JPH03123016A - Exposing method - Google Patents

Exposing method

Info

Publication number
JPH03123016A
JPH03123016A JP2214272A JP21427290A JPH03123016A JP H03123016 A JPH03123016 A JP H03123016A JP 2214272 A JP2214272 A JP 2214272A JP 21427290 A JP21427290 A JP 21427290A JP H03123016 A JPH03123016 A JP H03123016A
Authority
JP
Japan
Prior art keywords
mark
wafer
optical system
mask
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214272A
Other languages
Japanese (ja)
Other versions
JPH0546088B2 (en
Inventor
Shigeo Moriyama
森山 茂夫
Yoshio Kawamura
河村 喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2214272A priority Critical patent/JPH03123016A/en
Publication of JPH03123016A publication Critical patent/JPH03123016A/en
Publication of JPH0546088B2 publication Critical patent/JPH0546088B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To conduct the relative alignment of a mask and a wafer in a highly precise manner by a method wherein an optical image, formed by the reduction lens of the circuit pattern on a mask, is image-formed by accurately superposing it on the pattern on the wafer. CONSTITUTION:A movable stage 18 is shifted in such a manner that a mask 49 is brought to a point directly under a microscope optical system containing an objective lens 29 while a light, which is guided by an optical fiber 45, is being projected on the target mark 49, and the cross mark 35, in the visual field of the microscope optical system, and the image of the mark 49 are brought in coincidence with each other. At this time, the X-Y coordinate position is read out and recorded by a laser interferometer 21. Then, the stage 18 is shifted again in such a manner that the mark 49 comes to the point under a reduction lens 3, and a magnifying optical system, including an objective lens 52, is observed. As the detection mark 5 on the mask 1 can be observed in the visual field together with the image of the mark 49, the stage 18 is slightly moved so as to have the above-mentioned marks brought into coincidence with each other, and the X-Y coordinate position of the stage 18 when they are coincided is recorded again. As a result, the relative alignment of the wafer and the mask is completed by conducting once per wafer, the alignment accuracy can be confirmed easily, and a productive reduced projection and exposure can be conducted.

Description

【発明の詳細な説明】 本発明は一般的に既に形成されている第1の図形と新た
にその上に形成すべき第2の図形との位置関係を整合し
、第2の図形の光学像を第1の図形の上に所定の位置関
係をもって露光する装置、2 更に具体的に云えば集積回路製造工程においてウェハ上
に回路パターンを焼付ける投影型露光装置の校正方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally aligns the positional relationship between a first figure that has already been formed and a second figure to be newly formed thereon, and creates an optical image of the second figure. 2. More specifically, the present invention relates to a method for calibrating a projection exposure apparatus that prints a circuit pattern on a wafer in an integrated circuit manufacturing process.

従来、半導体集積回路等に用いられるパターン露光方法
には大別して、密着露光法と投影露光法の二つの方法が
用いられている。前者は古くから用いられている方法で
あり露光装置の構成が簡単、ウェハ全面を一括露光でき
生産的あるなどの利点がある反面、ウェハ全面にマスク
を完全に密着することが困難であり、そのため間隙がで
きると光の回折現象により微細な回路パターンが転写で
きない、また密着の際にウェハ表面を損傷しやすい、な
どの点がある。これに対し後者ではウェハに非接触で露
光できるためウェハさらにはマスクをも損傷することが
ないという利点を有している。しかしながら投影露光法
によって微細パターンを焼付けるためには、その投影レ
ンズの製作上の困難さから通常縮小率を大きくしなけれ
ばならず、必然的に露光面積が小さくなってしまう。例
えば1μmIWのパターンを解像できる高解像力レンズ
では倍率1/10で露光範囲]、 4. m mφ程度
が限界である。そのためそれより大きなウェハに焼付け
るためにはウェハを順時ステップ送りし、何回かに分割
して露光しなければならない。従来の投影露光装置では
このウェハの1ステップ送りごとに。
Conventionally, pattern exposure methods used for semiconductor integrated circuits and the like can be roughly divided into two methods: contact exposure method and projection exposure method. The former is a method that has been used for a long time and has the advantages of a simple configuration of exposure equipment and the ability to expose the entire wafer at once, making it more productive.However, it is difficult to completely contact the mask to the entire wafer, If a gap is created, a fine circuit pattern cannot be transferred due to light diffraction, and the wafer surface is likely to be damaged when the wafer is brought into close contact with the wafer. On the other hand, the latter method has the advantage of not damaging the wafer or even the mask since it can be exposed without contacting the wafer. However, in order to print a fine pattern using the projection exposure method, it is usually necessary to increase the reduction ratio due to the difficulty in manufacturing the projection lens, which inevitably results in a small exposure area. For example, a high-resolution lens capable of resolving a 1 μm IW pattern has an exposure range at a magnification of 1/10], 4. The limit is around mmφ. Therefore, in order to print a larger wafer, the wafer must be sequentially stepped and exposed several times. In conventional projection exposure equipment, this is done every time the wafer is fed by one step.

