JPH03125017A - Magnetic control bearing unit - Google Patents

Magnetic control bearing unit

Info

Publication number
JPH03125017A
JPH03125017A JP26287089A JP26287089A JPH03125017A JP H03125017 A JPH03125017 A JP H03125017A JP 26287089 A JP26287089 A JP 26287089A JP 26287089 A JP26287089 A JP 26287089A JP H03125017 A JPH03125017 A JP H03125017A
Authority
JP
Japan
Prior art keywords
bearing
bearing holder
vibration
rotating shaft
electromagnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26287089A
Other languages
Japanese (ja)
Inventor
Hiromasa Fukuyama
寛正 福山
Takeshi Takizawa
岳史 滝澤
Satoru Aihara
相原 了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP26287089A priority Critical patent/JPH03125017A/en
Publication of JPH03125017A publication Critical patent/JPH03125017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To damp the vibration of a rotational shaft by having a middle seat sandwiched by a magnetic pole face of an electromagnet and an outer peripheral surface of a bearing holder, and by providing an acceleration sensor that detects vibrational acceleration transmitted to the bearing holder. CONSTITUTION:A rotational shaft is inserted in the inside of a rolling bearing 3, which is supported by a bearing holder 10 made of magnetic material. Around the bearing holder 19, plural electromagnets 22a-22d are arranged. A middle seat 24 made of non-magnetic material is sandwiched between a magnetic pole surface of each electromagnet 22a-22d and an outer peripheral surface of the bearing holder 19. A controller is provided so as to control electrification to each electromagnet 22a-22d, based on a signal from an acceleration sensor that detects vibrational acceleration transmitted to the bearing holder 19. The vibration of each rotational shaft is thus damped, and the growth of the vibration can thus be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明に係る磁気制御軸受ユニットは、各種工作機械
等に於いて、動的手釣り合いの大きな回転軸や高速回転
する回転軸を、この回転軸の振動を抑えつつ、回転自在
に支持したり、或は鉄鋼の圧延ローラの様な、大きな衝
撃荷重を受ける部材を回転自在に支持する為に利用する
Detailed Description of the Invention (Field of Industrial Application) The magnetically controlled bearing unit according to the present invention is used in various machine tools, etc. to rotate a rotating shaft with a large dynamic hand balance or a rotating shaft that rotates at high speed. It is used to rotatably support a shaft while suppressing vibration, or to rotatably support a member that receives a large impact load, such as a steel rolling roller.

(従来の技術) 例えば動的手釣り合いの大きな回転軸や高速回転する回
転軸の場合、回転に伴なフて振動する場合が多いが、こ
の振動を抑える手段を講じない場合、共振等によってこ
の振動が次第に成長し、著しい場合には、回転軸を設け
た工作機械等の運転を行なえなくなってしまう。
(Prior art) For example, in the case of a rotating shaft with a large dynamic hand balance or a rotating shaft that rotates at high speed, it often vibrates as it rotates, but if no measures are taken to suppress this vibration, this may occur due to resonance etc. The vibrations gradually grow, and in severe cases, it becomes impossible to operate machine tools equipped with rotating shafts.

この為従来から、例えば実開昭62−77322号公報
、特開昭63−135612号公報等に見られる様に、
機械的手段により、或は粘性流体手段により、回転軸の
振動を減衰する装置が知られている。
For this reason, as seen in, for example, Japanese Unexamined Utility Model Publication No. 62-77322 and Japanese Unexamined Patent Publication No. 63-135612,
Devices are known for damping vibrations of a rotating shaft by mechanical means or by viscous fluid means.

この内、実開昭62−77322号公報に開示された、
機械的手段による防振′型軸受ユニットは、第3〜4図
に示す様に構成されている。
Among these, disclosed in Japanese Utility Model Application Publication No. 62-77322,
A mechanically vibration-isolated 'type bearing unit is constructed as shown in FIGS. 3 and 4.

この第3〜4図に於いて、1は回転軸で、軸受ホルダ2
の内側に、転がり軸受3を介して、回転自在に支持され
ている。そして上記軸受ホルダ2は軸受ケーシング4の
内側に、ダンパ部材5を介して支持されている。
In Figs. 3 and 4, 1 is a rotating shaft, and a bearing holder 2
It is rotatably supported inside via a rolling bearing 3. The bearing holder 2 is supported inside the bearing casing 4 via a damper member 5.

