JPH03123856A - Life decision device for hydrogen-corroded member - Google Patents
Life decision device for hydrogen-corroded memberInfo
- Publication number
- JPH03123856A JPH03123856A JP1263720A JP26372089A JPH03123856A JP H03123856 A JPH03123856 A JP H03123856A JP 1263720 A JP1263720 A JP 1263720A JP 26372089 A JP26372089 A JP 26372089A JP H03123856 A JPH03123856 A JP H03123856A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- degree
- metane
- deterioration
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006866 deterioration Effects 0.000 claims abstract description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 78
- 238000007781 pre-processing Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 26
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 25
- 239000001257 hydrogen Substances 0.000 abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 24
- 238000012545 processing Methods 0.000 abstract description 11
- 239000002245 particle Substances 0.000 abstract description 8
- 238000005336 cracking Methods 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 6
- 239000002344 surface layer Substances 0.000 abstract description 5
- 230000008602 contraction Effects 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 238000003708 edge detection Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 230000003628 erosive effect Effects 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、機械構造物における水素侵食部材の水素侵食
劣化度に基づき機械的劣化度及び余寿命を判定する装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for determining the degree of mechanical deterioration and remaining life of a hydrogen-eroded member in a mechanical structure based on the degree of deterioration due to hydrogen attack.
従来、石油精製等化学プラント装置における鉄鋼製構造
部材は、高温高圧水素雰囲気中で長期間の稼働により水
素侵食に起因した経年的材質劣化を生じており、この水
素侵食は、200℃以上の高温高圧水素雰囲気中で鉄鋼
中に侵入した水素が炭化物と反応してメタンバブルを生
成し、バブルの内圧を高めて割れをひき起こし材料の機
械的性質を劣化させる現象で、第6図線図に示すネルソ
ン曲線により定性的に判断されて機械構造物の稼働条件
面で問題となっている。Conventionally, steel structural members in chemical plant equipment such as oil refining have suffered material deterioration over time due to hydrogen erosion due to long-term operation in high-temperature, high-pressure hydrogen atmospheres. Hydrogen that penetrates into steel in a high-pressure hydrogen atmosphere reacts with carbides to generate methane bubbles, increasing the internal pressure of the bubbles, causing cracks and deteriorating the mechanical properties of the material, as shown in the diagram in Figure 6. This is qualitatively determined by the Nelson curve shown, and is a problem in terms of the operating conditions of mechanical structures.
しかして゛、構造部材に生じた水素侵食を非破壊的に検
出する方法としては、超音波探傷法及びレプリカ法が最
も有効な検査法として用いられている。即ち超音波探傷
法は、第7図(A)に示すように、構造部材7の被検定
部8の外表面に探触子9をグリセリン等の溶液を媒介し
て接触させて、超音波ビームを入射させると、この超音
波が材質に固有の音速で伝播し、割れや端面に垂直に近
い角度に当たると反射、透過又は回折が行われ、その割
れ及び端面等のエコー10.11が探触子9で電圧に変
換され、更に増幅されてエコーの強弱及び時間的変化が
超音波探傷器12のブラウン管13上に表示されるもの
である。However, as methods for non-destructively detecting hydrogen corrosion occurring in structural members, the ultrasonic flaw detection method and the replica method are used as the most effective inspection methods. That is, in the ultrasonic flaw detection method, as shown in FIG. 7(A), a probe 9 is brought into contact with the outer surface of a portion to be inspected 8 of a structural member 7 through a solution such as glycerin, and an ultrasonic beam is applied. When an ultrasonic wave is incident on the material, this ultrasonic wave propagates at a sound speed specific to the material, and when it hits a crack or end face at an angle close to perpendicular, it is reflected, transmitted, or diffracted, and the echo 10.11 of the crack or end face is detected. The echo is converted into a voltage by the sensor 9 and further amplified, and the intensity and temporal changes of the echo are displayed on the cathode ray tube 13 of the ultrasonic flaw detector 12.