ウェハ上の位置決めマークとマスク上の位置決めマーク
を投影レンズを介して光学的に観察し、通常マスクを微
動させて両マークの位置合わせをして露光を行なってい
た。そのため−枚のウェハを露光するために数回ないし
数千回の位置合せ操作を必要とし、生産的な装置でなか
った。また、両マークの位置合わせ時にはウェハ上に塗
布されているホトレジストに感光しないように露光時の
光の波長と異なる波長の光を用いなければならず、それ
に伴なう波長補正レンズ、フィルタなどの切換え機構な
ど装置自体も複雑なものであった。この従来の投影露光
装置における欠点を改良した装置、すなわち各ウェハに
つき1回の操作のみで位置合わせを完了する投影露光装
置として、IBMTechnical Disclos
ure Bulletin 13巻7号P 18’l 
6に提案されている方式がある。すなわち、投影露光光
学系外部にウェハ位置決め専用の顕微鏡観察装置を設け
、ウェハをこの顕微鏡装置の光学軸に対して位置決めし
た後ある決められた距離だけこのウェハを移動して露光
光学系内に心びき間接的にマスクとウェハの位置合わせ
を行なう。その後はウェハをある決められた絶対的な量
づつXYに精密にステップ送りし、露光を行なって一枚
のウェハ全面の露光を完了する。この方式によればウェ
ハの位置決めは露光前1度のみで済み、非常に生産的で
あるがその反面、前記顕微鏡装置と露光光学系の空間的
絶対位置関係を長期間一定に保つことが困難であり、マ
スクとウェハの相対位置合わせ精度不良が生じやすい。
The positioning mark on the wafer and the positioning mark on the mask are optically observed through a projection lens, and the mask is normally moved slightly to align the two marks for exposure. Therefore, it is necessary to perform alignment operations several to several thousand times in order to expose one wafer, making it an unproductive apparatus. In addition, when aligning both marks, it is necessary to use light with a wavelength different from the wavelength of the light used during exposure so as not to expose the photoresist coated on the wafer. The device itself, including the switching mechanism, was also complex. IBM Technical Disclos is a projection exposure device that improves the shortcomings of the conventional projection exposure device, that is, a projection exposure device that completes alignment with only one operation for each wafer.
ure Bulletin Volume 13 No. 7 P 18'l
There is a method proposed in 6. In other words, a microscope observation device dedicated to wafer positioning is provided outside the projection exposure optical system, and after positioning the wafer with respect to the optical axis of this microscope device, the wafer is moved a certain distance and centered within the exposure optical system. The mask and wafer are aligned indirectly. Thereafter, the wafer is precisely stepped in XY directions by a certain absolute amount, and exposure is performed to complete the exposure of the entire surface of one wafer. According to this method, the wafer only needs to be positioned once before exposure, which is very productive. However, on the other hand, it is difficult to maintain a constant spatial absolute positional relationship between the microscope device and the exposure optical system for a long period of time. There is a risk of poor relative alignment accuracy between the mask and wafer.

本発明は上述したこれら従来の投影露光装置の欠点を解
消するためになされたものであり、−枚のウェハ露光に
際して1度のウェハ位置決めで済み、さらに長期間安定
して高精度のマスクとウェハの相対的位置合わせが行な
えるように校正する投影露光装置の校正方法を提供する
ものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional projection exposure apparatus, and it is possible to perform wafer positioning only once when exposing two wafers, and to provide a mask and wafer that can be stably maintained for a long period of time and have high precision. The present invention provides a method for calibrating a projection exposure apparatus, which calibrates a projection exposure apparatus so as to perform relative positioning.

