JPH03123868A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH03123868A
JPH03123868A JP1262017A JP26201789A JPH03123868A JP H03123868 A JPH03123868 A JP H03123868A JP 1262017 A JP1262017 A JP 1262017A JP 26201789 A JP26201789 A JP 26201789A JP H03123868 A JPH03123868 A JP H03123868A
Authority
JP
Japan
Prior art keywords
thin film
blow
acceleration sensor
hole
film part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262017A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yokota
横田 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP1262017A priority Critical patent/JPH03123868A/en
Publication of JPH03123868A publication Critical patent/JPH03123868A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a semiconductor acceleration sensor which is easily produced and is excellent in control accuracy by providing a blowby hole on the thin film part of a semiconductor substrate and performing the working of the blowby hole by microwave plasma etching. CONSTITUTION:A weight part 4 is provided in the center of the thin film part 5 on the semiconductor substrate 1 so as to make it easy to transmit vibration caused by acceleration to the thin film part 5. By providing plural blowby holes on the thin film part 5, an air dumping effect is applied to make the vibration of the thin film part 5 easier, and output sensitivity is secured to easily control the thin film part 5. Since the blowby hole 2 is accurately worked without damaging the pattern 3 by performing the working of the hole 2 by the microwave plasma etching, yield and quality are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車等の移動体に係り、特に車体制御等に
好適な加速度センサに関するものであるが、その中の半
導体方式に係る構成に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a moving body such as an automobile, and particularly relates to an acceleration sensor suitable for controlling a vehicle body, etc., and relates to a structure related to a semiconductor method therein. It is something.

〔従来の技術〕[Conventional technology]

従来の加速度センサは、特開昭61−97572号に記
載のように薄膜部(ダイヤフラム部)をゲージ端部のみ
を残して切り抜き、カンチレバー形状にすることにより
加振部を形成していた。これらはカンチレバ一部が強振
幅時はゲージ端部が破損する可能性があるため上下にス
トッパーを設けたり、ダンパーオイルを注入することに
より、これらの動きを制御しており、ストッパーやダン
パーオイルの除外については配慮されていなかった。
In a conventional acceleration sensor, as described in Japanese Patent Application Laid-Open No. 61-97572, a vibrating part is formed by cutting out a thin film part (diaphragm part) leaving only the gauge end part and making it into a cantilever shape. These movements are controlled by installing stoppers at the top and bottom of the cantilever and injecting damper oil, since the gauge end may be damaged when part of the cantilever is in strong amplitude. No consideration was given to exclusion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はスl−ツバ−やダンパーオイルの除外の
点については配慮されておらず、量産時の組立における
複雑さやカンチレバーのゲージ部等の破損については問
題があった。
The above-mentioned prior art does not take into consideration the exclusion of the sl-bar and damper oil, and there are problems with the complexity of assembly during mass production and damage to the gauge portion of the cantilever.

本発明の目的はカンチレバー状に切はなさずにダイヤフ
ラム部を重り部と共に形成し、その中に任意の大きさと
形状の吹抜け穴を設けることにより出力感度を確保する
こととダイヤフラム部の制御が容易になることを目的と
している。
The purpose of the present invention is to form a diaphragm part together with a weight part without cutting it into a cantilever shape, and to provide a blow-through hole of any size and shape in the diaphragm part, thereby ensuring output sensitivity and making it easy to control the diaphragm part. It aims to become.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は半導体基板のダイヤフラム部吹抜け穴を複数
個配置することによりカンチレバーに近い出力を得ると
共に、その加工方法は通常のドライエツチング(RI 
E−リアクティブイオンエツチングに代表されもの)で
は配線やパンシベーションの5iOz膜に損侶を与える
等で一部試作は可能であるが量産時の歩留りが大幅に悪
いので大変である。
The above purpose is to obtain an output similar to that of a cantilever by arranging multiple through holes in the diaphragm part of the semiconductor substrate, and the processing method is the usual dry etching (RI).
E-reactive ion etching (as typified by E-reactive ion etching) damages the 5iOz film for wiring and pansivation, and although it is possible to make some prototypes, it is difficult because the yield during mass production is significantly low.

この加工をマイクロ波プラズマエツチングにて行うこと
によりS i / S i○2の選択比が100以上で
あり、イオンよりもラジカル成分にてSiの吹抜け穴を
加工することにより達成される。
By performing this processing by microwave plasma etching, the selectivity ratio of Si/Si○2 is 100 or more, which is achieved by processing the Si open hole using a radical component rather than an ion.

〔作用〕[Effect]

本発明の半導体加速度センサは薄膜部に設けた重り部が
加速されることによって加振されることで半導体のピエ
ゾ抵抗効果により抵抗変化するのを半導体基体表面に配
置したパターンのゲージ抵抗の変化としてとらえるもの
である。この時、薄膜部(ダイヤフラム部)に設けた重
り部がスムースに動くように吹抜け穴を薄膜部に設けて
出力感度を容易に得られるようにするものである。
In the semiconductor acceleration sensor of the present invention, when a weight section provided on a thin film section is accelerated and vibrated, resistance changes due to the piezoresistance effect of the semiconductor are detected as changes in the gauge resistance of a pattern arranged on the surface of the semiconductor substrate. It is something that can be grasped. At this time, a blow-through hole is provided in the thin film part (diaphragm part) so that the weight part provided in the thin film part (diaphragm part) moves smoothly, so that output sensitivity can be easily obtained.

これらの吹抜け穴とマイクロ波プラズマエツチングによ
り加工することにより、半導体基体主表面[こ配置した
パターンに損傷を与えず、精度よく加工出来ることによ
り、歩留りと品質の向上を計ることが出来るものである
By processing these open holes and using microwave plasma etching, the main surface of the semiconductor substrate can be processed with high precision without damaging the patterns placed on it, thereby improving yield and quality. .

更に容量式においても同様にダイヤフラム部に相当する
薄膜部に吹抜け穴を設けることにより。
Furthermore, in the capacitive type, by providing a blow-through hole in the thin film part corresponding to the diaphragm part.

エア・ダンピング効果で重り部がスムースに動き感度の
確保が出来るものである。
The air damping effect allows the weight to move smoothly and ensure sensitivity.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示している。 FIG. 1 shows an embodiment of the invention.

第1図で第2図以降に示したものと同一物、相当物には
同一符号を付けている。
Components in FIG. 1 that are the same as those shown in FIG. 2 and subsequent figures are given the same reference numerals.

第2図は第1図のx−x’部の断面を示し、第3図は同
様に第1図のXi  Xt’部の断面を示している。
2 shows a cross section taken along the line xx' in FIG. 1, and FIG. 3 similarly shows a cross section taken along the line Xi Xt' in FIG.

第1図はSiチップ(通常Nタイプ結晶面(100> 
)にピエゾ抵抗検出用のパターン部3を配置したもので
、第1図の実施例ではゲージ部7を4個配置してブリッ
ヂに組んだ回路の例となっている。
Figure 1 shows a Si chip (usually N-type crystal plane (100>
), and the pattern section 3 for piezoresistance detection is arranged in the circuit.The embodiment shown in FIG. 1 is an example of a circuit in which four gauge sections 7 are arranged and assembled into a bridge.

第2図に第1図のx−x’部の断面を示すが、薄膜部5
の中央に重り部4を設けて、加速による振動を薄膜部5
に伝え易くするものである。更に振動を容易にするため
に第1図の吹抜け穴2を設けることによりエア・ダンピ
ング効果が付加され更に容易になる様にしたものである
。これは第1図のXl−Xt’ を断面にした第3図に
示すごとく。
FIG. 2 shows a cross section taken along line xx' in FIG.
A weight part 4 is provided in the center of the thin film part 5 to absorb vibrations caused by acceleration.
This is to make it easier to communicate. Furthermore, in order to facilitate vibration, the air damping effect is added by providing the blow-through hole 2 shown in FIG. 1, thereby making the vibration even easier. This is shown in FIG. 3, which is a cross section taken along line Xl-Xt' in FIG.

ゲージ部7の薄膜部5の部分が薄くなり、出力感度が得
られ易くすることと、吹抜け穴2より振動による空気の
出入りが容易になり更に感度が得られ易くなるものであ
る。これは第4図にこのSiチップ(半導体基体)1が
ガラスダイ9と組立てられた図を示したものであるが、
ウェットエツチング等により食刻された食刻領域8は吹
抜け穴2が無い場合はこの中の空気がダンパーとなって
動くので、吹抜け穴2によって動きをスムースにし、そ
の影響を無くするものである。
The thin film part 5 of the gauge part 7 is made thinner, making it easier to obtain output sensitivity, and the blow-through hole 2 makes it easier for air to enter and exit due to vibrations, making it easier to obtain sensitivity. This is shown in FIG. 4, where this Si chip (semiconductor substrate) 1 is assembled with a glass die 9.
If the etched area 8 etched by wet etching or the like does not have the blow-through hole 2, the air therein acts as a damper and moves, so the blow-through hole 2 smoothes the movement and eliminates the influence.

