JPH031260B2 - - Google Patents

Info

Publication number
JPH031260B2
JPH031260B2 JP60147139A JP14713985A JPH031260B2 JP H031260 B2 JPH031260 B2 JP H031260B2 JP 60147139 A JP60147139 A JP 60147139A JP 14713985 A JP14713985 A JP 14713985A JP H031260 B2 JPH031260 B2 JP H031260B2
Authority
JP
Japan
Prior art keywords
parts
weight
manufacturing
kneaded
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60147139A
Other languages
Japanese (ja)
Other versions
JPS627659A (en
Inventor
Makoto Fujii
Tetsuo Kogure
Tetsunori Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa Industry Co Ltd
Original Assignee
Meiwa Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa Industry Co Ltd filed Critical Meiwa Industry Co Ltd
Priority to JP60147139A priority Critical patent/JPS627659A/en
Publication of JPS627659A publication Critical patent/JPS627659A/en
Publication of JPH031260B2 publication Critical patent/JPH031260B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明はセラミツクス・コイルばねの製造法に
係り、特に高温下でのばね特性に優れ、また高硬
度、耐摩耗性、耐蝕性、非磁化性などに優れたセ
ラミツクス・コイルばねを有利に製造する方法に
関するものである。 (背景技術・解決課題) 従来から、コイルばね(スプリング)は、それ
自身の弾性の利用を主目的とした機械要素とし
て、各種の機械、装置或いは機構に用いられてき
ており、今日においては、日常家庭用品や工業用
品、更にはその他の分野において、必要不可欠の
部品となつている。 ところで、そのような従来からのコイルばね
は、金属材料にて製造されているものであるとこ
ろから、熱に弱く、高温の使用環境下において充
分なばね特性を発揮し得ない問題を内在している
のであり、たとえ熱に強い金属、特に熱に強いと
されている耐熱合金から得られるものであつて
も、400℃以上の環境下において使用される場合
にあつては、ヘタリ現象が惹起されて、最早その
優れたばね特性を発現し得なくなるのである。 加えて、従来からのコイルばねは金属製である
が故に、錆が発生しやすく、また耐摩耗性にも劣
るものであり、更には磁場の影響を受けて磁化さ
れ易く、そのような環境下における使用に制限を
受ける等といつた問題があつた。 (解決手段) かかる状況下、本発明者等は、耐熱性、耐摩耗
性、耐蝕性等に優れたセラミツクス材料からコイ
ルばねを製造する技術について、種々検討を重ね
た結果、かかるセラミツクス材料からなるコイル
ばねの有利な製造手法を見い出し、本発明を完成
するに至つたのである。 すなわち、本発明は、高温下においても優れた
ばね特性を有すると共に、高硬度、耐摩耗性、耐
蝕性、非磁化性等の優れた特徴を有するセラミツ
クス製コイルばねを、効果的に製造し得る手法を
提供するものであつて、その特徴とするところ
は、セラミツクス粉末原料100重量部あたり、1
〜10重量部のメチルセルロース、1〜10重量部の
界面活性剤及び1〜15重量部の多価アルコールを
加え、更に適量の水を加えて均一に混練せしめ、
粘土様の混練物を調製した後、かかる混練物を所
定のノズルから押し出して、線状素材を形成せし
め、更にその後かかる線状素材を、コイル状に巻
線加工した状態下において、所定の焼成を行なう
ようにしたことにある。 このように、本発明にあつては、コイルばねの
基材となるセラミツクス粉末原料に対して、所定
量のメチルセルロース、界面活性剤、多価アルコ
ールを加えて、水と共に混練せしめて、押出成形
用の混練物を調製することにより、ばね素材とし
ての線状素材の押出成形を有利に行ない、そして
コイル形状への成形加工を容易ならしめ、以て目
的とするコイルばねの製造を有利に行ない得るよ
うにしたのである。 ここにおいて、本発明でばね基材として用いら
れるセラミツクス粉末原料としては、焼成によつ
て、目的とする強度、靭性を与える公知のセラミ
ツクスが適宜に選択されることとなるが、一般に
高強度、高靭性のセラミツクスコイルばねを与え
るZrO2−Y2O3系等の部分安定化ジルコニア磁器
材料、90〜98%のAl2O3を含むアルミナ磁器材
料、更にはZrO2−Y2O3−Al2O3系磁器材料など
が好適に用いられることとなる。なお、ジルコニ
ア、ジルコニア−アルミナ系の材料にあつては、
特に高強度、高靭性の物性をコイルばねに与え、
またアルミナ材料は、原料がジルコニアに比べて
安価であること、コイルばねに作りやすいこと、
強度などが比較的強いことなどの特徴を有してい
る。 そして、このようなセラミツクス粉末原料に対
して、本発明にあつては、その100重量部あたり、
1〜10重量部のメチルセルロース、1〜10重量部
の界面活性剤及び1〜15重量部の多価アルコール
が配合せしめられることとなる。なおこれら配合
成分の中で、メチルセルロースは、粘結剤として
機能するものであり、その配合量が余りにも少な
いと、得られる混練物がもろくなつて、押出成形
やコイル状への加工が困難となる。また、その配
合量が余りにも多くなると、ノズルからの押出成
形が困難となるなどの問題を発生せしめる。それ
故、かかるメチルセルロースの配合量としては、
1〜10重量部、好ましくは3〜7重量部の割合が
用いられることとなる。 また、第二、第三の配合成分たる界面活性剤及
び多価アルコールは、共に可塑剤として機能する
ものではあるが、その単独では充分な効果を奏し
得ず、それらの併用によつて優れた効果を発揮す
るものである。そして、それらの配合によつて、