本発明の前提となる従来技術、及び本発明の作動原理を
第1図によって説明する。第1図は1軸のみについて示
しであるが、X、Y2軸についても同様である。ここに
おいて目的は、マスク1」二の回路パターン2の縮小レ
ンズ3による光学像をウェハ4上のパターン5上に正確
に重ねて結像させることにある。従来の装置では、縮小
ンズ3に対して堅固に固着されている対物レンズ6、反
射鏡7、接眼レンズ8および図中には示されていない落
射照明系からなるマーク検出用光学系たとえば顕微鏡光
学系(以後顕微鏡光学系で説明する)によりウェハ4上
のパターン5を観察し、顕微鏡光学系の中心光軸l工と
縮小レンズ3の結像面Pの交点Aに前記パターン5が一
致するようウェハ4をアライニングする。一方、マスク
1上の回路パターン2が縮小レンズ3の中心光軸1□上
にあれば、該中心光軸1□と前記平面Pの交点Oにウェ
ハ4上のパターン5が一致するように該ウェハ4を移動
する、すなわちある一定の距離A○=L□だけウェハ4
を移動することにより回路パタ− 6 ン2の縮小レンズ3による光学像をウェハ4上のパター
ン5に一致させることができる。この場合、マスク1上
の回路パターン2を前記光軸12上にi′![!置せし
めるには、マスク1上にあらかしめマスク位置決め用マ
ーク9を設けておき、前記顕微鏡光学系および縮小レン
ズ3とから決定される静止座標系−にの固有位置10に
対して前記マーク9を一致させることにより行ない得る
。しかしながら実際の装置においては縮小レンズ3とマ
スク1の間の距離は300〜600mm程度と大きく錐
れでおり、これらを結合する部材を鋼性高く製作しても
温度変化や外部振動などにより前記静止座標系に対して
固有位置1oは数日間程度で5〜]Oμm程度も変化し
、長期間にわたって0.1〜0.2μm精度のマスク合
わせをすることは困難である。しかしながらこの変位の
生しかたは急激なものではなく徐々に生ずることから、
前記静止座標系に対する前記固有位置10の関係を随時
知り、これを補正することにより正しいマスク合わせを
行なうことができる。
The prior art on which the present invention is based and the principle of operation of the present invention will be explained with reference to FIG. Although FIG. 1 shows only one axis, the same applies to the two X and Y axes. The purpose here is to form an optical image of the circuit pattern 2 of the mask 1'' by the reduction lens 3 so as to accurately overlap the pattern 5 on the wafer 4. In the conventional apparatus, a mark detection optical system, for example, a microscope optical system, includes an objective lens 6, a reflector 7, an eyepiece 8, and an epi-illumination system (not shown), which are firmly fixed to the reduction lens 3. Observe the pattern 5 on the wafer 4 using a microscope optical system (described below as the microscope optical system), and make sure that the pattern 5 coincides with the intersection A of the central optical axis of the microscope optical system and the imaging plane P of the reduction lens 3. Align the wafer 4. On the other hand, if the circuit pattern 2 on the mask 1 is on the central optical axis 1□ of the reduction lens 3, the pattern 5 on the wafer 4 is arranged so that it coincides with the intersection O of the central optical axis 1□ and the plane P. Move the wafer 4, that is, move the wafer 4 by a certain distance A○=L□
By moving the optical image of the circuit pattern 2 by the reduction lens 3, it is possible to match the optical image of the circuit pattern 2 with the pattern 5 on the wafer 4. In this case, the circuit pattern 2 on the mask 1 is positioned i'! on the optical axis 12. [! To do this, a preliminary mask positioning mark 9 is provided on the mask 1, and the mark 9 is placed at a unique position 10 in a stationary coordinate system determined from the microscope optical system and the reduction lens 3. This can be done by matching. However, in actual equipment, the distance between the reduction lens 3 and the mask 1 is approximately 300 to 600 mm, which is a large conical distance, and even if the member that connects them is made of high quality steel, temperature changes and external vibrations may cause the The unique position 1o with respect to the coordinate system changes by about 5 to 0 μm over several days, and it is difficult to perform mask alignment with an accuracy of 0.1 to 0.2 μm over a long period of time. However, since this displacement is not sudden but occurs gradually,
Correct mask alignment can be performed by knowing the relationship of the unique position 10 with respect to the stationary coordinate system at any time and correcting this.

