JPH0312549A - Ion sensor - Google Patents
Ion sensorInfo
- Publication number
- JPH0312549A JPH0312549A JP1145424A JP14542489A JPH0312549A JP H0312549 A JPH0312549 A JP H0312549A JP 1145424 A JP1145424 A JP 1145424A JP 14542489 A JP14542489 A JP 14542489A JP H0312549 A JPH0312549 A JP H0312549A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- ion
- measured
- wires
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002500 ions Chemical class 0.000 abstract description 56
- 238000011088 calibration curve Methods 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 description 21
- 239000012488 sample solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- 101100309487 Mus musculus Samhd1 gene Proteins 0.000 description 1
- 101100369237 Mus musculus Tgtp1 gene Proteins 0.000 description 1
- 101100369238 Mus musculus Tgtp2 gene Proteins 0.000 description 1
- 241000842783 Orna Species 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、医療、農業、醗酵工業、バイオ技術、環境測
定等の分野に用いられ、水溶液をはじめとする種々の溶
液中に存在する様々のイオンの濃度を定量するためのイ
オンセンサに関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in fields such as medicine, agriculture, fermentation industry, biotechnology, and environmental measurement, and is used to treat various substances present in various solutions including aqueous solutions. The present invention relates to an ion sensor for quantifying the concentration of ions.
従来のイオンセンサは、通常イオン選択性電極と呼ばれ
るもので、溶液に浸漬された際に、溶液/イオン選択感
応部に生ずる電位を検出する構成となっている。Conventional ion sensors are generally referred to as ion-selective electrodes, and are configured to detect the potential generated in a solution/ion-selective sensitive part when immersed in a solution.
上記従来のイオンセンサの構成は第5図に示すよう書;
なっており、参照電極a、標準電解溶液す、b’ 、塩
kn Cs試料溶液(被検it[)d。The configuration of the above-mentioned conventional ion sensor is as shown in FIG.
Reference electrode a, standard electrolyte solution S, b', salt kn Cs sample solution (tested it[)d.
センサ本体eが直列回路を形成しており、この回路内に
発生する電位をリードfを介して直流電位差計gで検出
するようになっている。そして上記センサ本体eに取付
けられているイオン選択感応膜りには、特定のイオンの
みと錯形成する物質をpvc (ポリ塩化ビニル)等の
高分子膜に固定した有機系の膜(例えば、K” Ca
2“ Na”、Mg21などのセンサ)、複合酸化物ガ
ラス等を用いる無機系の膜(例えばH“)等が用いられ
るが、いずれの膜材料においても電気伝導率が低く、p
vc膜で〜1010−6(Se’) 、ガラス膜では〜
10−8(S cm) である。The sensor body e forms a series circuit, and the potential generated within this circuit is detected by a DC potentiometer g via a lead f. The ion-selective sensitive membrane attached to the sensor body e is an organic membrane (for example, K ” Ca
2 "Na", Mg21, etc.), inorganic membranes (for example H") using composite oxide glass, etc. are used, but all membrane materials have low electrical conductivity
~1010-6 (Se') for VC film, ~1010-6 (Se') for glass film
10-8 (S cm).
上記従来のイオンセンサでは、センサ自身の持つ抵抗値
が高くなり、その結果次のような問題があった。In the conventional ion sensor described above, the resistance value of the sensor itself becomes high, resulting in the following problems.
(1)イオン選択感応部の有効面積を大きくしなければ
ならず、小型化、微小化が田無である。(1) The effective area of the ion-selective sensitive part must be increased, and miniaturization and miniaturization are essential.
(2)高抵抗のため、高入力インピーダンスエレクトロ
メータ(直流電位差計)が必要となり、ノイズ除去の機
構が必要となる。(2) Due to the high resistance, a high input impedance electrometer (DC potentiometer) is required, and a noise removal mechanism is required.
(3)応答時間が長くかかる。(3) Response time is long.
本発明は上記のことにかんがみなされたもので、イオン
センサの微小化、小型化を図ることができ、また応答時
間を短縮することができその上、参照電極が不必要にな
って、構造が極めて簡単となり、経済性に優れたイオン
センサを提供することを目的とするものである。The present invention has been developed in consideration of the above-mentioned problems, and it is possible to miniaturize and downsize the ion sensor, shorten the response time, and eliminate the need for a reference electrode, resulting in a simpler structure. The purpose of this invention is to provide an ion sensor that is extremely simple and has excellent economic efficiency.
