JPH031255B2 - - Google Patents

Info

Publication number
JPH031255B2
JPH031255B2 JP4629586A JP4629586A JPH031255B2 JP H031255 B2 JPH031255 B2 JP H031255B2 JP 4629586 A JP4629586 A JP 4629586A JP 4629586 A JP4629586 A JP 4629586A JP H031255 B2 JPH031255 B2 JP H031255B2
Authority
JP
Japan
Prior art keywords
sludge
water
sludge water
cement
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4629586A
Other languages
Japanese (ja)
Other versions
JPS62204867A (en
Inventor
Toshiaki Takabayashi
Takao Oosaki
Fumio Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEOTEC CORP
Original Assignee
NEOTEC CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEOTEC CORP filed Critical NEOTEC CORP
Priority to JP61046295A priority Critical patent/JPS62204867A/en
Publication of JPS62204867A publication Critical patent/JPS62204867A/en
Publication of JPH031255B2 publication Critical patent/JPH031255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • B03B9/063General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial the refuse being concrete slurry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Crushing And Grinding (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To enable the reutilization of cement resources by reduced energy, by concentrating sludge water from which gravel and sand are removed by set classification and finely pulverizing the conc. one according to a wet vibration system. CONSTITUTION:Washing water 14 from a mixermobile for ready-mixed concrete is supplied to a classifier 10 to be classified into gravel G, sand S and sludge water H corresponding to a particle size by a wet system. The classified sludge water H is recovered in a recovery tank 21 and sent to a sludge water tank 24 by a pump 22 through a cyclone 23 and, when reaches a predetermined amount under stirring, sent to a thickener 20 by a pump 25. The forcible sedimentation of a sludge component by each stirrer and the return of supernatant water are performed until the sludge water reaches a concn. adjusting tank 30 from the thickener 20 and the concn. sludge water finally adjusted so as to set the concn. of sludge to 30-40% is sent to a vibration ball mill 40 where a fine cement anhydride is taken out from the sludge water finely pulverized under vibration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生コンプラントで運搬車やプラント
ミキサ等を洗つたときに発生する生コンクリート
の洗い残渣の再生方法及びその装置の改良に関す
るものである。 [従来の技術] 本出願人は、生コンクリートの洗い残渣の中に
含まれるスラツジを微粉砕してスラツジ中の残存
セメント未水和物を有効に利用する方法及び装置
にを提案した(特願昭60−46672、特開昭61−
209059号)。 この方法は、最初に生コンクリートの洗い残渣
を湿式分級し、砂利及び砂を除去してスラツジ水
を取り出す。次いでこのスラツジ水を濃縮した
後、圧搾により脱水してスラツジケーキを得る。
更にこのスラツジケーキを乾燥した後、振動ボー
ル・ミルで振動微粉砕する方法である。 [発明が解決しようとする問題点] しかし、上記方法は乾式の振動微粉砕によるた
め、濃縮したスラツジ水を脱水し、乾燥する必要
があり、多くのエネルギーと処理時間を要する問
題点があつた。 本発明は、産業廃棄物として公害問題を引き
起こさず、新規のセメント使用量を削減して省
資源に寄与し、再生に要するエネルギーの消費
量が少なく、湿式の振動微粉砕でより微細なセ
メント未水和物を取り出すことができる生コンク
リートの洗い残渣の再生方法及びその装置を提供
することを目的とする。 [問題点を解決するための手段] 上記目的を達成するための本発明の構成を第1
図及び実施例に対応する第2図に基づいて説明す