尚、第4図に示した組立てはSiチップ1とガラスダイ
9はアノ−デイックボンディング等の精度の高い接合方
法によって接合されているものとするものである。
In the assembly shown in FIG. 4, it is assumed that the Si chip 1 and the glass die 9 are bonded by a highly precise bonding method such as anodic bonding.

ゲージ部の配置は4個をブリッヂに配置する例を第1図
に示したが、これらは1ケ所又は2ケ所等でも可能性が
ある。更に吹抜け穴2は2ケ所のゲージ部7に2ケ所の
吹抜け穴2で両側からはさんで配置しであるが、他の配
置のゲージ部7を用いても良いことは明白である。
FIG. 1 shows an example in which four gauge parts are arranged on the bridge, but it is also possible to arrange them in one or two places. Furthermore, although the blow-through holes 2 are arranged between the two gauge portions 7 and sandwiched from both sides by the two blow-through holes 2, it is obvious that the gauge portions 7 in other arrangements may be used.

第5図は特開昭61−97572号及び実開昭61−5
7865号公報に示されたもので、カンチレバ一方式の
ものを示した。これらはSiチップ1にゲージ部7等を
配置して、切抜き部11によって切抜かれた部分がカン
チレバ一部10(この部が重り部4と同様になっている
。)を形成しているものである。
Figure 5 shows Japanese Patent Application Publication No. 61-97572 and Utility Model Application No. 61-5.
This is disclosed in Japanese Patent No. 7865, and shows a single cantilever type. These have a gauge part 7 and the like arranged on a Si chip 1, and the part cut out by a cutout part 11 forms a cantilever part 10 (this part is similar to the weight part 4). be.

この構造ではカンチレバ一部10が強振時に上下に振れ
て当り、ゲージ部7の薄膜が破損の可能性が高いため上
下にストッパーを設けて、これを制限しなければならな
い。ストッパーを設けてもカンチレバ一部10は設けた
ストッパーに強く当るため更にダンパーオイル等をSi
チップ1全体を密閉構造にして注入等で封鎖しなければ
ならないので構造が複雑となることは必至である。
In this structure, the cantilever part 10 swings up and down during strong vibrations, and there is a high possibility that the thin film of the gauge part 7 will be damaged, so stoppers must be provided at the top and bottom to restrict this. Even if a stopper is provided, the cantilever part 10 strongly hits the provided stopper, so damper oil etc. are further applied to Si.
Since the entire chip 1 must be made into a hermetically sealed structure and sealed by injection or the like, the structure is inevitably complicated.

第7図は第1図に示した吹抜け穴2の配置を各ゲージ部
7の中間に配置した例である。第8図はその断面を示し
たものである。当然のことながら第7図及び第8図に示
したごとく、第1図の検出回路だけでなく、第7図のご
とく、増幅部や温度等の補正部をSiチップ1のとなり
に示す集積部12のように配置しても良く、同様にSi
チップ1の周囲に構成しても可能なことは当然である。
FIG. 7 shows an example in which the blow-through hole 2 shown in FIG. 1 is arranged in the middle of each gauge part 7. FIG. 8 shows its cross section. Naturally, as shown in FIGS. 7 and 8, there is an integrated section that includes not only the detection circuit shown in FIG. 12 may be arranged, and similarly Si
Of course, it is also possible to configure it around the chip 1.

尚、第1図及び第7図の例で示した食刻領域8は環状の
ものである。
The etched area 8 shown in the examples of FIGS. 1 and 7 is annular.

第9図は容量式加速度センサに適用した実施例を示す。FIG. 9 shows an embodiment applied to a capacitive acceleration sensor.