そこで、本発明では新たにマスク1上に検出マーク11
が設けられており、反射鏡12および接眼レンズ13に
よりト記検出マーク]1を拡大して観察することができ
る。さらに、ウェハ4をA位置よりB位置に移・I’J
Iするとウェハ/1−1−のパタン5からの反射光は2
ih小レンズ3により逆に拡大され前記検出マーク]1
1−に結像し、前記反射鏡]2と接眼レンズ13か1も
なる拡大観察系により、たとえは第2図のように中型を
したウェハ4」−のパターン5の像14とそれを囲む形
をした検出マク11の像15か同−視野内に観察できる
。以後の説明では、ウェハパターン5のような中型パタ
ーンの中心と検出マーク]1のようなそれをとり囲む形
状のパターンの中心が一致した時に両パターンが一致し
たと定義する。いま、第1図中B位首においてウェハパ
ターン像1・1と検出マーク像15が一致したどすれは
、マスク1− J−の回路パターン2と検出マーク11
間の距ぼけ既知であることから該距離に縮小レンズ3の
縮小牢を乗算することにより○II = L 、、を知
ることか出来る。そ8 こで八Bすなわち、前記顕微鏡光学系によりウェハパタ
ーン5の中心を割り出した後から該ウェハパターンの拡
大像14が検出マーク像15と一致するまてウェハ5を
移動した距離を測ることにより、A○=L工を知ること
か可能となり、これによって、前記固有位置]Oの変化
にかかわらずウェハパターン5とマスク1上の回路パタ
ーン2のマスク合わせを行なうことができる。
Therefore, in the present invention, a detection mark 11 is newly added on the mask 1.
is provided, and the detection mark 1 can be enlarged and observed using a reflecting mirror 12 and an eyepiece 13. Furthermore, move the wafer 4 from the A position to the B position.
Then, the reflected light from pattern 5 of wafer/1-1- is 2
The detection mark is magnified inversely by the ih small lens 3]1
An image 14 of a pattern 5 of a medium-sized wafer 4'' is formed and surrounded by an image 14 of a medium-sized wafer 4'', for example, as shown in FIG. An image 15 of the shaped detection mask 11 can be observed within the same field of view. In the following description, when the center of a medium-sized pattern such as wafer pattern 5 and the center of a pattern surrounding it, such as detection mark 1, match, it is defined that both patterns match. Now, whichever wafer pattern image 1.1 and the detection mark image 15 match at position B in FIG.
Since the distance between the two is known, by multiplying the distance by the reduction distance of the reduction lens 3, it is possible to know ○II=L. (8) In other words, after determining the center of the wafer pattern 5 using the microscope optical system, by measuring the distance the wafer 5 has been moved until the enlarged image 14 of the wafer pattern coincides with the detection mark image 15. , A◯=L, thereby making it possible to perform mask alignment between the wafer pattern 5 and the circuit pattern 2 on the mask 1 regardless of the change in the characteristic position [O].

第3図は本発明の詳細な実施例を示した俯陥図である。FIG. 3 is an overhead view showing a detailed embodiment of the present invention.

前処理工程で位置決めパターン5が形成されているウェ
ハ4は、駆動機構16.17によりXYに移動する移動
台18上に真空吸着されている。この移動台18の移動
量は反射鏡19゜20とレーザ干渉測定器21からなる
測長系により0.1μm精度で測定される。
The wafer 4, on which the positioning pattern 5 has been formed in the pre-processing process, is vacuum-adsorbed onto a movable stage 18 that moves in the X and Y directions by drive mechanisms 16 and 17. The amount of movement of the moving table 18 is measured with an accuracy of 0.1 .mu.m by a length measuring system consisting of a reflecting mirror 19.degree. 20 and a laser interference measuring device 21.