る。 本発明の生コンクリートの洗い残渣の再生方法
は、第1図に示すように、生コンクリートの洗い
残渣Aを湿式分級して砂利及び砂を除去したスラ
ツジ水を取り出す分級工程1と、このスラツジ水
を濃縮する濃縮工程2と、濃縮したスラツジ水を
所定濃度に調整する調整工程3と、濃度調整した
スラツジ水を振動ボール・ミルで振動微粉砕して
セメント未水和物が表面に出現したスラツジ微粒
子のスラリーを得る微粉砕工程4とを含むことを
特徴とする。 また本発明の生コンクリートの洗い残渣の再生
装置は、第2図に示すように、生コンクリートの
洗い残渣を湿式分級して砂利及び砂を除去したス
ラツジ水を取り出す分級機10と、このスラツジ
水に含まれたスラツジを強制沈降させるシツクナ
20と、この沈降により得たスラツジ濃度の高い
スラツジ水を所定濃度に調整する濃度調整槽30
と、濃度調整したスラツジ水を振動微粉砕してセ
メント未水和物が表面に出現したスラツジ微粒子
のスラリーを得る振動ボール・ミル40とを備え
たことを特徴とする。 [作用] 本発明は、セメントが水と作用すると、第3図
に示すようにセメント粒子が、その周囲にできる
セメント水和物と、このセメント水和物で被包
されたセメント未水和物とになる公知の現象
(特公昭44−14833)に着目したもので、生コンク
リートの洗い残渣の中に含まれるこのセメント水
和物とセメント未水和物とからなるスラツジ
を他の砂利や砂から湿式分級して取り出し、こ
のスラツジを振動ボール・ミルで振動微粉砕し
て、第4図に示すようにセメント未水和物が表
面に出現したスラツジ微粒子のスラリーを得る
ものである。このスラリーから新規なセメントに
近い機能を得て生コンクリートの洗い残渣を再生
させるものである。 [発明の効果] 以上述べたように、本発明によれば、生コンク
リートの洗い残渣のうちのスラツジを振動ボー
ル・ミルにより湿式で振動微粉砕することによ
り、セメント水和物で囲まれたセメント未水和物
をスラツジ微粒子の表面に出現させることができ
る。これにより、従来、利用方法が殆どなく、投
棄するより仕方がなかつた生コンクリートの洗い
残渣からセメント未水和分を乾燥することなく取
り出すことができるため、産業廃棄物にする必要
はなくなり、公害問題が解消されるとともに、少
ないエネルギーでセメント資源を効率良く利用す
ることができる。 特に、振動ボール・ミルにより湿式で振動微粉
砕すると、乾式の振動微粉砕よりも一層微細なセ
メント粒子が得られるため、本発明のスラツジ微
粒子を用いたモルタル又はコンクリートは、従来
の乾式の振動微粉砕と比べてプラスチシチ(粘り
気)において優れ、材料の分離に抵抗する性質が
高く、施工上の利点もある。 [実施例] 次に本発明の一実施例を図面に基づいて工程順
に詳しく説明する。 <スラツジ水の分級> 生コンクリート運搬車又は生コンクリートミキ
サ車12を洗つたときに発生する生コンクリート
の洗い水14をスパイラルクラシフアイヤの分級
機10に供給して、粒度に応じて砂利G、砂Sと
スラツジ水Hに湿式分級する。砂利G、砂Sはタ
ンク16内に貯蔵する。スラツジ水Hは、水を分
散媒とし、また第3図に示すようにセメント未水
和物がセメント水和物により被包されたスラ
ツジを分散相とする懸濁液になつている。 <スラツジ水の濃縮> 分級したスラツジ水Hを回収槽21に回収し、
回収槽21の底部に設けたポンプ22により、サ
イクロン23を介してスラツジ水槽24に送る。
サイクロン23で残存する砂利G、砂Sを分離し
て前記分級機10に戻す。スラツジ水槽24で撹
拌機24aを低速度で撹拌してスラツジ水Hの硬
化を防ぎながらスラツジ水槽24の底部のスラツ
ジ水Hをポンプ25によりシツクナ20に送る。
24bは液面スイツチで、スラツジ水槽24が所
定の水位になると、オン状態となりポンプ25を
回転移動させる。 シツクナ20では撹拌機20aによりスラツジ
分を強制沈降させ、そのスラツジ濃度の低い上澄
み水を管路27により前記スラツジ水槽24に返
送する一方、スラツジ濃度が10〜20%程度のスラ
ツジ水Hを次の濃縮貯水槽28に送る。貯水槽2
8で撹拌機28aによりスラツジ分を強制沈降さ
せて濃縮し、ポンプ31により濃縮したスラツジ
濃度が20〜30%程度のスラツジ水を濃度調整槽3
0に送る。 <スラツジ水の濃度調整> 32は戻り管路であつて、ポンプ33により濃
度調整槽30のスラツジ濃度の低い上澄み水を濃
縮貯水槽28に返送できるようになつている。濃
度調整槽30は撹拌機30aによりスラツジ分を
更に強制沈降させ、スラツジ濃度が30〜40%にな
るように調整する。具体的には次の振動ボール・
ミル40への送出口Dにおけるスラツジ濃度を測
定し、このスラツジ濃度が30%以下のときには、
撹拌機30aを一定時間停止してスラツジ分を沈
降させた後、ポンプ33を回転駆動して濃度調整
槽30のスラツジ濃度の低い上澄み水を濃縮貯水
槽28に返送する。スラツジ濃度が30〜40%の範
囲になれば、ポンプ35により濃縮スラツジ水を
振動ボール・ミル40に送る。 なお、濃度調整方法は上記例に限らず、戻り管
路32とポンプ33の代わりに、第5図に示すよ
うに混和材運搬車34からサイロ36に他の増量
材Eを粉体の形状で貯蔵しておき、計量器37で
所定量を計量した後、濃度調整槽30に入れるよ
うにしてもよい。また、第6図に示すようにスラ
ツジ濃度を40%以上に濃縮したスラツジ水を予備
槽38に貯えておき、ポンプ39により濃度調整
槽30に入れるようにしてもよい。 <スラツジ水の微粉砕> 濃縮したスラツジ水を振動ボール・ミル40に
より振動微粉砕する。この例では振動ボール・ミ
ル40は第1段のミル40aと第2段のミル40b
からなる。振動微粉砕されたスラツジ水はスラリ
ー貯溜槽42に送られ、撹拌器42aでスラツジ
水の硬化を防ぎながら貯えられる。 このスラリーの分散相は第4図に示すようにセ
メント水和物が剥離してセメント未水和物が
表面に出現したスラツジ微粒子になる。このス
ラツジ微粒子を定量ポンプ43により必要量だ
けプラントミキサに送出し、新規なセメントに加
えて生コンクリートを作成すれば、新規なセメン
ト量を削減することができる。 [試験例、比較例] 次に本発明の効果を確認するために、スラリー
貯溜槽42からスラリーを採取し、このスラリー
をセメントと共用してコンクリート強度試験を行
つた。 最初に、スラリー中のスラツジ微粒子SLを骨
材と見なして、スラツジ微粒子SLを混ぜたコン
クリートと、混ぜないコンクリートと強度を比較
した(試験例1〜3、比較例1〜3)。これらの
結果を表に示す。 試験例 1 ポルトランドセメントC 192Kg、スラツジ微
粒子SL 57Kg、砂S 781Kg、砂利G 1046Kgを