押出成形して得られた線状素材に有効な柔軟性を
与え、後の巻線加工、換言すればコイル形状への
成形加工を可能と為すものである。 ところで、かかる界面活性剤としては、ノニオ
ン系、アニオン系、カチオン系等の各種の界面活
性剤を用いることができるが、一般に、アルキル
ポリオキシエチレンエーテル、アルキルカルボニ
ルオキシポリオキシエチレン、アルキルフエニル
ポリオキシエチレンエーテル、脂肪酸多価アルコ
ールエステル、脂肪酸多価アルコールポリオキシ
エチレン、脂肪酸シヨ糖エステル等のノニオン系
界面活性剤が用いられ、特にポリオキシエチレン
脂肪酸エステルが好適に用いられることとなる。
また、多価アルコールとしては、エチレングリコ
ール、プロピレングリコール、グリセリン等があ
るが、特に本発明にあつては、グリセリンが好適
に用いられるものである。 そして、かかる界面活性剤は、その配合量が余
りにも少ないと混練物の粘性が高くなり、押出が
困難となる問題を惹起し、またその配合量が余り
にも多過ぎると、混練物の粘結性が低下するよう
になるところから、1〜10重量部、好ましくは3
〜7重量部の範囲において配合せしめられること
となる。また、多価アルコールにあつても、その
配合量が少な過ぎると、押出成形された線状素材
の柔軟性が悪化する問題を惹起し、又、多過ぎる
と、押し出された線状素材の乾燥が困難となり、
その乾燥操作を面倒にするところから、1〜15重
量部、好ましくは5〜10重量部の範囲において配
合せしめられる。 さらに、上記の如きメチルセルロース、界面活
性剤、多価アルコールとともに、必要に応じて、
ステアリン酸エマルジヨンの如き潤滑剤や他の助
剤が配合せしめられることとなる。なお、潤滑剤
の配合は、セラミツクス粉末の混練物の押出操作
を有利に行なわしめるものであり、良好な線状素
材を得る上において、その配合は好ましいもので
ある。 また、これら配合成分と共に、適量の水がセラ
ミツクス粉末原料に加えられ、そして均一に混練
せしめられて、押出成形に適した粘土様の混練物
が調製されるのである。なお、水の添加量は、押
出成形することのできる混練物を与えるように、
適宜の割合において設定されることとなるが、一
般に、針入度が8から14の値となる粘度を有する
ような混練物とされることとなる。 そして、このように調製された混練物は、目的
とするコイルばねの線経を与えるノズル孔を有す
るノズルから押し出され、所定の線状素材が連続
的に形成せしめられることとなる。 そして、更に、かかる押出成形された線状素材
は、所定の水分率まで乾燥せしめられた後、コイ
ル形状を付与するために芯材等の回りに通常の手
法に従つて巻線加工せしめられ、更にその状態下
において、それぞれのセラミツクス粉末原料に従
う焼成操作、一般には仮焼成と本焼成が施され、
以て目的とするセラミツクス・コイルばねが形成
せしめられるのである。 (発明の結果) かくの如き本発明手法によれば、高温下におい
てもヘタリが少なく、優れたばね特性を示すと共
に、高硬度、耐摩耗性、耐蝕性、更には非磁化性
等の優れた特徴を有するセラミツクス製コイルば
ねが有利に製造され得ることとなり、その工業的
な製造に大きく寄与せしめ得たのであつて、そこ
に、本発明の顕著な工業的意義が存するものであ
る。 (実施例) 以下に、本発明を更に具体的に明らかにするた
めに、本発明の実施例を示すが、本発明がそのよ
うな実施例の記載によつて何等の制約をも受ける
ものでないことは言うまでもないところであり、
また本発明が、それら実施例の他にも、本発明の
趣旨を逸脱しない限りにおいて、当業者の知識に
基づき種々なる変更、修正、改良等を加えた形態
において実施され得るものであることが、理解さ
れるべきである。なお、実施例中の部は、重量基
準にて示されるものである。 実施例 1 3モル%のY2O3を含む部分安定化ジルコニア
100部、メチルセルロース3部、ポリオキシエチ
レン脂肪酸エステル3部、グリセリン10部および
ステアリン酸エマルジヨン3部を、適量の水とと
もに、ニーダーにて均一な粘土状になるまで混練
した。得られた混練物の針入度(針度計:日本碍
子株式会社製硬度計)は10であつた。次いで、こ
の混練を終えた粘土状の混練物を真空土練機に通
し、その後、真空押出機のノズル(ノズル穴:3
mmφ)から押し出すことにより、丸紐状の線状素
材を押出成形した。 次いで、この押し出された紐状の線状素材を所
定の長さに切断した後、水分率が3%以下となる
まで低温乾燥せしめた。更にその後、所定の芯棒
の周りに螺旋状に巻きつけ、従来と同様の焼成操
作に従つて、匣鉢内において、300℃/h以下の
昇温速度、常圧下において、1300℃〜1350℃で仮
焼した後、芯棒を取り外し、更に1450℃〜1500℃
の温度で本焼成を行なうことにより、目的とする
セラミツクス・コイルばね(素線径:1.8mm、巻
数:10.8、重量:14.2g、密度:6.00)を得た。 かくして得られたセラミツクス・コイルばねの
ばね定数(k)を測定したところ、k=0.0488で
あり、よつてG=8300Kgf/mm2となつた。また、
密着時の剪断応力(τ)は13.51Kg/mm2であつ
た。 実施例 2 98%のAl2O3を含むアルミナ粉末100部、メチ
ルセルロース7部、ポリオキシエチレンノニルフ
エニルエーテル6部、グリセリン6部、及びステ
アリン酸エマルジヨン6部を、適量の水の存在下
において、ニーダーにて均一に混練せしめ、針入
度(日本碍子株式会社製硬度計)が10である粘土
状の混練物を得た。 次いで、この均一な混練物を用いて、実施例1
と同様にして押出成形し、丸紐状の線状素材を作
製し、その後所定の乾燥を施した。そして、この
乾燥された線状素材を用いて、これをコイル状に
巻線加工した後、仮焼成(1300℃〜1350℃)、本
焼成(1550℃〜1600℃)を行なうことにより、高
温下でのヘタリ率の小さな、従つて、高温下でも
優れたばね特性を発揮し得るアルミナセラミツク
ス・コイルばねを得た。 実施例 3 部分安定化ジルコニア100部に対して、ポリオ
キシエチレン脂肪酸エステル5部、グリセリン5
部及びステアリン酸エマルジヨン5部を加え、更
に下記第1表に示される割合のメチルセルロース
を加えて、適量の水と共に、ニーダーにて均一に
混練した後、実施例1と同様にして、真空押出機
のノズルから丸紐状の線状素材を押出成形し、更
に低温乾燥を施した後、コイル状に巻線加工し
て、仮焼成し、続いて本焼成を行なつた。結果を
下記第1表に示す。
