A powdered graphite intercalation compound synthesized by inserting anhydrous cupric chloride into powdered graphite was kneaded and blended into a phenol resin and press-molded to obtain a composite molded body.

粉末黒鉛はL)nza社製を、無水塩化第二銅は和光紬
薬製の特級試薬を、フェノール樹脂は旭有機材製RM3
(100を用いた。混練はロールミルにて行った。黒鉛
層間化合物の合成は従来法に準じ、生成した黒鉛層間化
合物の組成はC11CuC之2であった。r&形体中の
組成は、粉末の黒鉛層間化合物が40重量部、フェノー
ル樹脂が80重量部であった。
Powdered graphite was made by L) NZA, anhydrous cupric chloride was a special grade reagent made by Wako Tsumugi, and phenol resin was made by Asahi Yokuzai RM3.
(100 was used. Kneading was performed in a roll mill. The graphite intercalation compound was synthesized according to the conventional method, and the composition of the graphite intercalation compound produced was C11CuC2. The composition in the r& shape was powdered graphite. The intercalation compound was 40 parts by weight, and the phenol resin was 80 parts by weight.

得られた。複合成形体を、切断、研磨し、長さ方向の電
気抵抗を測定したところ、107ΩC11であった・ 本比較例2から、繊維状の黒鉛層間化合物を用いること
なく粉末の黒鉛層間化合物を用いる場合には、成形体の
導電性はきわめて悪いことがわかる。これは、比較例2
の場合に樹脂中で粉末の黒鉛層間化合物同志の電気的接
触がきわめて起こりにくくなっていることによると考え
られる。
Obtained. When the composite molded body was cut and polished and the electrical resistance in the longitudinal direction was measured, it was 107ΩC11. From this comparative example 2, when using a powdered graphite intercalation compound without using a fibrous graphite intercalation compound It can be seen that the conductivity of the molded body is extremely poor. This is Comparative Example 2
This is thought to be due to the fact that electrical contact between the powdered graphite intercalation compounds in the resin becomes extremely difficult to occur in this case.

発明の効果 本発明の成形体は、金属に比べて軽量で、かつ従来の導
電性樹脂に比べて導電性が高いことから、モーターブラ
シ、電磁波シールド材料4導電性フンパウンド等への応
用が期待される。
Effects of the Invention The molded product of the present invention is lighter than metal and has higher conductivity than conventional conductive resins, so it is expected to be applied to motor brushes, electromagnetic shielding material 4 conductive powder, etc. be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電性複合成形体を透視した場合の概念図であ
る。 1 ・繊維状の黒鉛層間化合物、 2・ ・ φ炭 素粒子、 3・−・熱硬化性樹脂。
FIG. 1 is a conceptual diagram when the conductive composite molded body is seen through. 1. Fibrous graphite intercalation compound, 2. φ carbon particles, 3. --Thermosetting resin.

Claims (1)

【特許請求の範囲】[Claims]  熱硬化性樹脂中に炭素粒子及び繊維状の黒鉛層間化合
物を配合し、且つ熱硬化性樹脂中に繊維状の黒鉛層間化
合物を一定方向に配向してなる軽量導電性複合成形体。
A lightweight conductive composite molded article, which is formed by blending carbon particles and a fibrous graphite intercalation compound in a thermosetting resin, and orienting the fibrous graphite intercalation compound in a certain direction in the thermosetting resin.
JP1263809A 1989-10-12 1989-10-12 Lightweight conductive composite molding Pending JPH03126296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263809A JPH03126296A (en) 1989-10-12 1989-10-12 Lightweight conductive composite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263809A JPH03126296A (en) 1989-10-12 1989-10-12 Lightweight conductive composite molding

Publications (1)

Publication Number Publication Date
JPH03126296A true JPH03126296A (en) 1991-05-29

Family

ID=17394543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263809A Pending JPH03126296A (en) 1989-10-12 1989-10-12 Lightweight conductive composite molding

Country Status (1)

Country Link
JP (1) JPH03126296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546182A1 (en) * 1991-05-28 1993-06-16 Osaka Gas Co., Ltd. Method for absorbing electromagnetic wave
JPH05155610A (en) * 1991-11-29 1993-06-22 Mitsubishi Pencil Co Ltd Carbon material for electrode and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546182A1 (en) * 1991-05-28 1993-06-16 Osaka Gas Co., Ltd. Method for absorbing electromagnetic wave
EP0546182A4 (en) * 1991-05-28 1995-01-11 Osaka Gas Co Ltd
JPH05155610A (en) * 1991-11-29 1993-06-22 Mitsubishi Pencil Co Ltd Carbon material for electrode and its production

Similar Documents

Publication Publication Date Title
Ganguly et al. Polymer nanocomposites for electromagnetic interference shielding: a review
Chen et al. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding
Singh et al. Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites
KR101329974B1 (en) A resin composition for EMI shielding, comprising carbon hydride composite
CN104650498B (en) A kind of Graphene/polymer composite conductive thin film material and preparation method thereof
Singh et al. Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application
US6024900A (en) Process for production of a carbon composite material
KR101256792B1 (en) Electroconductive curable resins
Singh et al. Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites
Gao et al. Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method
US5300553A (en) Method of producing electrically conductive composite
CN101286375A (en) Conductive compound material and method for making same
KR100642622B1 (en) Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity
Kormakov et al. The electrical conductive behaviours of polymer-based three-phase composites prepared by spatial confining forced network assembly
Verma et al. High electromagnetic interference shielding of poly (ether-sulfone)/multi-walled carbon nanotube nanocomposites fabricated by an eco-friendly route
KR101754745B1 (en) Fiber reinforced thermoplastic resin composites including filler and method for preparing the same
KR20010072414A (en) Electrically conductive layer material
CN106084760A (en) A kind of nylon 6/ thermal expansion graphite conducting composite material and preparation method thereof
JPH03126296A (en) Lightweight conductive composite molding
CN102604186A (en) High-tenacity conducting nanocomposite material and preparation method thereof
Srivastava et al. Study of electrical properties of polystyrene/foliated graphite composite
JPH0578182A (en) Production of porous carbon formed product and electrode material
KR101863210B1 (en) Conductive carbon paper using pitch-based carbon fiber and manufacturing method thereof
CN103122091A (en) Conductive nanometer composite material and preparation method thereof
JP5939543B2 (en) Method for producing porous carbon material