水W 165Kgと均一に混練し、水/セメント比
(W/C比)86%のコンクリートを調製した。こ
のコンクリートを所定の型枠に入れ、圧縮強度を
調べたところ(以下同じ)、材齢28日で251Kgf/
cm2であつた。またJIS A 1101によりスランプ試
験をしたところ(以下同じ)、目標スランプ値8
cmに対してスランプ値Slは8.1cmであつた。 比較例 1 試験例1と比較してスラツジ微粒子SLを入れ
ずに、また砂Sだけ781Kgから848Kgに増し、他は
試験例1と同一材料を同量採取して、これらを均
一に混練し、試験例1と同一のW/C比のコンク
リートを調製した。この圧縮強度は材齢28日で
162Kgf/cm2であつた。また目標スランプ値8cm
に対してスランプ値Slは6.9cmであつた。 本発明のスラツジ微粒子SLを使用した試験例
1は比較例1より圧縮強度が材齢28日で1.55倍に
なることが分つた。 試験例 2 ポルトランドセメントC 267Kg、スラツジ微
粒子SL 81Kg、砂S 784Kg、砂利G 857Kgを水
W 203Kgと均一に混練し、水/セメント比
(W/C比)76%のコンクリートを調製した。こ
の圧縮強度は材齢28日で309Kgf/cm2であつた。
また目標スランプ値21cmに対してスランプ値Slは
20.7cmであつた。 比較例 2 試験例2と比較してスラツジ微粒子SLを入れ
ずに、また砂Sだけ784Kgから879Kgに増し、他は
試験例2と同一材料を同量採取して、これらを均
一に混練し、試験例2と同一のW/C比のコンク
リートを調製した。この圧縮強度は材齢28日で
232Kgf/cm2であつた。また目標スランプ値21cm
に対してスランプ値Slは21.9cmであつた。これに
より、本発明のスラツジ微粒子SLを使用した試
験例2は比較例2より圧縮強度が材齢28日で1.33
倍になることが分つた。 試験例 3 ポルトランドセメントC 250Kg、スラツジ微
粒子SL 75Kg、砂S 648Kg、砂利G 1114Kgを
水W 165Kgと均一に混練し、水/セメント比
(W/C比)66%のコンクリートを調製した。こ
の圧縮強度は材齢28日で408Kgf/cm2であつた。
また目標スランプ値8cmに対してスランプ値Slは
9.2cmであつた。 比較例 3 試験例3と比較してスラツジ微粒子SLを入れ
ずに、また砂Sだけ648Kgから735Kgに増し、他は
試験例3と同一材料を同量採取して、これらを均
一に混練し、試験例3と同一のW/C比のコンク
リートを調製した。この圧縮強度は材齢28日で
302Kgf/cm2であつた。また目標スランプ値8cm
に対してスランプ値Slは12.1cmであつた。これに
より、本発明のスラツジ微粒子SLを使用した試
験例3は比較例3より圧縮強度が材齢28日で1.35
倍になることが分つた。 次に、スラツジ微粒子SLを新規のセメントC
と見なして、スラツジ微粒子SLを混ぜたコンク
リートと、混ぜないコンクリートとの強度を比較
した(試験例4〜6、比較例4〜6)。これらの
結果を表に示す。 試験例 4 ポルトランドセメントC 236Kg、スラツジ微
粒子SL 70Kg、砂S 853Kg、砂利G 824Kgを水
W 203Kgと均一に混練し、水/セメント比
(W/C+SL比)66%のコンクリートを調製し
た。この圧縮強度は材齢28日で243Kgf/cm2であ
つた。また目標スランプ値21cmに対してスランプ
値Slは21.1cmであつた。 比較例 4 試験例4と比較してスラツジ微粒子SLの分量
だけセメントCを増加してセメントCを308Kgに
し、また砂Sを853Kgから879Kgに増し、他は試験
例4と同一材料を同量採取して、これらを均一に
混練し、試験例4と同一のW/C比66%のコンク
リートを調製した。この圧縮強度は材齢28日で
286Kgf/cm2であつた。また目標スランプ値21cm
に対してスランプ値Slは22.4cmであつた。 本発明のスラツジ微粒子SLをセメントと見な
した試験例4は比較例4より圧縮強度が材齢28日
で0.85倍になることが分つた。 試験例 5 ポルトランドセメントC 217Kg、スラツジ微
粒子SL 65Kg、砂S 717Kg、砂利G 1083Kgを
水W 165Kgと均一に混練し、水/セメント比
(W/C+SL比)58.5%のコンクリートを調製し
た。この圧縮強度は材齢28日で322Kgf/cm2であ
つた。また目標スランプ値8cmに対してスランプ
値Slは8.0cmであつた。 比較例 5 試験例5と比較してスラツジ微粒子SLの分量
だけセメントCを増加してセメントCを282Kgに
し、また砂Sを717Kgから740Kgに増し、他は試験
例5と同一材料を同量採取して、これらを均一に
混練し、試験例5と同一のW/C比58.5%のコン
クリートを調製した。この圧縮強度は材齢28日で
366Kgf/cm2であつた。また目標スランプ値8cm
に対してスランプ値Slは12.5cmであつた。 本発明のスラツジ微粒子SLをセメントと見な
した試験例5は比較例5より圧縮強度が材齢28日
で0.88倍になることが分つた。 試験例 6 ポルトランドセメントC 308Kg、スラツジ微
粒子SL 92Kg、砂S 714Kg、砂利G 881Kgを水
W 203Kgと均一に混練し、水/セメント比
(W/C+SL比)50.8%のコンクリート調製し
た。この圧縮強度は材齢28日で392Kgf/cm2であ
つた。また目標スランプ値21cmに対してスランプ
値Slは19.6cmであつた。 比較例 6 試験例6と比較してスラツジ微粒子SLの分量
だけセメントCを増加してセメントCを400Kgに
し、また砂Sを714Kgから745Kgに増し、他は試験
例6と同一材料を同量採取して、これらを均一に
混練し、試験例6と同一のW/C比50.8%のコン
クリートを調製した。この圧縮強度は材齢28日で
455Kgf/cm2であつた。また目標スランプ値21cm
に対してスランプ値Slは22.3cmであつた。 本発明のスラツジ微粒子SLをセメントと見な
した試験例6は比較例6より圧縮強度が材齢28日
で0.86倍になることが分つた。 なお、試験例1〜6を通じて、生コンクリート
としてスラツジ微粒子SLを使わない比較例1〜
6と比べて、本試験例はスランプ値は小さく、固
めになる傾向にあつた。またブリージング量試験
をしたところ、本試験例は比較例の約1/2であつ
た。これは本試験例の方が湿式粉砕によりブレー
ン値が6000〜8000um程度になり微粒子分が多く
混入され、粘性が高くなるためと考えられる。 以上のことから本試験例はプラスチシチ(粘り
気)において優れ、材料の分離に抵抗する性質が
高いことが観察され、施工上の利点が見出され