(Technical field) The present invention relates to a method for manufacturing ceramic coil springs, and particularly relates to a method for manufacturing ceramic coil springs, which has excellent spring properties particularly under high temperatures, and also has excellent hardness, wear resistance, corrosion resistance, non-magnetization, etc. Advantageously, it relates to a method of manufacturing. (Background technology/problems to be solved) Coil springs have traditionally been used in various machines, devices, and mechanisms as mechanical elements whose main purpose is to utilize their own elasticity. It has become an indispensable component in everyday household goods, industrial goods, and other fields. However, since such conventional coil springs are manufactured from metal materials, they are susceptible to heat and have the inherent problem of not being able to exhibit sufficient spring characteristics in high-temperature usage environments. Even if the material is made from a heat-resistant metal, especially a heat-resistant alloy that is considered to be heat-resistant, if it is used in an environment of 400 degrees Celsius or higher, the phenomenon of fatigue will occur. As a result, it is no longer able to exhibit its excellent spring characteristics. In addition, because conventional coil springs are made of metal, they are prone to rust and have poor wear resistance.Furthermore, they are easily magnetized by the influence of magnetic fields, and cannot be used in such environments. There were problems such as restrictions on its use. (Solution) Under such circumstances, the inventors of the present invention have conducted various studies on the technology for manufacturing coil springs from ceramic materials that have excellent heat resistance, wear resistance, corrosion resistance, etc., and have developed a coil spring made from such ceramic materials. They discovered an advantageous manufacturing method for coil springs and completed the present invention. That is, the present invention provides a method for effectively manufacturing a ceramic coil spring that has excellent spring properties even under high temperatures, and has excellent characteristics such as high hardness, wear resistance, corrosion resistance, and non-magnetization. It is characterized by the fact that 100 parts by weight of ceramic powder raw material
Add ~10 parts by weight of methylcellulose, 1 to 10 parts by weight of a surfactant, and 1 to 15 parts by weight of polyhydric alcohol, and further add an appropriate amount of water to homogeneously knead.