第1図のパターン部3が無いもので、第1図と同様に吹
抜け穴2によってエア・ダンパーとして働き、第10図
に示した容量検出ギャップ13の変化による容量の変化
ががスムースに動作するものである。第10図(イ)は
第9図のA−A′断面を示し、薄膜部5′が第1図の薄
膜部5と同じ様に振動、変化するものである6第10図
(ロ)は第9図のB−B’断面を示し、本発明の吹抜け
穴2を設けた構成を示したものである。
It does not have the pattern part 3 shown in Fig. 1, and the open hole 2 acts as an air damper as in Fig. 1, and the capacitance changes smoothly due to the change in the capacitance detection gap 13 shown in Fig. 10. It is something. Figure 10 (a) shows the cross section AA' in Figure 9, and the thin film part 5' vibrates and changes in the same way as the thin film part 5 in Figure 1.6 Figure 10 (b) shows the This is a cross section taken along the line BB' in FIG. 9, and shows a configuration in which the blow-through hole 2 of the present invention is provided.

本実施例によれば、ストッパーを設けることもなく、又
、ダンパーオイルの注入の要もなくして高精度、高品質
にて製造することが出来、更に安価で歩留りの良い半導
体加速度センサを提供出来る効果がある。
According to this embodiment, it is possible to manufacture a semiconductor acceleration sensor with high precision and high quality without providing a stopper or injecting damper oil, and it is possible to provide a semiconductor acceleration sensor at a low cost and with a high yield. effective.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば製造が容易で、か
つ制御精度の優れた半導体加速度センサを得ることが出
来る。
As described above, according to the present invention, it is possible to obtain a semiconductor acceleration sensor that is easy to manufacture and has excellent control accuracy.

【図面の簡単な説明】 第1図は本発明の一実施例を示す半導体加速度センサを
示す図、第2図はx−x’断面図、第3図はXl−XI
’断面図、第4図は部分断面図、第5図は従来のカンチ
レバーによる加速度センサの実施例を示す図、第6図は
その断面図、第7図は本発明の更に他の実施例を示す図
、第8図はその断面図、第9図は容量式の実施例を示す
図、第10図(イ)はA−A’断面図、(ロ)はB−B
’断面図である。 1・・・Siチップ(半導体基板)、2・・・吹抜け穴
、3・・・パターン部、4・・・重り部、5・・・薄膜
部、5′・・薄膜部、6・・・Siチップ断面、7・・
・ゲージ部、8・・・食刻領域、9・・・ガラスダイ、
10・・・カンチレバ一部、11・・・切抜き部、1−
2・・・集積部、13・・・容量検出ギャップ。 1λ 第 口 尾′7図 嶌 凹 馬6図 (牛) 寓q図 市10図 牛 巳
[Brief Description of the Drawings] Fig. 1 is a diagram showing a semiconductor acceleration sensor according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line x-x', and Fig. 3 is a cross-sectional view taken along the line Xl-XI.
4 is a partial sectional view, FIG. 5 is a diagram showing an embodiment of a conventional cantilever-based acceleration sensor, FIG. 6 is a sectional view thereof, and FIG. 7 is a diagram showing still another embodiment of the present invention. 8 is a sectional view, FIG. 9 is a diagram showing a capacitive type embodiment, FIG.
'This is a cross-sectional view. DESCRIPTION OF SYMBOLS 1... Si chip (semiconductor substrate), 2... Open hole, 3... Pattern part, 4... Weight part, 5... Thin film part, 5'... Thin film part, 6... Si chip cross section, 7...
・Gauge part, 8... Etching area, 9... Glass die,
10... Cantilever part, 11... Cutout part, 1-
2...Integration section, 13...Capacitance detection gap. 1λ 1st Mouth & Tail '7 Figure 6 Shimakouma (Cow) Figure q City Figure 10 Ushimi

Claims (1)