た。 【表】
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for recycling the washing residue of ready-mixed concrete that is generated when a transport vehicle, a plant mixer, etc. are washed with ready-mixed concrete, and an improvement of the equipment. be. [Prior Art] The present applicant has proposed a method and apparatus for effectively utilizing the unhydrated cement remaining in the sludge by finely pulverizing the sludge contained in the washing residue of ready-mixed concrete (patent application). 1986-46672, Unexamined Japanese Patent Publication 1986-
No. 209059). In this method, the washed concrete residue is first wet classified, gravel and sand are removed, and sludge water is extracted. Next, this sludge water is concentrated and then dehydrated by pressing to obtain a sludge cake.
Furthermore, after drying this sludge cake, it is subjected to vibration pulverization using a vibrating ball mill. [Problems to be Solved by the Invention] However, since the above method uses dry vibration pulverization, it is necessary to dehydrate and dry the concentrated sludge water, which has the problem of requiring a lot of energy and processing time. . The present invention does not cause pollution problems as industrial waste, contributes to resource conservation by reducing the amount of new cement used, consumes less energy for recycling, and uses wet vibration pulverization to produce finer cement. An object of the present invention is to provide a method for recycling fresh concrete washing residue from which hydrates can be extracted, and an apparatus for the same. [Means for Solving the Problems] The configuration of the present invention for achieving the above object is as follows.
Description will be given based on the drawings and FIG. 2 corresponding to the embodiment. As shown in FIG. 1, the method for recycling fresh concrete washing residue of the present invention includes a classification step 1 of wet-classifying fresh concrete washing residue A to extract sludge water from which gravel and sand have been removed; A concentration step 2 of concentrating the sludge water, an adjustment step 3 of adjusting the concentrated sludge water to a predetermined concentration, and a sludge with unhydrated cement appearing on the surface by vibrating and finely pulverizing the sludge water with the adjusted concentration in a vibrating ball mill. The method is characterized in that it includes a pulverization step 4 of obtaining a slurry of fine particles. As shown in FIG. 2, the apparatus for recycling fresh concrete washing residue of the present invention includes a classifier 10 for wet-classifying fresh concrete washing residue to extract sludge water from which gravel and sand have been removed; and a concentration adjustment tank 30 that adjusts sludge water with a high sludge concentration obtained by this sedimentation to a predetermined concentration.