一方マスク]はパルモータ22.23により、X、 Y
に±50μm程度移動可能な微動台24上に真空吸着さ
れ、静止座標系に対して固着されている2つの振動スリ
ット型光電顕微鏡25.26の中心光軸に2つのマスク
位置決め用マーク27゜28の中心か一致するよう前記
微動台24を移動させ、マスク1をrNf記静止座標系
の一定位置に配置する。マスタ1のパターンをウェハ4
−にに1/10に縮小投影する縮小レンズ3の周囲には
それぞれ対物レンズ2rr、3o、反射鏡31.++2
、接眼レンズ33,34および視野−1字マーク335
゜36からなる2本の顕微鏡光学系か設けられておリウ
エハlI 、1−の2″′)のウェハ位置決めマーク3
738の中心位置を割り出す9.この顕微鏡光学系の2
つの視野1−字マーク’ 5 + 36に対し前記2−
)のウェハ位置決めマーク37.38が一致するよう移
動台18を移動し、一致した時にレーザ測定器21をリ
セットしてXY座標の原点どする。その後は前工程で処
理されているウェハーにの回路パターン(図には示して
いない)にマスク]上の断回路パターン39を重ねるへ
くあらかじめ決定されている座標に、レーザ干渉all
長器21を基僧として移動台18を位置決めする。位置
決めか完了されるとシャッタ40が開き、水銀ランプ4
]の光はコンチン刀゛レンス−′+2により)14行光
とさAしで0 マスク1を照射し、縮小レンズ3を介してウェハ4上の
ホ1〜レジストを露光する。その後は次々と新らたな座
標に移動台18が位置決めされ、その度々に露光が繰り
返えされる。この移動台18の目標座標に対する位置決
めに関しては、既に本発明者らによって提案されている
露光原理によりそれほど高い精度は要求されない。すな
わち移動台18の目標座標に対する位置決め誤差がある
場合には、制御回路54の指令に従ってその誤差の10
倍の量だけ微動台24が反対方向に移動し、露光光学系
とした場合等価的にその位置決め誤差を補正してウェハ
4上の正しい位置にマスク1の回路パターン39を露光
する。
On the other hand, the mask] is controlled by the pulse motors 22 and 23 to
Two mask positioning marks 27° 28 are placed on the central optical axes of two vibrating slit photoelectron microscopes 25 and 26, which are vacuum-adsorbed onto a fine movement stage 24 that can be moved by about ±50 μm and are fixed relative to the stationary coordinate system. The fine movement table 24 is moved so that the centers of the mask 1 are aligned with each other, and the mask 1 is placed at a fixed position in the stationary coordinate system rNf. Transfer the pattern of master 1 to wafer 4
- Objective lenses 2rr, 3o, reflecting mirrors 31, . ++2
, eyepieces 33, 34 and field of view - 1 character mark 335
Two microscope optical systems consisting of ゜36 are provided and the wafer positioning mark 3 of
Determine the center position of 7389. 2 of this microscope optical system
1 field of view 1- character mark' 5 + 36 vs. 2-
) The movable table 18 is moved so that the wafer positioning marks 37 and 38 of the wafer positioning marks 37 and 38 match, and when they match, the laser measuring device 21 is reset to return to the origin of the XY coordinates. After that, laser interference is applied to the circuit pattern 39 on the wafer processed in the previous process (not shown) at predetermined coordinates to overlap the circuit pattern 39 on the mask].
The movable table 18 is positioned using the long tool 21 as a base. When the positioning is completed, the shutter 40 opens and the mercury lamp 4
The light irradiates the 0 mask 1 with 14 lines of light and the laser beam A using the continuum lens -'+2, and exposes the resist 1 to 1 on the wafer 4 through the reduction lens 3. Thereafter, the movable table 18 is positioned at new coordinates one after another, and exposure is repeated each time. Regarding the positioning of the movable table 18 with respect to the target coordinates, very high precision is not required due to the exposure principle already proposed by the present inventors. That is, if there is a positioning error with respect to the target coordinates of the movable table 18, 10 of the error is
If the fine movement table 24 is moved in the opposite direction by twice the amount and used as an exposure optical system, the positioning error is equivalently corrected and the circuit pattern 39 of the mask 1 is exposed at the correct position on the wafer 4.

以上の機構において、前記固有点10に相等する2つの
光電顕微鏡25.26が縮小レンズ3およびレーザ干渉
測長系を基準とした静止座標系に対して変化しなければ
常に正確なマスク合わせがなされるわけであるが前述し
たように実際には変化が生ずるためその校正が必要であ
る。校正時には、水銀ランプ43.コンデンサレンズ4
4.オプチカルファイバ45からなる照明系を移動台1
8に設けられている挿入[146に挿入し、ファイバに
よって導ひかれた光で反射鏡47、集光レンズ48を介
してターゲラ1−マーク49を照明する。このターゲッ
トマーク49は通常一般に用いられているホ1−マスク
作成工程によって作られ、幅2μmの十字パターン部の
み金属クロム膜が付着している。一方、マスク1の周縁
には前記ターゲットマーク49と合わせるへき検出マー
ク50が設けられている。この検出マーク50の位置は
マスク位置決めマーク27.28に対し全てのマスク共
通の位置に設けられているゎ検出マーク50の上方には
反射鏡51.対物レンズ52.接眼レンズ53からなる
拡大光学系が設けられている。今、前記オプチカルファ
イバ45により導びかれた光でターゲットマーク49を
照明しつつ、該ターゲットマーク49が対物レンズ29
を含む顕微鏡光学系の真下に来るように移動台18を移
動し、顕微鏡光学系視野内の十字マーク35と該ターゲ
ットマーク49の像を一致させる。この時−11= 2 の移動台のXY座標位置をレーザ干渉測定器21により
読み取り記録しておく。次に該ターゲットマーク49が
縮小レース3の下に来るように再び移動台18を移動さ
せ、今度は対物レンズ52を含む拡大光学系を観察する
。視野内にはターゲットマーク49の十字像と共にマス
ク1上の検出マーク50が観察されるので、これらが一
致するように移動台18を微動させ、一致した時の移動
台18のxy座標位置を再び記録する。
In the above mechanism, if the two photoelectron microscopes 25 and 26 corresponding to the unique point 10 do not change with respect to the static coordinate system based on the reduction lens 3 and the laser interferometric measurement system, accurate mask alignment is always achieved. However, as mentioned above, since changes occur in reality, it is necessary to calibrate them. During calibration, a mercury lamp 43. condenser lens 4
4. The illumination system consisting of optical fiber 45 is moved to the moving table 1.
The target laser 1-mark 49 is illuminated by the light guided by the fiber through the reflecting mirror 47 and the condensing lens 48. This target mark 49 is made by a generally used hole-mask forming process, and a metal chromium film is attached only to the cross pattern portion having a width of 2 μm. On the other hand, a cleavage detection mark 50 that matches the target mark 49 is provided on the periphery of the mask 1 . The position of this detection mark 50 is provided at a position common to all masks with respect to the mask positioning marks 27 and 28. Above the detection mark 50 is a reflecting mirror 51. Objective lens 52. A magnifying optical system consisting of an eyepiece lens 53 is provided. Now, while illuminating the target mark 49 with the light guided by the optical fiber 45, the target mark 49 is illuminated by the objective lens 29.
The moving table 18 is moved so as to be directly below the microscope optical system including the microscope optical system, and the image of the cross mark 35 within the field of view of the microscope optical system and the image of the target mark 49 are made to coincide. At this time, the XY coordinate position of the moving table at -11=2 is read and recorded by the laser interference measuring device 21. Next, the moving table 18 is moved again so that the target mark 49 is below the reduction race 3, and this time the magnifying optical system including the objective lens 52 is observed. Since the detection mark 50 on the mask 1 is observed together with the cross image of the target mark 49 within the field of view, the moving table 18 is slightly moved so that they coincide, and the xy coordinate position of the moving table 18 at the time of coincidence is recalculated. Record.

以上述へた操作により前述したしよ〜L2の距離を各X
、Y軸について知ることができたわけであり、マスク1
上における検出マーク50の位置より各X、Y軸につい
てのL2がわかっているから容易に各X、Y軸について
のLlを知ることができる。これによって縮小レンズ3
およびレーザ干渉測長系を基準とした静止s41系に対
するマスク1の空間的な位置関係を校正することができ
たわけである。
By the operations described above, the distance of L2 is
, we were able to know about the Y axis, and mask 1
Since L2 for each of the X and Y axes is known from the position of the detection mark 50 above, Ll for each of the X and Y axes can be easily determined. With this, the reduction lens 3
And, the spatial positional relationship of the mask 1 with respect to the stationary s41 system based on the laser interferometric measurement system could be calibrated.