弾性材により造られたダンパ部材5は、短円筒状の主部
6の外周面と内周面とに、それぞれ複数個ずつの外側凸
部7.7と内側凸部8.8とを、互い違いに形成して成
るもので、各外側凸部7.7を上記軸受ケーシング4の
内周面に、各内側凸部8.8を上記軸受ホルダ2の外周
面に、それぞれ弾性的に押圧している。
The damper member 5 made of an elastic material has a plurality of outer convex portions 7.7 and a plurality of inner convex portions 8.8 on the outer circumferential surface and inner circumferential surface of the short cylindrical main portion 6, respectively, in a staggered manner. The outer protrusions 7.7 are elastically pressed against the inner circumferential surface of the bearing casing 4, and the inner protrusions 8.8 are elastically pressed against the outer circumferential surface of the bearing holder 2. There is.

この結果、この第3〜4図に示した防振型軸受ユニット
の場合、回転軸1が振動した場合にも、上記ダンパ部材
5の主部6が弾性変形する事で上記振動を吸収し、この
振動が成長する事を防止する。
As a result, in the case of the vibration-proof bearing unit shown in FIGS. 3 and 4, even when the rotating shaft 1 vibrates, the main portion 6 of the damper member 5 elastically deforms to absorb the vibration. Prevent this vibration from growing.

又、特開昭63−135612号公報に開示された、粘
性流体手段による防振型軸受ユニ・ントは、第5図に示
す様に構成されている。
Further, a vibration-proof bearing unit using viscous fluid means disclosed in Japanese Patent Application Laid-open No. 135612/1983 is constructed as shown in FIG.

この第5図に於いて、9.9は回転軸1を挟んで設けら
れた1対の粘性流体ダンパで、各粘性流体ダンパ9.9
には、それぞれが圧縮ばね10.10により、回転軸1
の外周面に向かう弾力を付与された、ピストン11.1
1が内蔵されている。各ピストン11.11にそれぞれ
の基端を結合したロッド12.12の先端部には、摺接
片13.13を設け、各摺接片13.13を、上記圧縮
ばね10.10の弾力により、上記回転軸1の外周面に
押圧している。又、1対の粘性流体ダンパ9.9同士を
連結した管14.14の途中には、サーモモジュール1
5.15等を設けて、管14.14内を流れる粘性流体
の温度を調節自在としている。
In this FIG. 5, 9.9 is a pair of viscous fluid dampers provided with the rotating shaft 1 in between, and each viscous fluid damper 9.9
, each of which is compressed by a compression spring 10.10,
The piston 11.1 is elastically biased toward the outer circumferential surface of the piston 11.1.
1 is built-in. A sliding contact piece 13.13 is provided at the tip end of the rod 12.12 whose base end is connected to each piston 11.11, and each sliding contact piece 13.13 is moved by the elasticity of the compression spring 10. , is pressed against the outer peripheral surface of the rotating shaft 1. Further, a thermo module 1 is installed in the middle of the pipe 14.14 connecting the pair of viscous fluid dampers 9.9.
5.15 etc., so that the temperature of the viscous fluid flowing inside the pipe 14.14 can be adjusted.

上述の様に構成される為、回転軸1が振動した場合でも
、この振動は、1対の粘性流体ダンパ9.9に組み込ま
れたピストン11.11が粘性流体中で変位しようとす
る事で吸収され、回転軸1の振動が成長する事が防止さ
れる。
Since it is configured as described above, even if the rotating shaft 1 vibrates, this vibration is caused by the pistons 11.11 incorporated in the pair of viscous fluid dampers 9.9 trying to displace in the viscous fluid. It is absorbed and the vibration of the rotating shaft 1 is prevented from growing.

1対の粘性流体ダンパ9.9による振動減衰性能を調節
する場合には、上記サーモモジュール15.15により
粘性流体の温度を昇降させる事で、この粘性流体の粘度
を変化させる。
When adjusting the vibration damping performance of the pair of viscous fluid dampers 9.9, the viscosity of the viscous fluid is changed by raising and lowering the temperature of the viscous fluid using the thermo module 15.15.

(発明が解決しようとする課題) ところが、上述の様に構成され作用する、従来の防振型
軸受ユニットの場合、次に述べる様な不都合を生じる。
(Problems to be Solved by the Invention) However, in the case of the conventional anti-vibration bearing unit that is configured and operates as described above, the following disadvantages occur.