and a vibrating ball mill 40 for obtaining a slurry of fine sludge particles in which unhydrated cement appears on the surface by vibrating and finely pulverizing the sludge water whose concentration has been adjusted. [Function] When cement interacts with water, cement particles form a cement hydrate around the cement particles as shown in FIG. 3, and an unhydrated cement encapsulated by the cement hydrate. This study focused on a well-known phenomenon (Special Publication No. 44-14833) that caused the sludge consisting of cement hydrate and non-cement hydrate contained in the washing residue of fresh concrete to be mixed with other gravel or sand. The sludge is subjected to wet classification and taken out, and the sludge is vibrated and pulverized in a vibrating ball mill to obtain a slurry of fine sludge particles in which unhydrated cement appears on the surface, as shown in FIG. This slurry is used to obtain new cement-like functions and regenerate the washing residue of ready-mixed concrete. [Effects of the Invention] As described above, according to the present invention, cement surrounded by cement hydrate is produced by wet-vibrating pulverization of sludge in the washing residue of ready-mixed concrete using a vibrating ball mill. Unhydrated substances can be made to appear on the surface of the sludge particles. As a result, the unhydrated cement can be extracted without drying from the washing residue of ready-mixed concrete, which previously had little use and had no choice but to be dumped, eliminating the need to dispose of it as industrial waste and causing pollution. This problem is solved, and cement resources can be used efficiently with less energy. In particular, wet vibration pulverization using a vibrating ball mill yields finer cement particles than dry vibration pulverization. Compared to pulverized materials, it has superior plasticity (viscosity) and is highly resistant to material separation, which also has advantages in terms of construction. [Example] Next, an example of the present invention will be described in detail in the order of steps based on the drawings. <Classification of sludge water> The fresh concrete wash water 14 generated when washing the fresh concrete transport vehicle or the fresh concrete mixer vehicle 12 is supplied to the classifier 10 of the spiral classifier, and it is divided into gravel G, gravel G, etc. according to the particle size. Wet classification into sand S and sludge water H. Gravel G and sand S are stored in a tank 16. The sludge water H is a suspension in which water is used as a dispersion medium and, as shown in FIG. 3, sludge in which unhydrated cement is encapsulated by hydrated cement is used as a dispersed phase. <Concentration of sludge water> Collect the classified sludge water H into the collection tank 21,
A pump 22 provided at the bottom of the recovery tank 21 sends the sludge to a sludge tank 24 via a cyclone 23.
The remaining gravel G and sand S are separated by the cyclone 23 and returned to the classifier 10. The sludge water H at the bottom of the sludge tank 24 is sent to the sludge tanker 20 by a pump 25 while stirring the sludge water H at the bottom of the sludge tank 24 with a stirrer 24a at a low speed to prevent the sludge water H from hardening.
A liquid level switch 24b is turned on when the sludge water tank 24 reaches a predetermined water level, causing the pump 25 to rotate. In the shaker 20, the sludge content is forcibly settled by the stirrer 20a, and the supernatant water with a low sludge concentration is returned to the sludge water tank 24 through the pipe 27, while the sludge water H with a sludge concentration of about 10 to 20% is sent to the next tank. It is sent to the concentrated water tank 28. Water tank 2
8, the sludge content is forcibly settled and concentrated using the agitator 28a, and the concentrated sludge water with a concentration of about 20 to 30% is sent to the concentration adjustment tank 3 using the pump 31.
Send to 0. <Adjustment of concentration of sludge water> Reference numeral 32 is a return pipe, which allows supernatant water with a low sludge concentration from the concentration adjustment tank 30 to be returned to the concentrated water storage tank 28 by a pump 33. In the concentration adjustment tank 30, the sludge is further forcibly settled by a stirrer 30a, and the sludge concentration is adjusted to 30 to 40%. Specifically, the following vibrating balls/
The sludge concentration at the outlet D to the mill 40 is measured, and when this sludge concentration is 30% or less,
After the agitator 30a is stopped for a certain period of time to allow the sludge to settle, the pump 33 is rotated to return the supernatant water with a low sludge concentration from the concentration adjustment tank 30 to the concentrated water storage tank 28. When the sludge concentration is in the range of 30-40%, the pump 35 sends the concentrated sludge water to the vibrating ball mill 40. Note that the concentration adjustment method is not limited to the above example, and instead of the return pipe 32 and pump 33, another bulking material E in the form of powder is transferred from the admixture transport vehicle 34 to the silo 36 as shown in FIG. It may be stored, and after measuring a predetermined amount with the measuring device 37, it may be placed in the concentration adjustment tank 30. Alternatively, as shown in FIG. 6, sludge water with a sludge concentration of 40% or more may be stored in a reserve tank 38 and pumped into the concentration adjustment tank 30 by a pump 39. <Fine pulverization of sludge water> The concentrated sludge water is vibrated and pulverized using a vibrating ball mill 40. In this example, the vibrating ball mill 40 includes a first stage mill 40a and a second stage mill 40b.