After preparing a clay-like kneaded material, the kneaded material is extruded through a predetermined nozzle to form a wire-like material, and then the wire-like material is wound into a coil and subjected to a predetermined firing process. The reason is that we decided to do this. As described above, in the present invention, a predetermined amount of methyl cellulose, a surfactant, and a polyhydric alcohol are added to the ceramic powder raw material that is the base material of the coil spring, and the mixture is kneaded with water to form a material for extrusion molding. By preparing a kneaded product, it is possible to advantageously extrude a wire material as a spring material, and facilitate the forming process into a coil shape, thereby advantageously manufacturing the intended coil spring. That's what I did. Here, as the ceramic powder raw material used as the spring base material in the present invention, known ceramics that provide the desired strength and toughness through firing are appropriately selected, but generally high strength and high Partially stabilized zirconia porcelain materials such as the ZrO 2 −Y 2 O 3 series, which give tough ceramic coil springs, alumina porcelain materials containing 90-98% Al 2 O 3 and even ZrO 2 −Y 2 O 3 −Al 2 O 3 based porcelain materials are preferably used. For zirconia and zirconia-alumina materials,
In particular, we provide coil springs with physical properties such as high strength and high toughness.
In addition, alumina materials are cheaper raw materials than zirconia, and are easier to make into coil springs.
It has characteristics such as relatively high strength. In the present invention, per 100 parts by weight of such ceramic powder raw materials,
1 to 10 parts by weight of methylcellulose, 1 to 10 parts by weight of a surfactant, and 1 to 15 parts by weight of polyhydric alcohol will be blended. Among these ingredients, methylcellulose functions as a binder, and if its amount is too small, the resulting kneaded product will become brittle and difficult to extrude or process into a coil shape. Become. Moreover, if the amount of the compound is too large, problems such as difficulty in extrusion molding through a nozzle occur. Therefore, the blending amount of methylcellulose is as follows:
A proportion of 1 to 10 parts by weight, preferably 3 to 7 parts by weight will be used. In addition, although both the surfactant and polyhydric alcohol, which are the second and third ingredients, function as plasticizers, they do not have sufficient effects when used alone, and their combination provides excellent results. It is effective. And depending on their combination,
This provides effective flexibility to the linear material obtained by extrusion molding, making it possible to perform later winding processing, in other words, forming into a coil shape. By the way, various surfactants such as nonionic, anionic, and cationic surfactants can be used as such surfactants, but generally, alkyl polyoxyethylene ether, alkyl carbonyloxy polyoxyethylene, alkyl phenyl poly Nonionic surfactants such as oxyethylene ether, fatty acid polyhydric alcohol ester, fatty acid polyhydric alcohol polyoxyethylene, and fatty acid sucrose ester are used, and polyoxyethylene fatty acid ester is particularly preferably used.
