JPH03123979A - Detection method for fruit and the like - Google Patents
Detection method for fruit and the likeInfo
- Publication number
- JPH03123979A JPH03123979A JP1262620A JP26262089A JPH03123979A JP H03123979 A JPH03123979 A JP H03123979A JP 1262620 A JP1262620 A JP 1262620A JP 26262089 A JP26262089 A JP 26262089A JP H03123979 A JPH03123979 A JP H03123979A
- Authority
- JP
- Japan
- Prior art keywords
- fruit
- image
- density value
- histogram
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000013399 edible fruits Nutrition 0.000 title claims abstract description 44
- 238000001514 detection method Methods 0.000 title abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 235000007688 Lycopersicon esculentum Nutrition 0.000 abstract description 9
- 240000003768 Solanum lycopersicum Species 0.000 abstract description 9
- 238000005530 etching Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 244000141359 Malus pumila Species 0.000 description 2
- 235000011430 Malus pumila Nutrition 0.000 description 2
- 235000015103 Malus silvestris Nutrition 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/40—Tree coding, e.g. quadtree, octree
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Processing Of Color Television Signals (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、果実等の検出方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for detecting fruits, etc.
(従来の技術、及び発明が解決しようとする課題)例え
ばリンゴの木の画像の中からリンゴの実を取出すときに
は、リンゴの実と木の葉、空等の背景に関して、濃度(
明るさ)、ノイズ及び対象物同志の関係等が画像処理手
順を導出するための判断材料となっている。(Prior art and problem to be solved by the invention) For example, when extracting an apple from an image of an apple tree, the density (
(brightness), noise, and the relationship between objects are the materials used to determine the image processing procedure.
この発明は、背景の中から果実等の対象物を分離する場
合において、その検出精度の向上を図ることを目的とす
る。An object of the present invention is to improve the detection accuracy when separating an object such as a fruit from the background.
(課題を解決するための手段)
この発明は、カメラで取込んだ果実等の対象物の濃度ヒ
ストグラムの最高濃度値と最低濃度値との差を2値化基
準濃度値とする画像の2値化処理において、この2値化
基準濃度値を可変としたことを特徴とする果実等の検出
方法の構成とする。(Means for Solving the Problems) The present invention provides a binary image in which the difference between the highest density value and the lowest density value of a density histogram of an object such as a fruit captured by a camera is used as a binary reference density value. A method for detecting fruits or the like is characterized in that the binarization reference density value is made variable in the conversion process.
(発明の作用、及び効果)
カメラによって前方の果実、例えばトマトの映像を取込
み、赤信号の画像濃度ヒストグラムを作成する。このヒ
ストグラムの最高濃度値と最低濃度値との差にもとすい
て画像の2値化が行われたとき、この2値化処理された
画像において果実の映像部分の区分が十分でないときに
は、この2値化基準濃度値を変更することによって画像
内から果実の映像部分が適確に取出される。(Operations and Effects of the Invention) A camera captures an image of a fruit in front, for example, a tomato, and creates an image density histogram of a red light. When the image is binarized based on the difference between the highest density value and the lowest density value of this histogram, if the image part of the fruit is not sufficiently divided in the binarized image, this By changing the binarization reference density value, the image portion of the fruit can be accurately extracted from within the image.
このように、2値化処理された画像にもとすいて、2値
化基準濃度値を変更調節することによって画像を2値化
処理するから、カメラで取込んだ果実の画像内から果実
の映像とそうでない部分が明確に区分され、果実の映像
部分のみが取出されるから検出精度の向上を図ることが
できる。In this way, since the image is binarized by changing and adjusting the binarization reference density value based on the binarized image, it is possible to identify the fruit from the fruit image captured by the camera. Since the image and non-image parts are clearly separated and only the image part of the fruit is extracted, detection accuracy can be improved.
(実施例)
なお、回倒において、イメージセンサのカメラ1によっ
て前方の果実等の対象物の画像を取込み、各画素の赤R
1緑G、青B信号が入力インタフェース2を介してイメ
ージフレームメモリ3に格納される。例えばトマトの実
の検出例においては、このイメージフレームメモリ3か
らR信号のみをCPUに取込んで、このCPUにおいて
画像濃度ヒストグラムが算出される。このヒストグラム
において最高濃度値(Hmax)と最低濃度値(Hmi
n)との差が求められ、この差を変更調節する係数αを
0を除いた1迄の間可変として2値化基準濃度値(y
)= a (Hmax −Hmin)によって画像を2
値化し、果実を検出する構成としている。これらの結果
は出力インタフェース4を介してイメージモニタ5に出
力される。(Example) In addition, during rotation, an image of an object such as a fruit in front is captured by the camera 1 of the image sensor, and the red R of each pixel is
1 green G and blue B signals are stored in the image frame memory 3 via the input interface 2. For example, in the case of tomato fruit detection, only the R signal is taken from the image frame memory 3 to the CPU, and the image density histogram is calculated by the CPU. In this histogram, the maximum density value (Hmax) and the minimum density value (Hmi
The difference between y and n) is calculated, and the coefficient α for changing and adjusting this difference is set as variable between 0 and 1, and the binarized reference density value (y
) = a (Hmax - Hmin) to convert the image into 2
It is configured to convert into value and detect fruits. These results are output to the image monitor 5 via the output interface 4.