Consisting of The sludge water that has been pulverized by vibration is sent to the slurry storage tank 42, and is stored therein while being prevented from hardening by the agitator 42a. As shown in FIG. 4, the dispersed phase of this slurry becomes fine sludge particles in which cement hydrate is exfoliated and unhydrated cement appears on the surface. The amount of new cement can be reduced by sending the required amount of these sludge particles to the plant mixer using the metering pump 43 and adding them to new cement to create ready-mixed concrete. [Test Example, Comparative Example] Next, in order to confirm the effects of the present invention, slurry was collected from the slurry storage tank 42, and a concrete strength test was conducted using this slurry together with cement. First, considering the sludge fine particles SL in the slurry as aggregate, the strength of concrete mixed with sludge fine particles SL was compared with concrete not mixed (Test Examples 1 to 3, Comparative Examples 1 to 3). These results are shown in the table. Test Example 1 192 kg of Portland cement C, 57 kg of fine sludge particles SL, 781 kg of sand S, and 1046 kg of gravel G were uniformly kneaded with 165 kg of water W to prepare concrete with a water/cement ratio (W/C ratio) of 86%. When this concrete was placed in a specified formwork and the compressive strength was examined (the same applies hereafter), it was found to be 251 kgf/28 days old.
It was warm in cm2 . In addition, when we conducted a slump test according to JIS A 1101 (the same applies hereafter), the target slump value was 8.
The slump value Sl was 8.1 cm. Comparative Example 1 Compared to Test Example 1, the same amount of the same material as Test Example 1 was taken without adding sludge fine particles SL, and only sand S was increased from 781 Kg to 848 Kg, and these were uniformly kneaded. Concrete with the same W/C ratio as Test Example 1 was prepared. This compressive strength is reached at the age of 28 days.
It was 162Kgf/ cm2 . Also target slump value 8cm
In contrast, the slump value Sl was 6.9 cm. It was found that in Test Example 1 using the sludge fine particles SL of the present invention, the compressive strength was 1.55 times higher than that in Comparative Example 1 at a material age of 28 days. Test Example 2 267 kg of Portland cement C, 81 kg of fine sludge particles SL, 784 kg of sand S, and 857 kg of gravel G were uniformly kneaded with 203 kg of water W to prepare concrete with a water/cement ratio (W/C ratio) of 76%. The compressive strength was 309 Kgf/cm 2 at a material age of 28 days.
Also, for the target slump value of 21cm, the slump value Sl is
It was 20.7cm. Comparative Example 2 Compared to Test Example 2, sludge fine particles SL were not added, and only sand S was increased from 784 Kg to 879 Kg, but the same amount of the same materials as Test Example 2 were collected, and these were uniformly kneaded. Concrete with the same W/C ratio as Test Example 2 was prepared. This compressive strength is reached at the age of 28 days.
It was 232Kgf/ cm2 . Also target slump value 21cm
In contrast, the slump value Sl was 21.9 cm. As a result, Test Example 2 using the sludge fine particles SL of the present invention had a compressive strength of 1.33 at a material age of 28 days compared to Comparative Example 2.
I found out that it will double. Test Example 3 250 kg of Portland cement C, 75 kg of fine sludge particles SL, 648 kg of sand S, and 1114 kg of gravel G were uniformly kneaded with 165 kg of water W to prepare concrete with a water/cement ratio (W/C ratio) of 66%. The compressive strength was 408 Kgf/cm 2 at a material age of 28 days.
Also, for the target slump value 8cm, the slump value Sl is
It was 9.2cm. Comparative Example 3 Compared to Test Example 3, the same amount of the same materials as Test Example 3 were taken without adding sludge fine particles SL, and only sand S was increased from 648 Kg to 735 Kg, and these were uniformly kneaded. Concrete with the same W/C ratio as Test Example 3 was prepared. This compressive strength is reached at the age of 28 days.
It was 302Kgf/ cm2 . Also target slump value 8cm
In contrast, the slump value Sl was 12.1 cm. As a result, Test Example 3 using the sludge fine particles SL of the present invention had a compressive strength of 1.35 at a material age of 28 days compared to Comparative Example 3.
I found out that it will double. Next, sludge fine particles SL were added to new cement C.
Considering this, the strength of concrete mixed with sludge fine particles SL and concrete not mixed was compared (Test Examples 4 to 6, Comparative Examples 4 to 6). These results are shown in the table. Test Example 4 236 kg of Portland cement C, 70 kg of fine sludge particles SL, 853 kg of sand S, and 824 kg of gravel G were uniformly kneaded with 203 kg of water W to prepare concrete with a water/cement ratio (W/C+SL ratio) of 66%. The compressive strength was 243 Kgf/cm 2 at a material age of 28 days. Furthermore, the slump value Sl was 21.1 cm against the target slump value of 21 cm. Comparative Example 4 Compared to Test Example 4, the cement C was increased by the amount of sludge fine particles SL to make the cement C to 308 Kg, and the sand S was increased from 853 Kg to 879 Kg, otherwise the same materials as Test Example 4 were collected in the same amount. These were uniformly kneaded to prepare concrete with the same W/C ratio as Test Example 4 of 66%. This compressive strength is reached at the age of 28 days.