上記実施例ではターゲットマーク49は1つとなってい
るが、これを対物レンズ29.30の中心間距離だけ離
れた2つのマークとすることは明らかに可能である。し
かしこの場合にはファイバ照明系が若干複雑になる。ま
たこれら専用のターゲットマークを移動台18上に設け
ず、ウェハ位置決めマーク37.38が形成されている
基準ウェハを用いても同様の校正を行なうことが可能で
あるが、この場合ターゲットマークの照明光は当然縮小
レンズ3を介した反射照明となり、高いターゲツト像コ
ントラストが得られないためマスク1上の検出マーク5
0との合致精度が低下する欠点がある。
Although in the above embodiment there is only one target mark 49, it is clearly possible to use two marks separated by the distance between the centers of the objective lenses 29 and 30. However, in this case, the fiber illumination system becomes somewhat complicated. It is also possible to perform similar calibration without providing these dedicated target marks on the moving table 18 and using a reference wafer on which wafer positioning marks 37 and 38 are formed, but in this case, the illumination of the target marks Naturally, the light becomes reflected illumination through the reduction lens 3, and the detection mark 5 on the mask 1 cannot obtain high target image contrast.
There is a drawback that the accuracy of matching with 0 is reduced.

以上説明したごとく本発明によれば、ウェハとマクスの
相対位置合わせが1枚のウェハにつき1回で完了すると
共にその合わせ精度の確認が容易にできるため、非常に
生産的な縮小投影露光が可能となる。
As explained above, according to the present invention, the relative positioning of the wafer and the mask is completed once per wafer, and the alignment accuracy can be easily confirmed, making it possible to perform highly productive reduction projection exposure. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の作動原理と共に本発明の原理を示す
図、第2図はウェハパターンとマスク上の検出マークが
一致した場合の顕微鏡視野像を示3 4 す図、第3図は本発明の実施例の俯轍図である。 1 マスク、3・縮小レンズ、4・・ウェハ、6・・・
対物レンズ、8・・接眼レンズ、12・・反射鏡、13
・接眼レンズ、18・移動台、54 制御回路。 5
Figure 1 is a diagram showing the principle of the present invention as well as the operating principle of the conventional device, Figure 2 is a diagram showing a microscope field image when the wafer pattern and the detection mark on the mask match, and Figure 3 is a diagram showing the principle of the present invention. FIG. 3 is an overhead track diagram of an embodiment of the invention. 1. Mask, 3. Reduction lens, 4.. Wafer, 6..
Objective lens, 8... Eyepiece, 12... Reflector, 13
- Eyepiece, 18 - Moving table, 54 Control circuit. 5

Claims (1)

【特許請求の範囲】 1、露光光学系の光軸外に設けられたマーク検出用光学
系で移動台上にあるマークを検出する工程と、露光光学
系の縮小投影レンズを含む拡大光学系で移動台上にある
マークを検出する工程と、上記両マーク検出する工程で
得られた検出結果に基づいて、前記移動台上に搭載され
ているウェハを所定の位置に位置決めする工程と露光す
る工程とを含む露光方法。 2、請求項1記載の露光方法において、上記露光光学系
の光軸外に設けられたマークを検出光学系でマーク検出
をする工程が顕微鏡光学系でマークを検出する工程であ
ることを特徴とする露光方法。 3、請求項2記載の露光方法において、上記顕微鏡光学
系でマークを検出する工程が上記顕微鏡光学系の視野内
のマークと前記移動台上に設けたマークの像とを一致さ
せる前記移動台の位置をレーザ干渉測長系で読み取る工
程から成ることを特徴とする露光方法。 4、請求項1記載の露光方法において、上記露光光学系
の縮小投影レンズを含む拡大光学系で移動台上にあるマ
ークを検出する工程が上記拡大光学系の視野内のレティ
クルマークの像と前記移動台上に設けられたマークの像
とを一致させるべく前記移動台の位置をレーザ干渉測長
系で読み取る工程を含むことを特徴とする露光方法。 5、請求項1記載の露光方法において、上記ウェハを所
定の位置に位置決めする工程が上記顕微鏡光学系により
上記ウェハ上に設けてある位置決めマークの中心位置を
求める工程を含むことを特徴とする露光方法。
[Claims] 1. A step of detecting a mark on a movable table with a mark detection optical system provided off the optical axis of the exposure optical system, and an enlargement optical system including a reduction projection lens of the exposure optical system. a step of detecting a mark on the moving table; a step of positioning the wafer mounted on the moving table at a predetermined position based on the detection results obtained in the above steps of detecting both marks; and a step of exposing the wafer. and an exposure method including. 2. The exposure method according to claim 1, wherein the step of detecting a mark provided outside the optical axis of the exposure optical system with a detection optical system is a step of detecting the mark with a microscope optical system. exposure method. 3. In the exposure method according to claim 2, the step of detecting a mark with the microscope optical system includes a step of detecting a mark on the movable base so that a mark in the field of view of the microscope optical system matches an image of the mark provided on the movable base. An exposure method characterized by comprising a step of reading the position with a laser interferometer measurement system. 4. In the exposure method according to claim 1, the step of detecting the mark on the movable table with the magnifying optical system including the reduction projection lens of the exposure optical system detects the image of the reticle mark within the field of view of the magnifying optical system and the An exposure method comprising the step of reading the position of the movable table using a laser interferometric measurement system so as to match the image of a mark provided on the movable table. 5. The exposure method according to claim 1, wherein the step of positioning the wafer at a predetermined position includes the step of determining the center position of a positioning mark provided on the wafer using the microscope optical system. Method.
JP2214272A 1990-08-15 1990-08-15 Exposing method Granted JPH03123016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214272A JPH03123016A (en) 1990-08-15 1990-08-15 Exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214272A JPH03123016A (en) 1990-08-15 1990-08-15 Exposing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62012367A Division JPS62181430A (en) 1987-01-23 1987-01-23 Calibrating method of exposure apparatus