またレプリカ法は、第7図(B)に示すように、まず上
記構造部材7被検定部8をグラインダー等を使用してバ
フ研暦仕上げを行った後、腐食液によりエツチングし組
織を現出させる。次に薄膜レプリカ(材質ニアセチルセ
ルローズ、厚さ: 0.025 m)を使用して、同図
に示すように、レプリカ14上にメタンバブル15及び
割れ16等の組織面を転写した後、真空蒸着装置を用い
てレプリカ14の転写面にCr等の蒸着全屈17を薄く
シャドーウィングする。そして光学顕微鏡及び走査型電
子顕微鏡(以下SEMという)によりレプリカ14転写
面の観察を行い、メタンバブル15及び割れ16等を検
知するものである。In the replica method, as shown in FIG. 7(B), first, the structural member 7 to be inspected 8 is buffed using a grinder, etc., and then etched with a corrosive solution to reveal the structure. let Next, using a thin film replica (material: near acetyl cellulose, thickness: 0.025 m), as shown in the same figure, after transferring the tissue surfaces such as methane bubbles 15 and cracks 16 onto the replica 14, vacuum Using a vapor deposition device, a thin vapor deposition layer 17 of Cr or the like is shadow-winged onto the transfer surface of the replica 14. The transfer surface of the replica 14 is then observed using an optical microscope and a scanning electron microscope (hereinafter referred to as SEM) to detect methane bubbles 15, cracks 16, and the like.
しかしながら超音波探傷法は、大きく剥離した割れ及び
極く微小な割れの集合部等については、検知可能である
が、水素侵食の初期に生ずるメタンバブル及び微小な割
れは、検出感度の面より検知不能であり、またレプリカ
法は、メタンバブル及び微小な割れについては、被検定
部をレプリカにより観察するため検知することが可能で
あるが、メタンバブル及び割れの判定は、測定者の人為
的判断によるためデータがばらつき、信頼性の面で問題
があり、更にこの方法は、構造部材の表層部は検知可能
であるが、内部方向については全く検知することができ
ない。However, although ultrasonic flaw detection can detect large exfoliated cracks and clusters of extremely small cracks, it cannot detect methane bubbles and small cracks that occur in the early stages of hydrogen attack due to its detection sensitivity. However, the replica method can detect methane bubbles and minute cracks by observing the test area using a replica, but the determination of methane bubbles and cracks is based on the human judgment of the measurer. This method causes data to vary and is problematic in terms of reliability.Furthermore, although this method can detect the surface layer of a structural member, it cannot detect the internal direction at all.
従って、このような方法は、水素侵食を非破壊的に検知
する方法に過ぎず、水素侵食のメタンバブル及び微小な
割れを量的に適確に検知し、更にその度合に基づき構造
部材の機械的劣化度及び余寿命を定量判定することばで
きない。Therefore, such a method is only a method for non-destructively detecting hydrogen erosion, and it is possible to accurately detect methane bubbles and minute cracks due to hydrogen erosion, and furthermore, based on the degree, mechanical It is impossible to quantitatively judge the degree of deterioration and remaining life of the product.
本発明は、このような事情に鑑みて提案されたもので、
水素侵食構造部材の表層部及び内部の材料劣化度を適確
に検知し、それに基づき構造部材の機械的劣化度及び余
寿命を定量的にしかも信頼性高く演算判定することがで
きる水素侵食部材の余寿命判定装置を提供することを目
的とする。The present invention was proposed in view of these circumstances, and
A hydrogen-eroded structural member that can accurately detect the degree of material deterioration in the surface layer and inside of the structural member, and based on this, determine the mechanical deterioration degree and remaining life of the structural member quantitatively and with high reliability. The purpose of the present invention is to provide a remaining life determination device.
そのために本発明は、水素侵食構造部材の画像を前処理
する手段と、上記前処理後の画像信号から粒界を予め入
力した基準データと比較し識別・判定する手段と、同じ
くメタンバブル、割れを予め入力した基準データと比較
し識別・判定する手段と、上記2個の判定データを演算
しメタンバブル及び割れの発生率を求める手段と、上記
発生率のデータと予め入力した機械的性質の基準データ
とを比較演算し機械的劣化度を求める手段と、上記機械
的劣化度のデータから余寿命を演算する手段とを具えた
ことを特徴とする。To this end, the present invention provides a means for preprocessing an image of a hydrogen-eroded structural member, a means for comparing and determining grain boundaries from the preprocessed image signal with reference data input in advance, and a method for identifying and determining grain boundaries such as methane bubbles and cracks. means for comparing and determining the occurrence rate of methane bubbles and cracks by comparing them with pre-input reference data; a means for calculating the occurrence rate of methane bubbles and cracks by calculating the above two judgment data; The present invention is characterized by comprising means for calculating the degree of mechanical deterioration by comparing and calculating the degree of mechanical deterioration with reference data, and means for calculating the remaining life from the data on the degree of mechanical deterioration.