It was 286Kgf/ cm2 . Also target slump value 21cm
In contrast, the slump value Sl was 22.4 cm. It was found that in Test Example 4, in which the sludge fine particles SL of the present invention were regarded as cement, the compressive strength increased by 0.85 times at 28 days of age compared to Comparative Example 4. Test Example 5 217 kg of Portland cement C, 65 kg of sludge fine particles SL, 717 kg of sand S, and 1083 kg of gravel G were uniformly kneaded with 165 kg of water W to prepare concrete with a water/cement ratio (W/C+SL ratio) of 58.5%. The compressive strength was 322 Kgf/cm 2 at a material age of 28 days. Furthermore, the slump value Sl was 8.0 cm against the target slump value of 8 cm. Comparative Example 5 Compared to Test Example 5, cement C was increased by the amount of sludge fine particles SL to 282 Kg, and sand S was increased from 717 Kg to 740 Kg, otherwise the same materials as Test Example 5 were collected in the same amount. These were uniformly kneaded to prepare concrete with the same W/C ratio as Test Example 5 of 58.5%. This compressive strength is reached at the age of 28 days.
It was 366Kgf/ cm2 . Also target slump value 8cm
In contrast, the slump value Sl was 12.5 cm. It was found that in Test Example 5, in which the sludge fine particles SL of the present invention were regarded as cement, the compressive strength increased by 0.88 times at 28 days of age compared to Comparative Example 5. Test Example 6 308 kg of Portland cement C, 92 kg of fine sludge particles SL, 714 kg of sand S, and 881 kg of gravel G were uniformly kneaded with 203 kg of water W to prepare concrete with a water/cement ratio (W/C+SL ratio) of 50.8%. The compressive strength was 392 Kgf/cm 2 at a material age of 28 days. Furthermore, the slump value Sl was 19.6 cm against the target slump value of 21 cm. Comparative Example 6 Compared to Test Example 6, the cement C was increased by the amount of sludge fine particles SL to make the cement C to 400Kg, and the sand S was increased from 714Kg to 745Kg, and the same amount of the same material as Test Example 6 was collected. These were uniformly kneaded to prepare concrete with the same W/C ratio as Test Example 6 of 50.8%. This compressive strength is reached at the age of 28 days.
It was 455Kgf/ cm2 . Also target slump value 21cm
In contrast, the slump value Sl was 22.3 cm. It was found that in Test Example 6, in which the sludge fine particles SL of the present invention were regarded as cement, the compressive strength increased by 0.86 times at 28 days of age compared to Comparative Example 6. In addition, through Test Examples 1 to 6, Comparative Examples 1 to 6 do not use sludge fine particles SL as ready-mixed concrete.
Compared to No. 6, this test example had a smaller slump value and tended to be harder. Further, when a breathing amount test was conducted, the amount of breathing in this test example was about 1/2 that of the comparative example. This is thought to be because in this test example, the Blaine value was about 6000 to 8000 um due to wet pulverization, and more fine particles were mixed in, resulting in higher viscosity. From the above, it was observed that this test example had excellent plasticity (viscosity) and high resistance to material separation, and was found to have advantages in construction. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の再生方法を説明するためのブ
ロツク図。第2図は本発明一実施例の再生装置の
構成図。第3図はセメントモルタル又はコンクリ
ート中のセメント粒子の切断面図。第4図は第3
図のセメント粒子を本発明の再生方法により再生
したときの切断面図。第5図及び第6図は別の実
施例の濃度調整槽の構成図。 10:分級機、20:シツクナ、30:濃度調
整槽、40:振動ボール・ミル。
FIG. 1 is a block diagram for explaining the regeneration method of the present invention. FIG. 2 is a configuration diagram of a playback device according to an embodiment of the present invention. FIG. 3 is a cross-sectional view of cement particles in cement mortar or concrete. Figure 4 is the third
FIG. 3 is a cross-sectional view when the cement particles shown in the figure are regenerated by the regeneration method of the present invention. FIG. 5 and FIG. 6 are configuration diagrams of a concentration adjustment tank according to another embodiment. 10: Classifier, 20: Shitsukuna, 30: Concentration adjustment tank, 40: Vibrating ball mill.