即ち、回転軸1の振動の大きさ、周波数等は、この回転
軸1を組み込んだ工作機械等の運転状況によって種々異
なる為、回転@1の振動を減衰する性能も調節自在であ
る事が好ましい。
That is, since the magnitude, frequency, etc. of the vibrations of the rotating shaft 1 vary depending on the operating conditions of the machine tool, etc. in which the rotating shaft 1 is incorporated, it is preferable that the performance of damping the vibrations of the rotating shaft 1 is also adjustable. .

ところが、第3〜4図に示す様な8a械式のものの場合
、後から振動減衰性能を調節する事は全く出来ないだけ
でなく、軸受剛性(−負荷容量/変位)自体も、十分に
大きくする事が出来ず、圧延ローラの如き、大きな衝撃
荷重を受ける部分には使用出来なかった。
However, in the case of the 8a mechanical type as shown in Figures 3 and 4, not only is it impossible to adjust the vibration damping performance afterwards, but the bearing rigidity (-load capacity/displacement) itself is sufficiently large. Therefore, it could not be used in parts that are subject to large impact loads, such as rolling rollers.

又、第5図に示した粘性流体式のものの場合、後から振
動減衰性能を調節する事は可能ではあるが、サーモモジ
ュール15,15により粘性流体の温度を変えるのに時
間を要する為、回転軸1の振動状況が急に変化した場合
に於ける応答性が、必ずしも十分とは言えない。
In addition, in the case of the viscous fluid type shown in Fig. 5, although it is possible to adjust the vibration damping performance later, it takes time to change the temperature of the viscous fluid using the thermo modules 15, 15, so the rotation The responsiveness when the vibration condition of the shaft 1 suddenly changes cannot necessarily be said to be sufficient.

本発明の磁気制御軸受ユニットは、上述の様な不都合を
何れも解消するものである。
The magnetically controlled bearing unit of the present invention eliminates all of the above-mentioned disadvantages.

(課題を解決する為の手段) 本発明の磁気制御軸受ユニットは何れも、内側に回転軸
を挿通する軸受と、この軸受を内側に支持した磁性材製
の軸受ホルダと、この軸受ホルダの周囲に配置された複
数の電磁石と、上記軸受ホルダに伝わる振動加速度を検
出する加速度センサと、この加速度センサからの信号に
基づいて上記各電磁石への通電を制御する制御器とを具
えている。
(Means for Solving the Problems) Each magnetically controlled bearing unit of the present invention includes a bearing into which a rotating shaft is inserted, a bearing holder made of a magnetic material that supports this bearing inside, and a surrounding area around the bearing holder. The bearing holder includes a plurality of electromagnets arranged in the bearing holder, an acceleration sensor that detects vibrational acceleration transmitted to the bearing holder, and a controller that controls energization of each of the electromagnets based on a signal from the acceleration sensor.

そして、請求項1に記載された磁気制御軸受ユニットは
、各電磁石の磁極面と上記軸受ホルダの外周面との間に
、非磁性材製の間座を挟持している。
In the magnetically controlled bearing unit according to the first aspect, a spacer made of a non-magnetic material is sandwiched between the magnetic pole surface of each electromagnet and the outer peripheral surface of the bearing holder.

又、請求項2に記載された磁気制御軸受ユニットは、軸
受ホルダの外周面に、非磁性材製の皮膜を形成している
Further, in the magnetically controlled bearing unit according to the second aspect of the present invention, a film made of a non-magnetic material is formed on the outer peripheral surface of the bearing holder.

更に、請求項3に記載された磁気制御軸受ユニットは、
各電磁石の磁極面に、非磁性材製の皮膜を形成している
Furthermore, the magnetically controlled bearing unit according to claim 3 includes:
A coating made of a non-magnetic material is formed on the magnetic pole surface of each electromagnet.

(作  用) 上述の様に構成される本発明の磁気制御軸受ユニットに
より、回転軸の振動を減衰し、この振動が成長しない様
にする際の作用は、次の通りである。
(Function) The magnetically controlled bearing unit of the present invention configured as described above attenuates the vibration of the rotating shaft and prevents the vibration from growing.The function is as follows.

軸受ホルダに支持された軸受の内側に挿通された回転軸
が振動した場合、加速度センサが、この振動の加速度を
検出して、この検出信号を制御器に送る。
When the rotating shaft inserted inside the bearing supported by the bearing holder vibrates, the acceleration sensor detects the acceleration of this vibration and sends this detection signal to the controller.

そして制御器が、上記検出信号に基づき電磁石に通電し
て、上記軸受ホルダを、回転軸が振動する方向とは逆の
方向に引っ張る。
Then, the controller energizes the electromagnet based on the detection signal to pull the bearing holder in a direction opposite to the direction in which the rotating shaft vibrates.

この結果、振動に伴なう回転軸の運動エネルギと、電磁
石の吸引力に基づく運動エネルギとが互いに打ち消し合
い、上記回転軸の振動を減衰して、この振動が成長する
事を防止する。
As a result, the kinetic energy of the rotating shaft due to vibration and the kinetic energy based on the attractive force of the electromagnet cancel each other out, damping the vibration of the rotating shaft and preventing the vibration from growing.

(実施例) 次に、図示の実施例を説明しつつ、本発明を更に詳しく
説明する。
(Example) Next, the present invention will be explained in more detail while explaining the illustrated embodiment.

第1〜2図は本発明の実施例を示しており、第1図は第
2図のA−A断面に相当する図、第2図は第1図のB−
B断面図である。
1 and 2 show examples of the present invention, FIG. 1 is a view corresponding to the AA cross section in FIG. 2, and FIG. 2 is a view corresponding to the B--
It is a sectional view of B.

3.3は、それぞれの内側に回転軸1(第3〜4図参照
。第1〜2図には省略。)を挿通ずる転がり軸受で、内
輪16の外周面に形成した内輪軌道と外輪17の内周面
に形成した外輪軌道との間に、それぞれ複数個ずつの転
動体18.18を設ける事で構成されており、上記回転
軸1は、こめ内輪16.16の内側に挿通されている。
3.3 is a rolling bearing in which a rotating shaft 1 (see Figs. 3 and 4; omitted in Figs. 1 and 2) is inserted inside each bearing; an inner ring raceway formed on the outer peripheral surface of an inner ring 16 and an outer ring 17; A plurality of rolling elements 18.18 are provided between the outer ring raceway formed on the inner peripheral surface of the inner ring 16.16, and the rotating shaft 1 is inserted inside the inner ring 16. There is.

上述の様な1対の転がり軸受3.3は、それぞれの外輪
17.17を軸受ホルダ19に内嵌し、止めナツト20
により抜は止めを図る事で、この軸受ホルダ19の内側
に支持されている。
A pair of rolling bearings 3.3 as described above have their respective outer rings 17.17 fitted into the bearing holder 19, and the retaining nuts 20
It is supported inside this bearing holder 19 by preventing it from being pulled out.

鋼等の磁性材により筒状に造られた軸受ホルダ19は、
内周面を円筒形とし、外周面を、第一第二、第三、第四
ノ平面21 a、 2 l b、 21c、21dを連
続させた四角筒状としたもので、上記転がり軸受3.3
の外輪17.17は、それぞれこの軸受ホルダ19に内
嵌固定されている。
The bearing holder 19 is made of a magnetic material such as steel and has a cylindrical shape.
The inner circumferential surface is cylindrical, and the outer circumferential surface is a square tube in which the first, second, third, and fourth planes 21 a, 2 l b, 21 c, and 21 d are continuous, and the rolling bearing 3 .3
The outer rings 17, 17 of the bearing holder 19 are each fixedly fitted in this bearing holder 19.

一方、上記軸受ホルダ19の周囲には、この軸受ホルダ
19を囲む様にして、四角枠状のハウジング25が設け
られている。そしてこのハウジング25の内周面には、
それぞれ第一〜第四の電磁石22 a、 22 b、 
22 c、 22 dが、それぞれの電磁石22a〜2
2dの内端の磁極面を、上記第一〜第四の平面21a〜
21dに対向させた状態で設けられている。
On the other hand, a rectangular frame-shaped housing 25 is provided around the bearing holder 19 so as to surround the bearing holder 19. And on the inner peripheral surface of this housing 25,
First to fourth electromagnets 22 a, 22 b, respectively.
22 c and 22 d are the respective electromagnets 22 a to 2
The magnetic pole surface at the inner end of 2d is aligned with the first to fourth planes 21a to 2d.
21d.

更に、第一の加速度センナ(図示せず)を、上記軸受ホ
ルダ19の外周面の内の第一の平面21aに取り付け、
第二の加速度センサ23を、上記第一の平面21aと隣
り合う第二の平面21bに取り付けている。
Furthermore, a first acceleration sensor (not shown) is attached to the first flat surface 21a of the outer peripheral surface of the bearing holder 19,
A second acceleration sensor 23 is attached to a second plane 21b adjacent to the first plane 21a.

一方、前記第一〜第四の電磁石22a〜22dの磁極面
と、前記軸受ホルダ19の外周面を構成する、第一〜第
四の平面21a〜21dとの間には、アルミニウム、合
成樹脂等の非磁性材により造られた間座24を挟持して
いる。
On the other hand, between the magnetic pole surfaces of the first to fourth electromagnets 22a to 22d and the first to fourth planes 21a to 21d that constitute the outer peripheral surface of the bearing holder 19, aluminum, synthetic resin, etc. A spacer 24 made of non-magnetic material is sandwiched therebetween.

更に、本発明の磁気制御軸受ユニットの場合、前記第一
 第二の加速度センサ23の検出信号を、図示しない制
御器に入力し、この制御器が、上記検出信号に基づいて
、電磁石に、上記加速度信号の大きさに対応した電圧で
、通電する様にしている。
Furthermore, in the case of the magnetically controlled bearing unit of the present invention, the detection signals of the first and second acceleration sensors 23 are input to a controller (not shown), and the controller controls the electromagnets based on the detection signals. Electricity is supplied at a voltage corresponding to the magnitude of the acceleration signal.

上述の様に構成される本発明の磁気制御軸受ユニットに
より、軸受ホルダ19の内側に、1対の転がり軸受3.
3を介して回転自在に支持された回転軸1の振動を減衰
し、この振動が成長しない様にする際の作用は、次の通
りである。
With the magnetically controlled bearing unit of the present invention configured as described above, a pair of rolling bearings 3.
The operation of damping the vibration of the rotary shaft 1 rotatably supported via the rotary shaft 1 and preventing the vibration from growing is as follows.

回転軸1が振動した場合、この振動は、1対の転がり軸
受3.3を構成する内輪16.16、転動体18.18
、外輪17.17を介して軸受ホルダ19に伝わり、こ
の軸受ホルダ19が、回転@1と同じ方向に加速度を生
じて振動する。
When the rotating shaft 1 vibrates, this vibration causes the inner ring 16.16 and the rolling elements 18.18 that constitute a pair of rolling bearings 3.3 to vibrate.
, is transmitted to the bearing holder 19 via the outer ring 17.17, and this bearing holder 19 generates an acceleration in the same direction as the rotation @1 and vibrates.

この様な軸受ホルダ19の振動は、第一の加速度センサ
と第二の加速度センサ23との一方又は双方により、そ
の加速度(方向と大きさ)を検出され、この検出値を表
わす検出信号が制御器に送られる。
The acceleration (direction and magnitude) of such vibration of the bearing holder 19 is detected by one or both of the first acceleration sensor and the second acceleration sensor 23, and a detection signal representing this detected value is used for control. sent to the vessel.

そして制御器が、上記検出信号に基づき、第一〜第四の
電磁石22a〜22dに通電して、前記回転軸1を挿通
した軸受ホルダ19を、振動に基づき回転軸1が変位し
ようとする方向とは逆の方向に引っ張る。
Based on the detection signal, the controller energizes the first to fourth electromagnets 22a to 22d to move the bearing holder 19, into which the rotating shaft 1 is inserted, in the direction in which the rotating shaft 1 is about to be displaced based on the vibration. pull in the opposite direction.

例えば、振動に基づき回転軸1が、第1図の右方に移動
しようとする瞬間には、第一の加速度センサからの信号
に基づいて制御器が、同図の左側に設けられた第三の電
磁石22cへの通電量を多くし、同図の右側に設けた第
一の電磁石22aへの通電量を少なく(通電停止も含む
)して、転がり軸受3.3を介して上記回転軸1を支持
した軸受ホルダ19を、同図の左方に引っ張る傾向とす
る。この際、第一、第三の電磁石22a、22cへの通
電量は、上記第一の加速度センサが検出する、軸受ホル
ダ19の振動加速度に基づいて調節する。
For example, at the moment when the rotating shaft 1 is about to move to the right in FIG. 1 due to vibration, the controller, based on the signal from the first acceleration sensor, The amount of current supplied to the first electromagnet 22c is increased, and the amount of current supplied to the first electromagnet 22a provided on the right side of the figure is decreased (including stopping the supply of current). The bearing holder 19 supporting the holder 19 tends to be pulled to the left in the figure. At this time, the amount of current applied to the first and third electromagnets 22a and 22c is adjusted based on the vibration acceleration of the bearing holder 19 detected by the first acceleration sensor.