Furthermore, examples of polyhydric alcohols include ethylene glycol, propylene glycol, and glycerin, but glycerin is particularly preferably used in the present invention. If the amount of such surfactant is too small, the viscosity of the kneaded product becomes high, causing problems such as difficulty in extrusion. 1 to 10 parts by weight, preferably 3
It will be blended in a range of 7 parts by weight. In addition, when using polyhydric alcohol, if the amount is too small, the flexibility of the extruded linear material will deteriorate, and if it is too large, the extruded linear material will dry out. becomes difficult,
Since the drying operation becomes troublesome, it is added in an amount of 1 to 15 parts by weight, preferably 5 to 10 parts by weight. Furthermore, along with methylcellulose, surfactant, and polyhydric alcohol as described above, if necessary,
Lubricants such as stearic acid emulsions and other auxiliaries will be included. The blending of the lubricant makes the extrusion operation of the kneaded ceramic powder advantageous, and the blending is preferable in obtaining a good linear material. In addition, along with these ingredients, an appropriate amount of water is added to the ceramic powder raw material, and the mixture is uniformly kneaded to prepare a clay-like kneaded material suitable for extrusion molding. The amount of water added is set so as to give a kneaded material that can be extruded.
It will be set at an appropriate ratio, but generally the kneaded material will have a viscosity with a penetration value of 8 to 14. The kneaded material thus prepared is extruded from a nozzle having a nozzle hole that provides the desired wire diameter of the coil spring, and a predetermined linear material is continuously formed. Further, the extruded linear material is dried to a predetermined moisture content, and then wound around a core material etc. according to a normal method in order to give it a coil shape. Furthermore, under these conditions, firing operations are performed according to each ceramic powder raw material, generally preliminary firing and main firing,
Thus, the desired ceramic coil spring is formed. (Results of the Invention) According to the method of the present invention, it exhibits excellent spring characteristics with little set-up even under high temperatures, and also has excellent characteristics such as high hardness, wear resistance, corrosion resistance, and non-magnetization. It has become possible to advantageously manufacture a ceramic coil spring having the following characteristics, and it has greatly contributed to its industrial manufacture, and this is where the significant industrial significance of the present invention resides. (Example) In order to clarify the present invention more specifically, Examples of the present invention are shown below, but the present invention is not limited in any way by the description of such Examples. Needless to say,
Furthermore, in addition to these embodiments, the present invention may be implemented in forms with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. , should be understood. Note that parts in the examples are expressed on a weight basis. Example 1 Partially stabilized zirconia containing 3 mol% Y 2 O 3
100 parts of methylcellulose, 3 parts of polyoxyethylene fatty acid ester, 10 parts of glycerin, and 3 parts of stearic acid emulsion were kneaded together with an appropriate amount of water in a kneader until a uniform clay-like state was obtained. The obtained kneaded material had a penetration degree (needle meter: hardness meter manufactured by Nippon Insulators Co., Ltd.) of 10. Next, the clay-like kneaded material that has been kneaded is passed through a vacuum clay kneader, and then passed through a nozzle (nozzle hole: 3) of a vacuum extruder.
mmφ), a round string-like linear material was extruded. Next, this extruded string-like linear material was cut into a predetermined length, and then dried at a low temperature until the moisture content became 3% or less. Furthermore, it is wound spirally around a predetermined core rod, and according to the same firing operation as before, it is heated in a sagger at a heating rate of 300°C/h or less and under normal pressure to 1300°C to 1350°C. After calcining at 1450℃~1500℃, remove the core rod.