〔課題を解決するための手段及び作用〕上記目的を達成
するために、本発明に係るイオンセンサは、溶液中の様
々な成分の中からある特定のイオンのみを選択的に、か
つ溶液中の濃度に応じた量だけ取込むイオン選択感応部
に電極を取付け、この電極にインピーダンスアナライザ
を接続した構成となっている。[Means and effects for solving the problem] In order to achieve the above object, the ion sensor according to the present invention selectively selects only a certain ion from among various components in a solution, and An electrode is attached to the ion-selective sensing part that takes in an amount corresponding to the concentration, and an impedance analyzer is connected to this electrode.
上記構成のイオンセンサを被検液に’C’(Aしてこれ
の電極にインピーダンスアナライザにて交流)d圧を印
加し、このときのイオン選択感応部の容量、抵抗、イン
ピーダンス等の物理量を測定し、この測定結果を、あら
かじめ作成しである検量線と照合して被検液中の特定イ
オンの濃度を検出する。The ion sensor with the above configuration is applied with 'C' (AC) pressure to the test liquid using an impedance analyzer to the electrodes of this, and physical quantities such as capacitance, resistance, impedance, etc. of the ion selective sensing part are measured at this time. The concentration of specific ions in the test liquid is detected by comparing the measurement results with a previously prepared calibration curve.
従来のイオンセンサの測定方式は以下の通りである。The measurement method of conventional ion sensors is as follows.
すなわち、注目するイオン種のla度C(正しくは活量
a、amrcS r :活量係数)であるような試料溶
液にイオンセンサを浸漬すると、イオン選択感応膜が注
口イオンのみを選択的に、かつその濃度Cに対応するだ
け取り込み、試料溶液との間にEなる電位を発生する。In other words, when an ion sensor is immersed in a sample solution of which the ion species of interest has a degree C (more accurately, activity a, amrcS r : activity coefficient), the ion-selective membrane selectively selects only the inlet ions. , and takes in an amount corresponding to the concentration C, and generates a potential E between it and the sample solution.
ただし、R:気体定数
T:絶体へ度(0K)
Z:注目イオンの価数
F:ファラディ定数
従来のイオンセンサが有する上記問題点は、高抵抗イオ
ン選択感応膜に発生する上記直流電位を検出するという
原理に基づいている。However, R: Gas constant T: Absolute degree (0K) Z: Valence of the ion of interest F: Faraday constant The problem with conventional ion sensors is that It is based on the principle of detection.
イオン選択感応膜を構成する材料は、その内部に電流の
担い手となる電荷運搬体が十分に存在せず、従って直流
電位検出法では電流値が極めて小さく、かつ定常状態に
達するまでに長時間を要する、すなわち、応答時間が長
くなり、導電体と考えるより、誘電体、抵抗体と考えら
れる。The materials that make up the ion-selective sensitive membrane do not have enough charge carriers to carry the current inside, so the DC potential detection method produces an extremely small current value and takes a long time to reach a steady state. In other words, the response time is longer, and it is considered to be a dielectric or a resistor rather than a conductor.
本発明に係るイオンセンサは、上記のことから、検出す
る物理特性として直流電位ではなく、交流印加による容
量抵抗インピーダンス等を採用した。In view of the above, the ion sensor according to the present invention employs capacitance-resistance impedance due to AC application, etc., instead of DC potential, as the physical characteristic to be detected.
その場合、それらの物理量は、試料溶液中に含まれる注
目イオンの濃度Cに依存して変化することがセンサとし
て不可欠条件であるが、イオン選択感応膜は濃度Cに依
存した量の注目イオンを膜内に取り込む能力を有してお
り、結果として膜の抵抗、容量なども膜内の注目イオン
量に応じて変化することになる。In that case, it is essential for the sensor that these physical quantities change depending on the concentration C of the ion of interest contained in the sample solution, but the ion-selective sensitive membrane changes the amount of the ion of interest that depends on the concentration C. It has the ability to be taken into the membrane, and as a result, the resistance, capacitance, etc. of the membrane change depending on the amount of ions of interest within the membrane.
本発明の実施例を第1図を参照して説明する。 An embodiment of the present invention will be described with reference to FIG.
図中1はイオン選択感応膜であり、このイオン選択感応
膜1内に電極対となる2本のリード線2a、2bを所定
の間隔Wをあけて取付けである。そしてこの2本のリー
ド線2a、2bはインピーダンスアナライザ3に1妾続
されている。In the figure, reference numeral 1 denotes an ion-selective sensitive membrane, into which two lead wires 2a and 2b forming an electrode pair are attached at a predetermined interval W. These two lead wires 2a and 2b are connected to an impedance analyzer 3.
上記イオン選択感応膜1は従来のイオンセンサに用いて
いるものと同様の材料でよく、注目する測定対象イオン
種に合わせて、高分子系材料、無機ガラス材料、無機化
合物材料、液膜材料等の中から任意に選定する。The ion selective sensitive membrane 1 may be made of the same material as that used in conventional ion sensors, and may be made of polymer materials, inorganic glass materials, inorganic compound materials, liquid film materials, etc., depending on the ion species to be measured. Select arbitrarily from among.
上記構成のイオンセンサは被検液である試料溶液4中に
浸漬してこの試料溶液4のイオン濃度を測定するが、こ
の測定に先立ってまず検量線を作成する。The ion sensor having the above configuration is immersed in a sample solution 4, which is a test liquid, to measure the ion concentration of the sample solution 4. Prior to this measurement, a calibration curve is first created.
すなわち、上記構成におけるイオンセンサにあっては、
電極間隔W1取付けられているイオン選択感応膜1の体
積、形状、リード線2a。That is, in the ion sensor with the above configuration,
Electrode spacing W1 Volume, shape, and lead wire 2a of the attached ion selective sensitive membrane 1.
2bとの接合状態等の幾何学的因子により容量、抵抗等
は変化するため、あらかじめ測定対象イオン濃度が既知
で、かつ濃度レベルの異なる数種類の溶液に常に一定深
さDだけ浸漬して容量等を計測して検量線を作成してお
く。Since the capacitance, resistance, etc. change depending on geometric factors such as the bonding state with 2b, the concentration of the ion to be measured is known in advance, and the capacitance, etc. Measure and create a calibration curve.
次に、試料溶液4中に上記実施例のイオンセンサを深さ
pだけ浸漬してインピーダンスアナライザ3にて交流印
加による容量等を計測し、この計Jlll結果を上記検
量線に照合して濃度を割り出す。Next, the ion sensor of the above example is immersed in the sample solution 4 to a depth p, and the impedance analyzer 3 measures the capacitance due to AC application, and the concentration is determined by comparing this total result with the above calibration curve. Figure out.
次にカリウムイオンセンサの例を以下に示す。Next, an example of a potassium ion sensor is shown below.
イオン選択感応膜として高分子系材料の中から以下の物
質、組成物を用いた。The following substances and compositions among polymeric materials were used as the ion-selective sensitive membrane.
pvc (ポリ塩化ビニル) : 800+tg
(33,1wt%)ONPOE (オルトントロフェニ
ルオクチルエーテル): 340mg(14,fwt%
)
DO8(ジオクチルセバケイト) 812130憎g(
52,1wt%)KTCPB (クリウムテトラキスク
ロロフェニルボレイト)
: 4mg(0,18wt%)Val (パリノマ
イシン) : 12mg(0,5wt%)上記
の各物質を約1Or+lのTHF (テトラヒトフラン
)に均一に撹拌溶解し、K+用ビイオン選択感応膜原液
1)とした。PVC (polyvinyl chloride): 800+tg
(33,1 wt%) ONPOE (orthotrophenyl octyl ether): 340 mg (14, fwt%
) DO8 (dioctyl sebacate) 812130g(
52.1wt%) KTCPB (Crium tetrakischlorophenylborate)
: 4 mg (0.18 wt%) Val (palinomycin) : 12 mg (0.5 wt%) Each of the above substances was uniformly dissolved in approximately 1 Or+l of THF (tetrahydrofuran) with stirring to prepare a bio-ion selective sensitive membrane stock solution 1) for K+. And so.
次に直径が0.3mm、長さが200mmの銀線を2本
用意し、これで、イオン選択感応膜取付は部として間隔
Wが1 mm、長さが2011の平行部を作成し、この
平行部に上記原液(1)を塗布する。この原液(1)は
やや粘性をおびた液体であるが、空気中に放置しておく
とTHEが揮発して体積収縮を生じるため、2本の銀線
を第2図に示すように完全に覆うためには数回塗布する
必要があった。Next, prepare two silver wires with a diameter of 0.3 mm and a length of 200 mm, and use them to create a parallel part with a distance W of 1 mm and a length of 2011 mm to attach the ion selective sensitive membrane. Apply the above stock solution (1) to the parallel portion. This stock solution (1) is a slightly viscous liquid, but if it is left in the air, THE will volatilize and the volume will shrink. It took several coats to cover it.
イオン選択感応膜1部のTHFを完全に揮発させた後、
濃度10−’Mから10°Mまでの各KCl溶に常に一
定の深10mm浸漬して容量を測定し、検量線を作成し
た。その結果を第3図に示す。After completely volatilizing the THF in one part of the ion selective sensitive membrane,
The sample was immersed in each KCl solution with a concentration of 10-'M to 10[deg.]M to a constant depth of 10 mm, the capacity was measured, and a calibration curve was created. The results are shown in FIG.
この図において、K++度10−′jMから10Mの広
範囲にわたり、直線関係が成立し、また妨害イオンであ
るNa+に対しては殆ど応答しないことより、選択性に
優れたに1センサであることがわかる。In this figure, a linear relationship holds over a wide range of K++ degrees from 10-'jM to 10M, and there is almost no response to Na+, which is an interfering ion, indicating that it is a single sensor with excellent selectivity. Recognize.
また応答時間もセンサ浸漬と同時にLCRメータにより
容量を読み取ることが可能であり、応答性も極めて良好
である。In addition, the response time is extremely good, as it is possible to read the capacitance with an LCR meter at the same time as the sensor is immersed.
比較例
上記に1用イオン選択感応膜原液(1)を清浄なガラス
板上に展開し、THFを除去後得られたイオン選択感応
膜をガラス板よりはがして外径5mmのガラス管に取り
付け、標準電解質(0,IMKCjltfj液)、リー
ド線を取り付け、第5図に示すようなイオンセンサを作
成した。Comparative Example The above ion-selective sensitive membrane stock solution (1) for 1 was spread on a clean glass plate, and after removing THF, the obtained ion-selective sensitive membrane was peeled off from the glass plate and attached to a glass tube with an outer diameter of 5 mm. A standard electrolyte (0, IMKCjltfj liquid) and lead wires were attached to create an ion sensor as shown in FIG.
これを上記本発明の実施例と同様の方法で検量線を求め
た。その結果を第4図に示す。A calibration curve was obtained using the same method as in the above-mentioned Example of the present invention. The results are shown in FIG.
この図において、濃度と電位の直線性及びNa+に対す
る選択性は略満足なものであるが、応答時間は2〜5分
と長くかかり、この点で即時に応答する上記本発明の実
施例に及ばない。In this figure, the linearity of concentration and potential and the selectivity for Na do not have.
本発明によれば、高抵抗のイオン選択感応膜を用いても
、交流印加による容量等を測定するため、イオン選択感
応部の有効面積が小さくなり、イオンセンサの微小化、
小型化を図ることができる。また応答時間を短縮するこ
とができる。またその上、参照電極が不要となって、構
造が極めて簡単になり、経済性に優れたイオンセンサを
得ることができる。According to the present invention, even if a high-resistance ion-selective sensitive membrane is used, the effective area of the ion-selective sensitive part is reduced because the capacitance, etc. is measured by applying an alternating current, and the ion sensor can be miniaturized.
Miniaturization can be achieved. Additionally, response time can be shortened. Moreover, since a reference electrode is not required, the structure becomes extremely simple, and an ion sensor with excellent economic efficiency can be obtained.