【特許請求の範囲】 1、半導体基体がその主表面に検出用パターンを設け、
裏面より食刻領域が設けられて薄膜を形成し、その薄膜
部に重り部を設けたセンサにおいて、その薄膜部(ダイ
ヤフラム部)に吹抜け穴を設け、吹抜け穴の配置を検出
パターンのゲージの両側に配置することを特徴とする半
導体加速度センサ。 2、特許請求の範囲項1項において吹抜け穴を複数個の
配置をすることを特徴とする半導体加速度センサ。 3、特許請求の範囲第1項において検出パターンを設け
ない容量式において、ダイヤフラム部の上下面にギャッ
プ(容量形成)を形成した構造においても当該ダイヤフ
ラム部に吹抜け穴を設けたことを特徴とする半導体加速
度センサ。 4、特許請求の範囲第1項において、検出パターンの梁
構造とは区分して、エア・ダンピングを主体に吹抜け穴
を設けることを特徴とした半導体加速度センサ。 5、特許請求の範囲第1項において、吹抜け穴の大きさ
、数量配置を変えて吹き抜け条件を変えることを特徴と
する半導体加速度センサ。 6、特許請求の範囲第3項において、吹抜け穴の大きさ
、数量、配置を変えて抜き抜け条件を変えることを特徴
とする半導体加速度センサ。
[Claims] 1. A semiconductor substrate has a detection pattern on its main surface,
In a sensor in which an etched area is provided from the back side to form a thin film, and a weight part is provided on the thin film part, a blow-through hole is provided in the thin film part (diaphragm part), and the placement of the blow-through hole is set on both sides of the gauge of the detection pattern. A semiconductor acceleration sensor characterized in that it is arranged in. 2. A semiconductor acceleration sensor according to claim 1, characterized in that a plurality of blowholes are arranged. 3. In the capacitive type without a detection pattern in claim 1, even in a structure in which a gap (capacitance formation) is formed on the upper and lower surfaces of the diaphragm part, a blow-through hole is provided in the diaphragm part. Semiconductor acceleration sensor. 4. A semiconductor acceleration sensor according to claim 1, characterized in that a blow-through hole is provided mainly for air damping, separated from the beam structure of the detection pattern. 5. The semiconductor acceleration sensor according to claim 1, characterized in that the size and quantity arrangement of the blow-through holes are changed to change the blow-through conditions. 6. The semiconductor acceleration sensor according to claim 3, characterized in that the size, number, and arrangement of the blow-through holes are changed to change the blow-through conditions.
JP1262017A 1989-10-09 1989-10-09 Semiconductor acceleration sensor Pending JPH03123868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262017A JPH03123868A (en) 1989-10-09 1989-10-09 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262017A JPH03123868A (en) 1989-10-09 1989-10-09 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH03123868A true JPH03123868A (en) 1991-05-27

Family

ID=17369862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262017A Pending JPH03123868A (en) 1989-10-09 1989-10-09 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH03123868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147441A (en) * 2006-12-11 2008-06-26 Rohm Co Ltd Semiconductor device
US8776602B2 (en) 2006-08-11 2014-07-15 Rohm Co., Ltd. Acceleration sensor, semiconductor device and method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8776602B2 (en) 2006-08-11 2014-07-15 Rohm Co., Ltd. Acceleration sensor, semiconductor device and method of manufacturing semiconductor device
JP2008147441A (en) * 2006-12-11 2008-06-26 Rohm Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US7468552B2 (en) Physical quantity sensor
US7302847B2 (en) Physical quantity sensor having movable portion
US20060237806A1 (en) Micromachined microphone and multisensor and method for producing same
US7178400B2 (en) Physical quantity sensor having multiple through holes
DE102014116129A1 (en) System and method for a MEMS converter
US6125700A (en) Vibrating type angular velocity sensor
CA2471809A1 (en) Semiconductor acceleration sensor and method of manufacturing the same
US6928873B2 (en) Silicon dual inertial sensors
US8129801B2 (en) Discrete stress isolator attachment structures for MEMS sensor packages
CN110023233A (en) For the vertical plug with cap MEMS device
KR20070093807A (en) The structure of acceleration sensor and method for manufacturing thereof
JP3666370B2 (en) External force detection sensor
EP2173114A1 (en) Diaphragm structure and acoustic sensor
US7337666B2 (en) Movable sensor device
US7487678B2 (en) Z offset MEMS devices and methods
JPH03123868A (en) Semiconductor acceleration sensor
KR101454123B1 (en) Acceleration Sensor
JPH09171033A (en) Acceleration sensor
WO2017033717A1 (en) Composite sensor
EP4181534A1 (en) Directional acoustic sensor
JP4525452B2 (en) Multi-axis acceleration sensor
JP3597806B2 (en) Microstructure having movable structure and method of manufacturing the same
US20150198626A1 (en) Acceleration sensor
US20050205949A1 (en) Semiconductor device having moving part
JPH05256869A (en) Semiconductor type acceleration sensor and its manufacture