The desired ceramic coil spring (wire diameter: 1.8 mm, number of turns: 10.8, weight: 14.2 g, density: 6.00) was obtained by performing main firing at a temperature of . When the spring constant (k) of the ceramic coil spring thus obtained was measured, it was found that k=0.0488, and thus G=8300 Kgf/mm 2 . Also,
The shear stress (τ) during close contact was 13.51 Kg/mm 2 . Example 2 100 parts of alumina powder containing 98% Al2O3 , 7 parts of methyl cellulose, 6 parts of polyoxyethylene nonyl phenyl ether, 6 parts of glycerin, and 6 parts of stearic acid emulsion are added in the presence of an appropriate amount of water. The mixture was uniformly kneaded in a kneader to obtain a clay-like kneaded material having a penetration degree (hardness meter manufactured by Nippon Insulator Co., Ltd.) of 10. Next, using this uniform kneaded material, Example 1
Extrusion molding was carried out in the same manner as above to produce a circular cord-like linear material, and then a predetermined drying process was performed. Then, using this dried wire material, after winding it into a coil shape, it is subjected to preliminary firing (1300℃~1350℃) and main firing (1550℃~1600℃) under high temperature. We have obtained an alumina ceramic coil spring that has a small settling rate and can therefore exhibit excellent spring characteristics even at high temperatures. Example 3 For 100 parts of partially stabilized zirconia, 5 parts of polyoxyethylene fatty acid ester, 5 parts of glycerin
1 part and 5 parts of stearic acid emulsion, and further added methyl cellulose in the proportions shown in Table 1 below, and kneaded the mixture uniformly in a kneader with an appropriate amount of water. A round string-shaped wire material was extruded from a nozzle, dried at a low temperature, wound into a coil, pre-fired, and then main-fired. The results are shown in Table 1 below.

【表】 実施例 4 部分安定化ジルコニア100部に対して、メチル
セルロース5部、グリセリン5部及びステアリン
酸エマルジヨン5部を加え、更に下記第2表に示
される割合のポリオキシエチレン脂肪酸エステル
を加えて、適量の水と共に、ニーダーにて均一に
混練した後、実施例1と同様にして、真空押出機
のノズルから丸紐状の線状素材を押出成形し、更
に低温乾燥を施した後、コイル状に巻線加工し
て、仮焼成し、続いて本焼成を行なつた。結果を
下記第2表に示す。
[Table] Example 4 To 100 parts of partially stabilized zirconia, 5 parts of methyl cellulose, 5 parts of glycerin, and 5 parts of stearic acid emulsion were added, and furthermore, polyoxyethylene fatty acid ester was added in the proportions shown in Table 2 below. After uniformly kneading with an appropriate amount of water in a kneader, a round cord-like linear material was extruded from the nozzle of a vacuum extruder in the same manner as in Example 1, and after drying at a low temperature, a coil was formed. The wire was wound into a shape, pre-fired, and then main-fired. The results are shown in Table 2 below.

【表】 実施例 5 部分安定化ジルコニア100部に対して、メチル
セルロース5部、ポリオキシエチレン脂肪酸エス
テル5部及びステアリン酸エマルジヨン5部を加
え、更に下記第3表に示される割合のグリセリン
を加えて、適量の水と共に、ニーダーにて均一に
混練した後、実施例1と同様にして、真空押出機
のノズルから丸紐状の線状素材を押出成形し、更
に低温乾燥を施した後、コイル状に巻線加工し
て、仮焼成し、続いて本焼成を行なつた。結果を
下記第3表に示す。
[Table] Example 5 To 100 parts of partially stabilized zirconia, 5 parts of methylcellulose, 5 parts of polyoxyethylene fatty acid ester and 5 parts of stearic acid emulsion were added, and further glycerin was added in the proportion shown in Table 3 below. After uniformly kneading with an appropriate amount of water in a kneader, a round cord-like linear material was extruded from the nozzle of a vacuum extruder in the same manner as in Example 1, and after drying at a low temperature, a coil was formed. The wire was wound into a shape, pre-fired, and then main-fired. The results are shown in Table 3 below.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 セラミツクス粉末原料100重量部あたり、1
〜10重量部のメチルセルロース、1〜10重量部の
界面活性剤及び1〜15重量部の多価アルコールを
加え、更に適量の水を加えて均一に混練せしめ、
粘土様の混練物を調製した後、かかる混練物を所
定のノズルから押し出して、線状素材を形成せし
め、更にその後かかる線状素材を、コイル状に巻
線加工した状態下において、所定の焼成を行なう
ことを特徴とするセラミツクス・コイルばねの製
造法。 2 前記セラミツクス粉末原料が、アルミナ磁器
材料または部分安定化ジルコニア磁器材料或いは
それらの混合磁器材料である特許請求の範囲第1
項記載の製造法。 3 前記多価アルコールが、グリセリンである特
許請求の範囲第1項又は第2項記載の製造法。 4 前記界面活性剤が、ポリオキシエチレン脂肪
酸エステルである特許請求の範囲第1項乃至第3
項の何れかに記載の製造法。
[Claims] 1 per 100 parts by weight of ceramic powder raw material
Add ~10 parts by weight of methylcellulose, 1 to 10 parts by weight of a surfactant, and 1 to 15 parts by weight of polyhydric alcohol, and further add an appropriate amount of water to homogeneously knead.
After preparing a clay-like kneaded material, the kneaded material is extruded through a predetermined nozzle to form a wire-like material, and then the wire-like material is wound into a coil and subjected to a predetermined firing process. A method for manufacturing a ceramic coil spring characterized by performing the following steps. 2. Claim 1, wherein the ceramic powder raw material is an alumina porcelain material, a partially stabilized zirconia porcelain material, or a mixed porcelain material thereof.
Manufacturing method described in section. 3. The manufacturing method according to claim 1 or 2, wherein the polyhydric alcohol is glycerin. 4 Claims 1 to 3, wherein the surfactant is a polyoxyethylene fatty acid ester
The manufacturing method described in any of paragraphs.
JP60147139A 1985-07-03 1985-07-03 Manufacture of ceramics coil spring Granted JPS627659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60147139A JPS627659A (en) 1985-07-03 1985-07-03 Manufacture of ceramics coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60147139A JPS627659A (en) 1985-07-03 1985-07-03 Manufacture of ceramics coil spring

Publications (2)

Publication Number Publication Date
JPS627659A JPS627659A (en) 1987-01-14
JPH031260B2 true JPH031260B2 (en) 1991-01-10

Family

ID=15423457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60147139A Granted JPS627659A (en) 1985-07-03 1985-07-03 Manufacture of ceramics coil spring

Country Status (1)

Country Link
JP (1) JPS627659A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507761B2 (en) * 1987-10-26 1996-06-19 日本発条株式会社 Ceramics molding method
JP2597371B2 (en) * 1987-10-26 1997-04-02 日本発条株式会社 Ceramic coil spring forming equipment
JPH0816650B2 (en) * 1990-01-17 1996-02-21 東京都 Driving inspection device
JP2813132B2 (en) * 1993-09-27 1998-10-22 日本発条株式会社 Ceramic spring
JP3021442B2 (en) 1997-12-31 2000-03-15 三星電子株式会社 Disc player
JP2009242220A (en) * 2008-03-13 2009-10-22 Sumitomo Chemical Co Ltd Manufacturing method of inorganic powder molding
CN106588000B (en) * 2016-11-24 2020-11-10 上海交通大学 Manufacturing process of spiral ceramic spring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Also Published As

Publication number Publication date
JPS627659A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPH031260B2 (en)
JPH0260483B2 (en)
KR970009988B1 (en) HIGH CORROSION - RESISTANT Ñß-SLALON SINTER AND PRODUCTION THEREOF
US2684912A (en) Ceramic body
JP6500527B2 (en) Diatomaceous earth brick
JPS6247834B2 (en)
JPH01110908A (en) Method for forming ceramic coil spring
JPH09328366A (en) Production of ceramic sheet
JP2541726B2 (en) Ceramic composite conductive heat resistant material composition
JPH03115180A (en) Production of heat insulation structure for high temperature
US1273529A (en) Refractory ceramic article and method of making the same.
RU2064909C1 (en) Method of producing superconducting oxide material based on yttrium-barium cuprite
JPS62105963A (en) Ceramic sintered body and manufacture
SU785267A1 (en) Plastic mass for making refractory articles
US2998394A (en) Electrical resistor composition
US2770552A (en) Process of making refractory material
SU928672A1 (en) Cermet for manufacturing electric heaters
JP2584237B2 (en) Manufacturing method of ceramic sintered body
JPS5935869B2 (en) Manufacturing method of silicon nitride sintered body
US3598764A (en) Material for the manufacture of high-temperature thermistors
JPS5953235B2 (en) Manufacturing method of silicon nitride sintered body
JPS6018623B2 (en) Manufacturing method of silicon nitride sintered body
SU551308A1 (en) Ceramic material
JPH0463017B2 (en)