第1図は本発明の実施例を示す構成説明図、第2図は第
1図の■−■線に沿う断面図、第3図は本発明の実施例
における検量線図、第4図は比較例における検量線図、
第5図は従来例を示す構成説明図である。
1はイオン選択感応膜、2a、2bはリード線、3はイ
ンピーダンスアナライザ、4は試料溶液。
第
3
図
第
図
Plに+orNa+FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. Calibration curve diagram in comparative example,
FIG. 5 is a configuration explanatory diagram showing a conventional example. 1 is an ion selective sensitive membrane, 2a and 2b are lead wires, 3 is an impedance analyzer, and 4 is a sample solution. Figure 3 Figure Pl +orNa+
Claims (1)
択的に、かつ溶液中の濃度に応じた量だけ取込むイオン
選択感応部に電極を取付け、この電極にインピーダンス
アナライザを接続したことを特徴とするイオンセンサ。An electrode is attached to the ion-selective sensitive part that selectively takes in only a certain ion from among the various components in the solution and in an amount corresponding to the concentration in the solution, and an impedance analyzer is connected to this electrode. Characteristic ion sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1145424A JP2549311B2 (en) | 1989-06-09 | 1989-06-09 | Ion sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1145424A JP2549311B2 (en) | 1989-06-09 | 1989-06-09 | Ion sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0312549A true JPH0312549A (en) | 1991-01-21 |
JP2549311B2 JP2549311B2 (en) | 1996-10-30 |
Family
ID=15384931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1145424A Expired - Lifetime JP2549311B2 (en) | 1989-06-09 | 1989-06-09 | Ion sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2549311B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001022521A1 (en) * | 1999-09-21 | 2001-03-29 | Qinetiq Limited | Ionic concentration monitor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142454A (en) * | 1987-11-28 | 1989-06-05 | Makoto Takagi | Ac detection type chemical substance measuring method |
-
1989
- 1989-06-09 JP JP1145424A patent/JP2549311B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142454A (en) * | 1987-11-28 | 1989-06-05 | Makoto Takagi | Ac detection type chemical substance measuring method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001022521A1 (en) * | 1999-09-21 | 2001-03-29 | Qinetiq Limited | Ionic concentration monitor |
Also Published As
Publication number | Publication date |
---|---|
JP2549311B2 (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970705022A (en) | Method of measuring gas concentration and micro-fabricated sensor | |
JP2005505778A (en) | Ion-selective electrodes for direct organic drug analysis of saliva, sweat, and surface-wiping elements | |
US9279781B2 (en) | Measuring arrangement and method for registering an analyte concentration in a measured medium | |
US5755939A (en) | Polyion sensor with molecular weight differentiation | |
Abdoon et al. | Utility of electrochemical sensors for direct determination of nicotinamide (B3): comparative studies using modified carbon nanotubes and modified β-cyclodextrin sensors | |
NL7908747A (en) | ELECTROCHEMICAL ELECTRODE, METHOD FOR MANUFACTURING AN ION SENSITIVE MEMBRANE FOR IT, AND METHOD FOR MANUFACTURING AN ELECTROCHEMICAL ELECTRODE. | |
RU2564516C2 (en) | Capacitance measurement method and its application | |
US5489371A (en) | Sensor for electrochemical measurements | |
AU2004294915B2 (en) | A self-condensing pH sensor | |
CA2466994C (en) | Potentiometric, ion-selective electrode | |
JPH0312549A (en) | Ion sensor | |
CN110702748B (en) | Potentiometric sensor assembly and method for monitoring the sensor function of a potentiometric sensor | |
JPS61176846A (en) | Ion sensor body | |
WO1992022810A1 (en) | Calibration of streaming current detection | |
Hidouri et al. | High Sensitive and Selective Hydrogen Phosphate ISFET Based on Polyvinyl Chloride Membrane | |
Kholoshenko et al. | All-solid-state ion-selective electrodes for determining amiodarone | |
JPH11264808A (en) | Gas sensor unit | |
JPH0718835B2 (en) | Ion concentration measurement method | |
JPH04223259A (en) | Liquid-film-ph measuring apparatus | |
Sakai et al. | Development of a planar type ion sensor for urine testing | |
JPH0273149A (en) | Ph sensor | |
TW202317988A (en) | Biosensor measurement system and method thereof for detecting human uric acid | |
JPH0612350B2 (en) | Distribution type ion sensor body | |
Issa et al. | Solid contact sensors for determination of the antihistaminic drug ketotifen fumarate | |
JPS6066152A (en) | Flow type ion selective electrode device |