このように、画像を2値化処理する2値化基準濃度値を
変更可能とする係数αを設けることによって、より明確
に果実の映像部分とそうでない部分を区分し、果実の映
像部分のみを取出すことができるから、果実の検出精度
の向上を図りうる。In this way, by providing the coefficient α that makes it possible to change the binarization reference density value for binarizing the image, it is possible to more clearly distinguish between the fruit image part and the other parts, and only the fruit image part. Since the fruit can be taken out, the accuracy of fruit detection can be improved.
第4図、第5図において、背景と果実とを分離するしき
い値として、平均信号値とこの信号ヒストグラムの谷の
部分の信号値との両者のうち小さい方の信号値を用いて
2値化処理する構成としている。In FIGS. 4 and 5, the smaller of the average signal value and the signal value of the valley part of this signal histogram is used as the threshold value for separating the background and the fruit. The configuration is such that it processes
例えばトマトの実を検出する場合には、カメラ1によっ
て赤、緑、青信号を入力インタフェース2を介してイメ
ージフレームメモリ3に記憶させる。このイメージフレ
ームメモリ3がら赤信号のみをCPUに取込んで平均信
号値aを算出する。For example, when detecting a tomato fruit, red, green, and blue signals are stored by the camera 1 in the image frame memory 3 via the input interface 2. Only the red signal from this image frame memory 3 is taken into the CPU to calculate the average signal value a.
又、各画素の赤信号のヒストグラムを作成する。Also, a histogram of the red signal of each pixel is created.
これら赤信号値のOから平均信号値a迄の範囲において
、ヒストグラムの谷をみつける。この谷に対応する赤信
号値すをしきい値として赤信号を2値化処理する。ヒス
トクラムの谷がないときには、平均信号値aをしきい値
として赤信号を2値化処理する。The valley of the histogram is found in the range from the red signal value O to the average signal value a. The red light is binarized using the red light value corresponding to this valley as a threshold value. When there is no valley in the histogram, the red signal is binarized using the average signal value a as a threshold.
このヒストグラムの谷の部分はトマトの実の輪郭部分の
ぼけている部分であるから、上記の方法によって果実の
輪郭位置の検出精度の向上が図れ、正確に果実の面積1
幅等を算出することができる。Since the valley part of this histogram is the blurred part of the outline of the tomato fruit, the above method can improve the detection accuracy of the outline position of the fruit, and the area of the fruit can be accurately
Width etc. can be calculated.
第6図、第7図において、背景と果実を分離した後の各
画素の信号値が規定以下及び以上のものを除去する構成
としている。In FIGS. 6 and 7, the configuration is such that, after separating the background and the fruit, the signal values of each pixel that are below or above the specified value are removed.
例えばトマトの検出例において、カメラ1から赤、緑、
青信号を入力し、cpuにおいて赤信号のヒストグラム
を作成する。この各画素信号値のヒストグラムにおいて
、信号の178範囲内のピーク値を求める。このヒスト
グラムの低い側のピーク値以下の信号を除去することに
よってカメラ画像内の非常に暗い部分、例えば陰等の影
響を除くことができる。又、高い側のピーク値以上の信
号を除去することによってカメラ画像内の非常に明るい
部分、例えば背景の強い光等の影響を除くことができる
から、果実の検出処理において、異常画素の影響を防止
することができる。従って果実の検出精度の向上を図る
ことができる。For example, in the detection example of tomatoes, red, green,
Input the green signal and create a histogram of the red signal on the CPU. In this histogram of each pixel signal value, the peak value within the 178 range of the signal is determined. By removing signals below the peak value on the lower side of this histogram, it is possible to remove the effects of very dark parts, such as shadows, in the camera image. In addition, by removing signals that are higher than the peak value on the high side, it is possible to remove the effects of very bright parts in the camera image, such as strong light in the background, so it is possible to eliminate the effects of abnormal pixels in the fruit detection process. It can be prevented. Therefore, it is possible to improve the accuracy of fruit detection.
第8図、第9図において、画像濃度の濃度別の面積を求
め、この面積と前もって入力されている果実別の面積デ
ータとを比較し、その結果にもとすいて果実を検出する
構成としている。In FIGS. 8 and 9, the area for each image density is calculated, and this area is compared with the area data for each fruit that has been input in advance, and the fruit is detected based on the results. There is.