回転軸1が第1図の左方に9勤しようとする瞬間には制
御器が、上記第三の電磁石22cへの通電量を少なくし
、反対側にある第一の電磁石22aへの通電量を多くし
て、上記軸受ホルダ19を同図の右方に引っ張る傾向と
する。
At the moment when the rotating shaft 1 is about to shift to the left in FIG. 1, the controller reduces the amount of current applied to the third electromagnet 22c, and reduces the amount of current applied to the first electromagnet 22a on the opposite side. is increased to tend to pull the bearing holder 19 to the right in the figure.

この結果、振動に伴なう回転軸1の運動エネルギと、第
三の電磁石22C1第一の電磁石22aの吸引力に基づ
く運動エネルギとが互いに打ち消し合い、上記回転軸1
の振動を減衰して、この振動が成長する事を防止する。
As a result, the kinetic energy of the rotating shaft 1 due to vibration and the kinetic energy based on the attractive force of the third electromagnet 22C1 and the first electromagnet 22a cancel each other out, and the rotating shaft 1
This damps the vibrations and prevents them from growing.

回転軸1が第1図の上下方向に振動した場合には、第二
、第四の電磁石22b、22dに適宜通電する事で、こ
の振動を減衰し、更に回転軸1が斜め方向に振動した場
合には、第一〜第四の電磁石22a〜22dに適宜通電
する事で、この振動を減衰する。
When the rotating shaft 1 vibrates in the vertical direction in FIG. 1, this vibration is damped by appropriately energizing the second and fourth electromagnets 22b and 22d, and the rotating shaft 1 further vibrates in an oblique direction. In this case, this vibration is attenuated by appropriately energizing the first to fourth electromagnets 22a to 22d.

この様に、第一〜第四の電磁石22a〜22dにより振
動を減衰する作用は、電気的に行なわれる為、回転軸1
の振動状態が急に変化した場合でも、即座にこの変化に
対応する事が出来る。
In this way, since the action of damping vibrations by the first to fourth electromagnets 22a to 22d is performed electrically, the rotating shaft 1
Even if the vibration state of the device suddenly changes, it is possible to immediately respond to this change.

特に、本発明の磁気制御軸受ユニットの場合、第一〜第
四の電磁石22a〜22dの磁極面と、軸受ホルダ19
の第一〜第四の平面21a〜21dとの間に、非磁性材
製の間座24を介在させている為、各電磁石22a〜2
2dと軸受ホルダ19とが一体に動く事がなく、各電磁
石22a〜22dへの通電制御による軸受ホルダ19の
振動減衰を、確実に行なう事が出来る。
In particular, in the case of the magnetically controlled bearing unit of the present invention, the magnetic pole surfaces of the first to fourth electromagnets 22a to 22d and the bearing holder 19
Since the spacer 24 made of non-magnetic material is interposed between the first to fourth planes 21a to 21d, each electromagnet 22a to 2
2d and the bearing holder 19 do not move together, and the vibration of the bearing holder 19 can be reliably damped by controlling the energization to each of the electromagnets 22a to 22d.

但し、第一〜第四の平面21a〜21d、と、第一〜第
四の電磁石22a〜22dの磁極面との間に存在し、前
記間座24が挟まれる隙間は、数100μm程度の、掻
く狭いものである為、各面の間に非磁性材製の層を介在
させる為には、上記隙間に非磁性材製の間座24を設け
る代りに、第一〜第四の平面21a〜21dと、第一〜
第四の電磁石22a〜22dの磁極面との一方又は双方
に、非磁性材製の皮膜を形成して、上記隙間を塞いでも
良い。
However, the gap between the first to fourth planes 21a to 21d and the magnetic pole faces of the first to fourth electromagnets 22a to 22d, in which the spacer 24 is sandwiched, is approximately several hundred μm. Since the gap is narrow, in order to interpose a layer made of a non-magnetic material between each surface, instead of providing the spacer 24 made of a non-magnetic material in the above-mentioned gap, the first to fourth planes 21a to 21. 21d and the first ~
A film made of a non-magnetic material may be formed on one or both of the magnetic pole faces of the fourth electromagnets 22a to 22d to close the gap.

尚、軸受ホルダ19に伝わる振動加速度を検出する為の
各加速度センサは、ハウジング25に取り付けても良い
Note that each acceleration sensor for detecting vibration acceleration transmitted to the bearing holder 19 may be attached to the housing 25.

又、軸受ホルダ19の外周面は、四角筒面の代りに、円
筒面としても良い。
Further, the outer peripheral surface of the bearing holder 19 may be a cylindrical surface instead of a square cylindrical surface.

(発明の効果) 本発明の磁気制御軸受ユニットは、以上に述べた通り構
成され作用するが、回転軸に発生した振動を電磁石によ
り減衰する為、異なる状態での振動を有効に防止出来る
だけでなく、振動状態が急激に変動した場合でも、迅速
に対応する事が出来、回転軸を設けた工作機械等の運転
を、常に安定した状態で行なう事が出来る。
(Effects of the Invention) The magnetically controlled bearing unit of the present invention is configured and operates as described above, but since the vibrations generated in the rotating shaft are damped by the electromagnet, it is possible to effectively prevent vibrations in different conditions. Even if the vibration state suddenly changes, it is possible to respond quickly, and machine tools equipped with rotating shafts can always be operated in a stable state.

又、転がり軸受を構成する外輪はハウジングに、何れも
十分な剛性を有する材料により造られた、第一〜第四の
電磁石と、非磁性材製の間座或は皮膜と、軸受ホルダと
を介して保持されている為、軸受剛性も十分なものとな
り、圧延ローラの如き、大きな衝撃荷重を受ける部分に
も使用出来る。
Further, the outer ring constituting the rolling bearing has first to fourth electromagnets made of a material having sufficient rigidity, a spacer or membrane made of a non-magnetic material, and a bearing holder in the housing. Since it is held through the bearing, the bearing rigidity is sufficient, and it can be used in parts that are subject to large impact loads, such as rolling rollers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は本発明の実施例を示しており、第1図は第
2図のA−A断面に相当する図、第2図は第1図のB−
B断面図、第3〜4図は従来の軸受ユニットの第1例を
示しており、第3図は縦断面図、第4図は第3図の半部
縦断面図、第5図は従来装置の第2例を示す断面図であ
る。 1:回転軸、2:軸受ホルダ、3:転がり軸受、4:軸
受ケーシング、5:ダンパ部材、6:主部、7:外側凸
部、8:内側凸部、9:粘性流体ダンパ、10:圧縮ば
ね、11:ピストン、12:ロッド、13:摺接片、1
4:管、15:サーモモジュール、16:内輪、17:
外輪、18:転動体、19:軸受ホルダ、20:止めナ
ツト、21a:第一の平面、21b:第二の平面、21
C:第三の平面、21d:第四の平面、22a:第一の
電磁石、22b:第二の電磁石、22C:第三の電磁石
、22d:第四の電磁石、23:第一の加速度センサ、
24:間座、25:ハウジング。
1 and 2 show examples of the present invention, FIG. 1 is a view corresponding to the AA cross section in FIG. 2, and FIG. 2 is a view corresponding to the B--
3 and 4 show a first example of a conventional bearing unit, FIG. 3 is a vertical sectional view, FIG. 4 is a half vertical sectional view of FIG. 3, and FIG. 5 is a conventional bearing unit. It is a sectional view showing a second example of the device. DESCRIPTION OF SYMBOLS 1: Rotating shaft, 2: Bearing holder, 3: Rolling bearing, 4: Bearing casing, 5: Damper member, 6: Main part, 7: Outer convex part, 8: Inner convex part, 9: Viscous fluid damper, 10: Compression spring, 11: Piston, 12: Rod, 13: Sliding piece, 1
4: Pipe, 15: Thermo module, 16: Inner ring, 17:
Outer ring, 18: Rolling element, 19: Bearing holder, 20: Lock nut, 21a: First plane, 21b: Second plane, 21
C: third plane, 21d: fourth plane, 22a: first electromagnet, 22b: second electromagnet, 22C: third electromagnet, 22d: fourth electromagnet, 23: first acceleration sensor,
24: Spacer, 25: Housing.

Claims (3)