本発明水素侵食部材の余寿命判定装置においては、水素
侵食を受けた構造部材のメタンバブル及び割れのSEM
画像又は写真を画像処理手段に画像入力して雑音除去、
探査エリアの設定を行い、次いで粒界の識別・判定手段
により画像の2値化、小粒子の除去、エツジ検出及び細
線化を行って全粒界数を抽出するとともに、メタンバブ
ル・割れの識別・判定手段により2値化、小粒子の除去
、収縮・拡散及び細線化を行ってメタンバブル及び割れ
を抽出し、次いでメタンバブル及び割れ発生率の演算器
によりメタンバブル及び割れ発生率を演算し、更に機械
的劣化度の演算器により機械的劣化度を演算した後、余
寿命の演算器により余寿命を演算する。In the remaining life determination device for hydrogen-eroded parts of the present invention, SEM of methane bubbles and cracks in structural members subjected to hydrogen attack is used.
Input the image or photograph into an image processing means to remove noise,
The exploration area is set, and then the image is binarized, small particles are removed, edges are detected and thinned using a grain boundary identification/judgment method to extract the total number of grain boundaries, and methane bubbles and cracks are identified.・Methane bubbles and cracks are extracted by the judgment means by binarization, removal of small particles, contraction/diffusion, and thinning, and then the methane bubble and crack occurrence rate is calculated by the methane bubble and crack occurrence rate calculation unit. Further, after calculating the degree of mechanical deterioration using a mechanical deterioration degree calculating unit, the remaining life is calculated using a remaining life calculating unit.
本発明水素侵食部材の余寿命判定装置の−実施例を図面
について説明すると、第1図は装置構成及び作用を説明
するブロック図、第2図は材料劣化度と機械的劣化度の
関係の説明図、第3図は材料劣化度と余寿命の関係の説
明図、第4図は余寿命の推定式の説明図、第5図は温度
と余寿命の関係の説明図である。An embodiment of the apparatus for determining the remaining life of a hydrogen-eroded member according to the present invention will be explained with reference to the drawings. Fig. 1 is a block diagram illustrating the structure and operation of the apparatus, and Fig. 2 is an explanation of the relationship between the degree of material deterioration and the degree of mechanical deterioration. 3 is an explanatory diagram of the relationship between the degree of material deterioration and the remaining life, FIG. 4 is an explanatory diagram of the equation for estimating the remaining life, and FIG. 5 is an explanatory diagram of the relationship between temperature and the remaining life.
まず第1図において、本発明装置の構成の概略を説明す
ると、1は画像処理手段、2は粒界の識別・判定手段、
3はメタンバブル・割れの識別・判定手段、4はメタン
バブル及び割れ発生率の演算器、5は機械的劣化度の演
算器、6は余寿命の演算器である。First, in FIG. 1, to explain the outline of the configuration of the apparatus of the present invention, 1 is an image processing means, 2 is a grain boundary identification/judgment means,
Reference numeral 3 denotes a means for identifying and determining methane bubbles and cracks, 4 a calculator for calculating the incidence of methane bubbles and cracks, 5 a calculator for calculating the degree of mechanical deterioration, and 6 a calculator for calculating the remaining life.
以下にこの装置の作用を詳細に説明する。The operation of this device will be explained in detail below.
(1)画像処理手段ル
プリカ法により採取したレプリカ転写
面の写真又はSEM画像を作成し、写真及び画像はA/
D変換器によりデジタル画像として画像処理手段1で画
像の雑音除去等の前処理が行われる。この前処理は、メ
デイアン(中間値)を出力するフィルターを用いること
により粒界及びメタンバブル等の重要な画像の情報を損
なうことなく雑音を取り除くものである。またここで画
像処理する探査エリアを設定する。(1) Create a photograph or SEM image of the replica transfer surface taken by the image processing method Luprika method, and the photograph and image are A/
The D converter converts the image into a digital image, and the image processing means 1 performs preprocessing such as noise removal on the image. This preprocessing uses a filter that outputs a median (intermediate value) to remove noise without impairing important image information such as grain boundaries and methane bubbles. Also, set the exploration area for image processing here.
(2)粒界の識別・判定手段2
前処理された画像は、粒界の識別・判定手段2と次のメ
タンバブル・割れの識別判定手段3で、それぞれ併行し
て画像処理される。粒界の識別・判定手段2では、全粒
界数(X方向の1ライン)を抽出するため、2値化、小
粒子の除去、エツジ検出及び細線化等の演算処理が行わ
れる。2値化はP−タイル法により画像の濃度値分布の
ヒストグラムを作成した後、濃度値の累積分布が既知の
値となる濃度値を闇値として2値化する方法で行われる
。この2値化処理により粒界、メタンバブル及び割れが
抽出される。(2) Grain boundary identification/judgment means 2 The preprocessed image is image-processed in parallel by the grain boundary identification/judgment means 2 and the next methane bubble/cracks identification/judgment means 3. The grain boundary identification/determination means 2 performs arithmetic processing such as binarization, removal of small particles, edge detection, and line thinning in order to extract the total number of grain boundaries (one line in the X direction). Binarization is performed by creating a histogram of the density value distribution of an image using the P-tile method, and then binarizing the density values whose cumulative distribution of density values is a known value as a dark value. This binarization process extracts grain boundaries, methane bubbles, and cracks.
次いで小粒子の除去処理によりメタンバブルを除去する
。この小粒子の除去は、メタンバブルを除去するため画
像の収縮処理を行い、メタンバブルのみ除去する。そし
て粒界は原形に復元するものである。最後にエツジ検出
及び細線化により粒界のみ抽出した後、全粒界数を求め
る。なおエツジ検出は、ラプラシアンフィルター処理(
2次微分処理)にて粒界エツジを抽出する。Next, methane bubbles are removed by a small particle removal process. To remove these small particles, image contraction processing is performed to remove methane bubbles, and only methane bubbles are removed. The grain boundaries are what restore the original shape. Finally, after extracting only grain boundaries by edge detection and thinning, the total number of grain boundaries is determined. Note that edge detection is performed using Laplacian filter processing (
Grain boundary edges are extracted using second-order differential processing).
細線化は粒界の中心線を求めるためのものである。Line thinning is for finding the center line of grain boundaries.
(3) メタンバブル・割れの識別・判定手段3一方
、メタンバブル・割れの抽出は、2値化2小粒子の除去
、収縮、拡散及び細線化等の処理を用いて、前処理画像
よりメタンバブル・割れが発生した粒界数を求めること
により行われる。(3) Method for identifying and determining methane bubbles and cracks 3 On the other hand, methane bubbles and cracks are extracted from preprocessed images using processes such as binarization, removal of small particles, contraction, diffusion, and thinning. This is done by determining the number of grain boundaries where bubbles and cracks have occurred.
(4) メタンバブル及び割れ発生率の演算器4メタ
ンバブル及び割れ発生率の演算器4では、次の(1)式
よりメタンバブル及び割れ発生率を求める。(4) Methane bubble and crack occurrence rate calculator 4 The methane bubble and crack occurrence rate calculator 4 calculates the methane bubble and crack occurrence rate from the following equation (1).
ここで、P:メタンバブル及び割れの粒界発生率
M:メタンバブル及び割れの粒
算数
N:全粒界数
(5)機械的劣化度の演算器5
機械的劣化度は、機械的劣化度の演算器5に前項で求め
たメタンバブル及び割れ発生率を挿入し、予め求められ
た演算基準データを基に演算し求める。Here, P: grain boundary occurrence rate of methane bubbles and cracks M: grain count of methane bubbles and cracks N: total number of grain boundaries (5) Mechanical deterioration degree calculator 5 Mechanical deterioration degree is the mechanical deterioration degree The methane bubbles and the cracking occurrence rate determined in the previous section are inserted into the calculator 5, and the calculation is performed based on the calculation reference data determined in advance.
演算基準データの一例を第2図に示すと、これは材料:
1/2Mo鋼、水素分圧:150 kg/CrAの使
用条件下における材料劣化度(メタンバブル及び割れ発
生率)と機械的劣化度(吸収エネルギ低下率)の関係を
示したものである。同図より、材料劣化度と吸収エネル
ギ低下率の関係は、吸収エネルギが高くなるのに比例し
て材料劣化度が増加しており、相関性があることが判り
、従って機械的劣化度は、この実験式に材料劣化度の値
を挿入することにより求められる。An example of calculation standard data is shown in Figure 2, which is the material:
This figure shows the relationship between the degree of material deterioration (methane bubble and crack occurrence rate) and the degree of mechanical deterioration (absorbed energy reduction rate) under the usage conditions of 1/2 Mo steel and hydrogen partial pressure: 150 kg/CrA. From the figure, it can be seen that there is a correlation between the degree of material deterioration and the rate of decrease in absorbed energy, as the degree of material deterioration increases in proportion to the increase in absorbed energy. Therefore, the degree of mechanical deterioration is It is obtained by inserting the value of the degree of material deterioration into this empirical formula.
(6)余寿命の演算器6
温度及び水素分圧一定の環境下における水素侵食による
材料の余寿命は、レプリカ法により求めた材料劣化度(
メタンバブル及び割れ発生率)と機械的性質の劣化度及
び材料劣化度と時間の線図より求められる。(6) Remaining life calculator 6 The remaining life of a material due to hydrogen erosion in an environment with constant temperature and hydrogen partial pressure is calculated by the degree of material deterioration (
It is determined from a diagram of the rate of methane bubble and crack occurrence), the degree of deterioration of mechanical properties, the degree of material deterioration, and time.
すなわち余寿命は第3図に示す材料劣化度と時間の線図
を基に、絶対温度の逆数と使用時間の関係を求め、水素
侵食材の余寿命を温度と水素分圧の変数で表わせば、理
論的に第4図に示す次の(2)式で表わすことができる
。In other words, the remaining life can be calculated by finding the relationship between the reciprocal of absolute temperature and usage time based on the graph of material deterioration degree and time shown in Figure 3, and then expressing the remaining life of the hydrogen-eroded material in terms of temperature and hydrogen partial pressure. , can be theoretically expressed by the following equation (2) shown in FIG.
Q ・・・(2)
t = CP exp荊;
また材料:1/ZMo鋼、水素分圧:
150 kg/crAの使用条件下において、材料の余
寿命を吸収エネルギ低下率;50%を採用した場合、4
50℃と500℃における使用限界時間を第3図中に示
す実験式より求めて、第5図に示すように、温度と余寿
命を直線関係で表わすことにより、材料劣化度2機械的
性質の劣化度、温度及び水素分圧を考慮した余寿命推定
式として、第4図に示す次の(3)式が得られる。Q ... (2) t = CP exp 荊; In addition, under the usage conditions of material: 1/ZMo steel and hydrogen partial pressure: 150 kg/crA, the remaining life of the material was taken as the absorbed energy reduction rate: 50%. case, 4
The usable limit time at 50°C and 500°C is determined from the experimental formula shown in Figure 3, and by expressing the linear relationship between temperature and remaining life as shown in Figure 5, material deterioration degree 2 mechanical properties can be calculated. The following equation (3) shown in FIG. 4 is obtained as a remaining life estimation equation that takes into account the degree of deterioration, temperature, and hydrogen partial pressure.
・・・(3)
更に高温高圧環境下で使用される構造部材は、板厚方向
に温度、水素分圧、水素拡散速度及び板厚の諸因子で定
まる水素の濃度勾配を生じ(3)式をそのまま適用する
には問題がある。そこで水素侵食による板厚方向の寿命
評価は、5ivertsの式及びFickの第2法則を
導入し、水素濃度を水素圧力に変換して行う。その結果
、板厚方向の寿命・・・(4)
従って余寿命の演算器6では、上述のような方法により
、使用材料の表層及び内部の余寿命を高精度でかつ迅速
に演算することができる。...(3) Furthermore, structural members used in high-temperature, high-pressure environments generate a hydrogen concentration gradient in the plate thickness direction that is determined by various factors such as temperature, hydrogen partial pressure, hydrogen diffusion rate, and plate thickness, as expressed by equation (3). There is a problem in applying it as is. Therefore, life evaluation in the plate thickness direction due to hydrogen erosion is performed by introducing the 5iverts equation and Fick's second law and converting the hydrogen concentration into hydrogen pressure. As a result, the life in the plate thickness direction... (4) Therefore, the remaining life calculator 6 can calculate the remaining life of the surface layer and inside of the material used quickly and with high precision using the method described above. can.
要するに本発明によれば、水素侵食構造部材の画像を前
処理する手段と、上記前処理後の画像信号から粒界を予
め入力した基準データと比較し識別・判定する手段と、
同じくメタンバブル、割れを予め入力した基準データと
比較し識別・判定する手段と、上記2個の判定データを
演算しメタンバブル及び割れの発生率を求める手段と、
上記発生率のデータと予め入力した機械的性質の基準デ
ータとを比較演算し機械的劣化度を求める手段と、上記
機械的劣化度のデータから余寿命を演算する手段とを具
えたことにより、水素侵食構造部材の表層部及び内部の
材料劣化度を適確に検知し、それに基づき構造部材の機
械的劣化度及び余寿命を定量的にしかも信頼性高く演算
判定することができる水素侵食部材の余寿命判定装置を
得るから、本発明は産業上極めて有益なものである。In short, according to the present invention, means for preprocessing an image of a hydrogen-eroded structural member, means for identifying and determining grain boundaries from the image signal after the preprocessing by comparing them with reference data input in advance;
Similarly, means for identifying and determining methane bubbles and cracks by comparing them with pre-input reference data, and means for calculating the occurrence rate of methane bubbles and cracks by calculating the above two judgment data,
By comprising means for calculating the degree of mechanical deterioration by comparing and calculating the data on the incidence rate with reference data of mechanical properties inputted in advance, and means for calculating the remaining life from the data on the degree of mechanical deterioration, A hydrogen-eroded structural member that can accurately detect the degree of material deterioration in the surface layer and inside of the structural member, and based on this, determine the mechanical deterioration degree and remaining life of the structural member quantitatively and with high reliability. The present invention is industrially extremely useful because it provides a remaining life determination device.
第1図は本発明水素侵食部材の余寿命判定装置の一実施
例の装置構成及び作用を説明するブロック図、第2図は
材料劣化度と機械的劣化度の関係の説明図、第3図は材
料劣化度と余寿命の関係の説明図、第4図は余寿命の推
定式の説明図、第5図は温度と余寿命の関係の説明図で
ある。
第6図は水素侵食に係るネルソン曲線の説明図、第7図
は従来の水素侵食検出法の説明図である。
1・・・画像処理手段、2・・・粒界の識別・判定手段
、3・・・メタンバブル・割れの識別・判定手段、4・
・・メタンバブル及び割れ発生率の演算器、5・・・機
械的劣化度の演算器、6・・・余寿命の演算器。Fig. 1 is a block diagram illustrating the structure and operation of an embodiment of the apparatus for determining the remaining life of a hydrogen-eroded member according to the present invention, Fig. 2 is an explanatory diagram of the relationship between the degree of material deterioration and the degree of mechanical deterioration, and Fig. 3 4 is an explanatory diagram of the relationship between the degree of material deterioration and the remaining life, FIG. 4 is an explanatory diagram of the equation for estimating the remaining life, and FIG. 5 is an explanatory diagram of the relationship between temperature and the remaining life. FIG. 6 is an explanatory diagram of a Nelson curve related to hydrogen erosion, and FIG. 7 is an explanatory diagram of a conventional hydrogen erosion detection method. 1... Image processing means, 2... Grain boundary identification/judgment means, 3... Methane bubble/cracking identification/judgment means, 4.
... Calculator for methane bubble and crack occurrence rate, 5... Calculator for mechanical deterioration degree, 6... Calculator for remaining life.
Claims (1)
処理後の画像信号から粒界を予め入力した基準データと
比較し識別・判定する手段と、同じくメタンバブル、割
れを予め入力した基準データと比較し識別・判定する手
段と、上記2個の判定データを演算しメタンバブル及び
割れの発生率を求める手段と、上記発生率のデータと予
め入力した機械的性質の基準データとを比較演算し機械
的劣化度を求める手段と、上記機械的劣化度のデータか
ら余寿命を演算する手段とを具えたことを特徴とする水
素侵食部材の余寿命判定装置。A means for preprocessing an image of a hydrogen-eroded structural member, a means for identifying and determining grain boundaries from the image signal after the above preprocessing by comparing them with reference data input in advance, and reference data in which methane bubbles and cracks are also input in advance. means for comparing and identifying and determining, means for computing the above two judgment data to determine the incidence of methane bubbles and cracks, and computing for comparing the above occurrence rate data with pre-input reference data of mechanical properties. A device for determining the remaining life of a hydrogen-eroded member, comprising: means for determining the degree of mechanical deterioration; and means for calculating the remaining life from the data on the degree of mechanical deterioration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263720A JPH03123856A (en) | 1989-10-09 | 1989-10-09 | Life decision device for hydrogen-corroded member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263720A JPH03123856A (en) | 1989-10-09 | 1989-10-09 | Life decision device for hydrogen-corroded member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03123856A true JPH03123856A (en) | 1991-05-27 |
Family
ID=17393375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1263720A Pending JPH03123856A (en) | 1989-10-09 | 1989-10-09 | Life decision device for hydrogen-corroded member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03123856A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310958A (en) * | 2001-04-10 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Evaluation system of material life and evaluation method thereof |
-
1989
- 1989-10-09 JP JP1263720A patent/JPH03123856A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310958A (en) * | 2001-04-10 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Evaluation system of material life and evaluation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110146521B (en) | Pipeline surface corrosion defect detection method and device based on microwave nondestructive detection | |
US5345514A (en) | Method for inspecting components having complex geometric shapes | |
CN109900804B (en) | Metal material crack quantitative monitoring method based on ultrasonic guided waves | |
JP2006292747A (en) | Method and system for eddy current test | |
CN111855803A (en) | Laser ultrasonic high signal-to-noise ratio imaging method for manufacturing micro defects by metal additive | |
CN115452944B (en) | Multi-damage positioning method for plate-shaped material based on L-shaped sensor cluster | |
He et al. | Quantitative detection of surface defect using laser-generated Rayleigh wave with broadband local wavenumber estimation | |
Lei et al. | Ultrasonic pig for submarine oil pipeline corrosion inspection | |
Zheng et al. | Design of an advanced automatic inspection system for aircraft parts based on fluorescent penetrant inspection analysis | |
CN112014471B (en) | Plate structure multi-mode lamb wave topological gradient imaging method based on virtual sensor | |
JPH03123856A (en) | Life decision device for hydrogen-corroded member | |
Liu et al. | Surface defect identification based on broadband laser-generated Rayleigh wave with wavenumber filtering | |
Chen | Pattern recognition in nondestructive evaluation of materials | |
Zhu et al. | Local optimal threshold technique for the segmentation of ultrasonic time-of-flight diffraction image | |
Tian et al. | Multi-feature Fusion Imaging Based on Machine Learning for Weld Defect Detection Using Induction Scanning Thermography | |
Cao et al. | Probability weighted four-point arc imaging algorithm for time-reversed lamb wave damage detection | |
Wong et al. | Crack detection using image processing techniques for radiographic inspection of aircraft wing spar | |
Aldrin et al. | Advanced echo-dynamic measures for the characterisation of multiple ultrasonic signals in aircraft structures | |
Bayoumi et al. | New approach for reliability assessment of guided wave-based structure health monitoring system on a pipe application | |
Dat et al. | Multilayer perceptron neural network and eddy current technique for estimation of the crack depth on massive metal structures | |
Torbali et al. | Fusion Insights from Ultrasonic and Thermographic Inspections for Impact Damage Analysis | |
Pau et al. | Experimental investigation on contact between cylindrical conformal surfaces | |
Elewa et al. | Assessment of welding defects for gas pipeline radiographs using computer vision | |
Abdullah et al. | Feature Analysis Thru Image Recognition of C-Scan Image for Composite Laminated Materials | |
Yazdani et al. | Evaluation of pipelines in industrial radiography using image processing techniques |