Publications (2)

Publication Number Publication Date
JPH03123016A true JPH03123016A (en) 1991-05-24
JPH0546088B2 JPH0546088B2 (en) 1993-07-13

Family

ID=16652986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214272A Granted JPH03123016A (en) 1990-08-15 1990-08-15 Exposing method

Country Status (1)

Country Link
JP (1) JPH03123016A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476476A (en) * 1967-03-28 1969-11-04 Optomechanisms Inc Alignment means for photo repeat machine
JPS5022577A (en) * 1973-06-26 1975-03-11
DE2557675A1 (en) * 1974-12-23 1976-07-01 Ibm METHOD FOR ALIGNMENT OF TWO PLANAR WORKPIECES, E.G. A MASK TO A WAFER OR REVERSE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476476A (en) * 1967-03-28 1969-11-04 Optomechanisms Inc Alignment means for photo repeat machine
JPS5022577A (en) * 1973-06-26 1975-03-11
DE2557675A1 (en) * 1974-12-23 1976-07-01 Ibm METHOD FOR ALIGNMENT OF TWO PLANAR WORKPIECES, E.G. A MASK TO A WAFER OR REVERSE

Also Published As

Publication number Publication date
JPH0546088B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JPS602772B2 (en) exposure equipment
JP2646412B2 (en) Exposure equipment
US4792693A (en) Step-and-repeat exposure method
US6268902B1 (en) Exposure apparatus, and manufacturing method for devices using same
JPH1050604A (en) Method for controlling position and method for alignment
JPS5918950A (en) Apparatus for projection transfer of mask on work piece and adjusting method thereof
JPH09312248A (en) Exposure device
JPH0142131B2 (en)
JPH03123016A (en) Exposing method
JP3198718B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
JPH04115518A (en) Exposure device
JPH0546089B2 (en)
JP3352280B2 (en) Projection exposure apparatus adjusting method and exposure method
JPS60177625A (en) Projection exposure device
JPH1152545A (en) Reticle and pattern transferred by the same as well as method for aligning reticle and semiconductor wafer
JP2638528B2 (en) Positioning method
JP2646417B2 (en) Exposure equipment
JPH10125589A (en) Scanning type exposure equipment, and device manufacture using the equipment
JP2899026B2 (en) Mark detection device
JPH1027738A (en) Scanning exposure method and manufacture of device thereby
JP2884767B2 (en) Observation device
JP2894061B2 (en) Projection exposure apparatus having position detecting means
JPS6345819A (en) Stage error measurement system in projection aligner
JP2986627B2 (en) Alignment method of mask and work in proximity exposure apparatus
JPH0513304A (en) Projection aligner and method for manufacture of semiconductor device