【特許請求の範囲】[Claims] (1)内側に回転軸を挿通する軸受と、この軸受を内側
に支持した磁性材製の軸受ホルダと、この軸受ホルダの
周囲に配置された複数の電磁石と、各電磁石の磁極面と
上記軸受ホルダの外周面との間に挟持された非磁性材製
の間座と、上記軸受ホルダに伝わる振動加速度を検出す
る加速度センサと、この加速度センサからの信号に基づ
いて上記各電磁石への通電を制御する制御器とを具えた
磁気制御軸受ユニット。
(1) A bearing into which a rotating shaft is inserted, a bearing holder made of magnetic material that supports this bearing inside, a plurality of electromagnets arranged around this bearing holder, the magnetic pole surface of each electromagnet, and the above bearing. A spacer made of non-magnetic material is sandwiched between the outer peripheral surface of the holder, an acceleration sensor that detects the vibration acceleration transmitted to the bearing holder, and energization of each of the electromagnets based on the signal from this acceleration sensor. A magnetically controlled bearing unit comprising a controller for controlling the magnetically controlled bearing unit.
(2)内側に回転軸を挿通する軸受と、この軸受を内側
に支持した磁性材製の軸受ホルダと、この軸受ホルダの
周囲に配置された複数の電磁石と、上記軸受ホルダに伝
わる振動加速度を検出する加速度センサと、この加速度
センサからの信号に基づいて上記各電磁石への通電を制
御する制御器とを具え、上記軸受ホルダの外周面に、非
磁性材製の皮膜が形成されている磁気制御軸受ユニット
(2) A bearing into which a rotating shaft is inserted, a bearing holder made of magnetic material that supports this bearing inside, and a plurality of electromagnets arranged around this bearing holder, and vibration acceleration transmitted to the bearing holder. The magnetic bearing holder includes an acceleration sensor for detecting the acceleration, and a controller for controlling energization of each of the electromagnets based on the signal from the acceleration sensor, and a coating made of a non-magnetic material is formed on the outer peripheral surface of the bearing holder. Control bearing unit.
(3)内側に回転軸を挿通する軸受と、この軸受を内側
に支持した磁性材製の軸受ホルダと、この軸受ホルダの
周囲に配置された複数の電磁石と、上記軸受ホルダに伝
わる振動加速度を検出する加速度センサと、この加速度
センサからの信号に基づいて上記各電磁石への通電を制
御する制御器とを具え、上記各電磁石の磁極面に、非磁
性材製の皮膜が形成されている磁気制御軸受ユニット。
(3) A bearing into which a rotating shaft is inserted, a bearing holder made of magnetic material that supports this bearing inside, and a plurality of electromagnets arranged around this bearing holder, and vibration acceleration transmitted to the bearing holder. A magnetic device comprising an acceleration sensor for detecting the acceleration, and a controller for controlling the energization of each of the electromagnets based on a signal from the acceleration sensor, and a coating made of a non-magnetic material is formed on the magnetic pole surface of each of the electromagnets. Control bearing unit.
JP26287089A 1989-10-11 1989-10-11 Magnetic control bearing unit Pending JPH03125017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26287089A JPH03125017A (en) 1989-10-11 1989-10-11 Magnetic control bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26287089A JPH03125017A (en) 1989-10-11 1989-10-11 Magnetic control bearing unit

Publications (1)

Publication Number Publication Date
JPH03125017A true JPH03125017A (en) 1991-05-28

Family

ID=17381776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26287089A Pending JPH03125017A (en) 1989-10-11 1989-10-11 Magnetic control bearing unit

Country Status (1)

Country Link
JP (1) JPH03125017A (en)

Similar Documents

Publication Publication Date Title
US5679992A (en) Bearing unit
US5285995A (en) Optical table active leveling and vibration cancellation system
JPH01316541A (en) Active vibrator
US5248133A (en) Multidimensional damping apparatus
JPH02118225A (en) Method of actively controlling vibration generated in fixing section of rotary machine and magnetic controller for structure vibration
KR20090123884A (en) Electromagnetic attraction tape magnetic bearing and control method thereof
JPS63199921A (en) Fluid bearing
JP3693384B2 (en) Magnetic bearing spindle device
US4035037A (en) Hydrostatic bearing support
JPH03125017A (en) Magnetic control bearing unit
JPH0884454A (en) Damping apparatus for rotary machine
US6118200A (en) Magnetic bearing
KR102532016B1 (en) Displacement sensitive variable MR damper and air spring apparatus including it and vibration control method by using the apparatus
JPH0389018A (en) Vibrationproofing type rotation axis support system
JPH03244825A (en) Bearing device
JPH05288218A (en) Auxiliary bearing device of rotary machine
JP2684882B2 (en) Vibration suppressor for rotating body
KR20090109250A (en) Non-contact Plane Actuator, Vibration Control Table, and Active Vibration Control System Using the Non-contact Plane Actuator
JPH04248016A (en) Magnetically-controlled bearing unit
JP3267649B2 (en) Bearing device
EP3156687A2 (en) Controllable clutch and use thereof
JP2019100516A (en) Bearing device and rotary machine
JPH08320020A (en) Magnetic bearing device
JP2005172717A (en) Vibration measuring system of antifriction bearing
KR101202569B1 (en) Dynamic Absorber Using Electromagnet