Claims (1)

【特許請求の範囲】 1 生コンクリートの洗い残渣を湿式分級して砂
利及び砂を除去したスラツジ水を取り出す分級工
程と、このスラツジ水を濃縮する濃縮工程と、濃
縮したスラツジ水を所定濃度に調整する調整工程
と、濃度調整したスラツジ水を振動ボール・ミル
で振動微粉砕してセメント未水和物が表面に出現
したスラツジ微粒子のスラリーを得る微粉砕工程
とを含むことを特徴とする生コンクリートの洗い
残渣の再生方法。 2 生コンクリートの洗い残渣を湿式分級して砂
利及び砂を除去したスラツジ水を取り出す分級機
と、このスラツジ水に含まれるスラツジを強制沈
降させるシツクナと、この沈降により得たスラツ
ジ濃度の高いスラツジ水を所定濃度に調整する濃
度調整槽と、濃度調整したスラツジ水を振動微粉
砕してセメント未水和物が表面に出現したスラツ
ジ微粒子のスラリーを得る振動ボール・ミルとを
備えたことを特徴とする生コンクリートの洗い残
渣の再生装置。
[Scope of Claims] 1. A classification step for extracting sludge water from which gravel and sand have been removed by wet classification of fresh concrete washing residue, a concentration step for concentrating this sludge water, and adjusting the concentrated sludge water to a predetermined concentration. and a pulverizing step of vibrating and pulverizing the sludge water whose concentration has been adjusted in a vibrating ball mill to obtain a slurry of fine sludge particles in which unhydrated cement appears on the surface. How to regenerate washing residue. 2. A classifier that extracts sludge water by wet-classifying fresh concrete washing residue to remove gravel and sand, a sludge that forcibly settles the sludge contained in this sludge water, and a sludge water with a high sludge concentration obtained by this sedimentation. The method is characterized by being equipped with a concentration adjustment tank for adjusting the concentration to a predetermined concentration, and a vibrating ball mill that vibrates and pulverizes the sludge water whose concentration has been adjusted to obtain a slurry of fine sludge particles in which unhydrated cement appears on the surface. Equipment for recycling the washing residue of fresh concrete.
JP61046295A 1986-03-05 1986-03-05 Method and apparatus for regenerating washing residue of ready-mixed concrete Granted JPS62204867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046295A JPS62204867A (en) 1986-03-05 1986-03-05 Method and apparatus for regenerating washing residue of ready-mixed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046295A JPS62204867A (en) 1986-03-05 1986-03-05 Method and apparatus for regenerating washing residue of ready-mixed concrete

Publications (2)

Publication Number Publication Date
JPS62204867A JPS62204867A (en) 1987-09-09
JPH031255B2 true JPH031255B2 (en) 1991-01-10

Family

ID=12743218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046295A Granted JPS62204867A (en) 1986-03-05 1986-03-05 Method and apparatus for regenerating washing residue of ready-mixed concrete

Country Status (1)

Country Link
JP (1) JPS62204867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874045A1 (en) 2013-11-13 2015-05-20 Omron Corporation Gesture recognition device and control method for the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620740B2 (en) * 1988-12-15 1994-03-23 株式会社ネオテック Method and apparatus for reclaiming washing residue of green concrete
JPH07115895B2 (en) * 1990-07-19 1995-12-13 株式会社ネオテック Recycling method and equipment for washing residues such as ready-mixed concrete
WO2005097698A1 (en) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co., Ltd. Process for producing concrete material and apparatus therefor
JP2013220973A (en) * 2012-04-17 2013-10-28 Nippo Corp Cement composition
ITBG20120024A1 (en) * 2012-06-01 2013-12-02 Livio Angelo Betelli PLANT FOR THE TREATMENT OF WATERS DERIVING FROM THE BETONIERE WASHING
FR3095603B1 (en) * 2019-04-30 2023-03-17 Vicat Process for recycling and recovering concrete sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874045A1 (en) 2013-11-13 2015-05-20 Omron Corporation Gesture recognition device and control method for the same

Also Published As

Publication number Publication date
JPS62204867A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
JP4850062B2 (en) Method and apparatus for producing concrete material
JPH031255B2 (en)
JP6168711B2 (en) Concrete sludge fine powder recovery method and concrete sludge fine powder
JP4698043B2 (en) Concrete sludge fine powder recovery method and apparatus
JP3633817B2 (en) Disposal of raw concrete
JP2017124569A (en) Aggregating method of surplus uncured concrete, manufacturing method of recycled material thereby and aggregating device used therefor
JPH031254B2 (en)
CN107500667A (en) A kind of regeneration concrete and preparation method thereof
JP2750381B2 (en) Treatment method of waste ready-mixed concrete
JP2001340839A (en) Method and apparatus for treating industrial waste
JPH10211615A (en) Recovery method of cement content
JPH11221486A (en) Treatment of ready mixed concrete remaining in concrete truck mixer agitator
JP7514045B1 (en) Recycled fine aggregate for concrete and ready-mix concrete
JPH11300391A (en) Material for flowable backfill, consisting of sludge and rock powder and its use
JPH10244297A (en) Regeneration treatment of construction sludge
CN110156292A (en) A kind of slurry dewatering solidifying and resource utilization method
JPH0623733A (en) Method and apparatus for reutilizing washing residue of concrete not hardened
JP2003176162A (en) Concrete-not-hardened sludge granular material and production method therefor
JP3920013B2 (en) Sludge treatment method at ready-mix factory
JP2767020B2 (en) Treatment method of waste ready-mixed concrete
JP3358715B2 (en) Cement-based composition
JP3670600B2 (en) Construction sludge recycling system and recycled crushed stone production method
JP2000140818A (en) Treatment of waste of ready-mixed concrete plant
JP2016204194A (en) Hydraulic hardened body including concrete sludge fine powder in binder
JPH07213949A (en) Method for treating boiler ash of finely divided coal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term