例えばトマトの実の検出において、カメラ1によって前
方のトマトの実の映像を取込み、各画素の赤、緑、青信
号を入力インタフェース2を介してイメージフレームメ
モリ3に記憶させる。このイメージフレームメモリ3か
ら赤信号をCPUに取込み、この濃度値と背景の濃度値
との差分を取出して輪郭を検出し、面積を求める。この
面積を前もってメモリに格納しである果実別の面積デー
タを選択スイッチで指定して比較し、目的のトマトの実
を検出する。For example, in detecting a tomato fruit, the camera 1 captures an image of the tomato fruit in front, and the red, green, and blue signals of each pixel are stored in the image frame memory 3 via the input interface 2. The red signal is taken into the CPU from this image frame memory 3, and the difference between this density value and the density value of the background is taken out to detect the outline and calculate the area. This area is stored in memory in advance, and area data for each fruit is designated and compared using a selection switch to detect the target tomato fruit.
このようにしてカメラ1で取込んだ画像内から。From within the image captured by camera 1 in this way.
果実の映像部分とそうでない部分を区分して、果実の映
像部分のみを取出すことにより、果実の検出精度の向上
を図ることができる。By separating the fruit image portion from the non-fruit image portion and extracting only the fruit image portion, it is possible to improve the fruit detection accuracy.
図は、この発明の実施例を示すもので、第1図は制御ブ
ロック図、第2図はフローチャート、第3図はその説明
図、第4図は他の検出方法のフローチャート、第5図は
その説明図、第6図は他の検出方法のフローチャート、
第7図はその説明図、第8図は他の発明のフローチャー
ト、第9図はその説明図である。
図中、符号1はカメラ、2は入力インタフェース、3は
イメージフレームメモリ、4は出力インタフェース、5
はイメージモニタを示す。The figures show an embodiment of the present invention, in which Fig. 1 is a control block diagram, Fig. 2 is a flowchart, Fig. 3 is an explanatory diagram thereof, Fig. 4 is a flowchart of another detection method, and Fig. 5 is a control block diagram. An explanatory diagram thereof, FIG. 6 is a flowchart of another detection method,
FIG. 7 is an explanatory diagram thereof, FIG. 8 is a flowchart of another invention, and FIG. 9 is an explanatory diagram thereof. In the figure, 1 is a camera, 2 is an input interface, 3 is an image frame memory, 4 is an output interface, and 5
indicates an image monitor.
Claims (1)
最高濃度値と最低濃度値との差を2値化基準濃度値とす
る画像の2値化処理において、この2値化基準濃度値を
可変としたことを特徴とする果実等の検出方法。In image binarization processing, which uses the difference between the highest density value and the lowest density value of the density histogram of an object such as a fruit captured by a camera as the binarized reference density value, this binarized reference density value is variable. A method for detecting fruits, etc., characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1262620A JP2949736B2 (en) | 1989-10-06 | 1989-10-06 | Fruit detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1262620A JP2949736B2 (en) | 1989-10-06 | 1989-10-06 | Fruit detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03123979A true JPH03123979A (en) | 1991-05-27 |
JP2949736B2 JP2949736B2 (en) | 1999-09-20 |
Family
ID=17378321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1262620A Expired - Fee Related JP2949736B2 (en) | 1989-10-06 | 1989-10-06 | Fruit detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2949736B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012117962A (en) * | 2010-12-02 | 2012-06-21 | Makuta Amenity Kk | Crop assessment system |
-
1989
- 1989-10-06 JP JP1262620A patent/JP2949736B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012117962A (en) * | 2010-12-02 | 2012-06-21 | Makuta Amenity Kk | Crop assessment system |
Also Published As
Publication number | Publication date |
---|---|
JP2949736B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022062812A1 (en) | Screen defect detection method, apparatus, and electronic device | |
US9628659B2 (en) | Method and apparatus for inspecting an object employing machine vision | |
CN110853077A (en) | Self-adaptive infrared dynamic frame feature extraction method based on morphological change estimation | |
JPH05284501A (en) | Intrusion monitor picture device | |
JPH03123979A (en) | Detection method for fruit and the like | |
JPH0721388A (en) | Picture recognizing device | |
JP4925942B2 (en) | Image sensor | |
JP3311880B2 (en) | Automatic detection device for fruits and vegetables injury | |
JP4544955B2 (en) | Image monitoring device | |
CZ308988B6 (en) | A method of processing an image by a gradual brightness gradient method of image pixels along a longitudinal axis and the apparatus for this | |
JP2002247557A (en) | Video monitoring device | |
JPH067171B2 (en) | Moving object detection method | |
JP2949737B2 (en) | Fruit detection method | |
JPH09163853A (en) | Image processing device for fruit | |
CN108171242A (en) | A kind of efficient baffle ring detecting system | |
JP4656399B2 (en) | Agricultural products visual inspection equipment | |
JPH04307357A (en) | Apparatus for detecting bruise of fruit and vegetable | |
JPH08304302A (en) | Method for detecting surface flaws of object to be inspected | |
JPH07320035A (en) | Moving body image extracting method | |
Cai et al. | The application of area-reconstruction operator in automatic visual inspection of quality control | |
JPS62194587A (en) | Fruit recognizing device | |
JPH0687264B2 (en) | Image binarization method | |
JPH0420225B2 (en) | ||
JPH04211874A (en) | Method for detecting semiconductor pellet | |
JPH08138058A (en) | Analysis moving image data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |