JPH03122590A - Gravity displacement meter within shaking - Google Patents

Gravity displacement meter within shaking

Info

Publication number
JPH03122590A
JPH03122590A JP1260736A JP26073689A JPH03122590A JP H03122590 A JPH03122590 A JP H03122590A JP 1260736 A JP1260736 A JP 1260736A JP 26073689 A JP26073689 A JP 26073689A JP H03122590 A JPH03122590 A JP H03122590A
Authority
JP
Japan
Prior art keywords
magnetic field
spheres
shaking
superconductive
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260736A
Other languages
Japanese (ja)
Inventor
Atsushi Sato
淳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1260736A priority Critical patent/JPH03122590A/en
Publication of JPH03122590A publication Critical patent/JPH03122590A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform measurement even within the shaking of an airplane without receiving effect by mounting a pair of superconductive spheres floating by the magnetic field generated by a magnetic field generator and a position measuring device measuring the positions of the superconductive spheres. CONSTITUTION:A magnetic field generator 1 generates a magnetic field satisfying the condition of formula at the arbitrary point of a vacuum container. By the magnetic field, the magnetic force acting on superconductive spheres 2 is well-balanced with average gravity in a vertical direction and zero in a horizontal direction. A position measuring device 3 measures the superconductive spheres 2 to the coordinates axis fixed to a measuring system. Since the rotary motion (high in frequency) of the shaking of the measuring system is suppressed by springs 5 and rotary spheres 6, a displacement detector compares the measuring result of two superconductive spheres to make it possible to obtain the difference between the gravities at points A, B. Therefore, the displacement of gravity can be measured even in the shaking of an airplane without receiving the effect of the shaking.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば航空機等の動揺中において潜水艦の
存在等による重力の変位の測定を行なう動揺的重力変位
計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbulent gravitational displacement meter that measures displacement of gravity due to the presence of a submarine, for example, while an aircraft is oscillating.

〔従来の技術〕[Conventional technology]

第2図は従来の重力計を示した図であり、図において、
2は超伝導球、8は超伝導球2を浮上させる磁場を発生
する超伝導コイルである。
Figure 2 shows a conventional gravimeter, and in the figure,
2 is a superconducting sphere, and 8 is a superconducting coil that generates a magnetic field to levitate the superconducting sphere 2.

第2図で超伝導球2に働く磁場の力は次のように計算さ
れる。
The force of the magnetic field acting on the superconducting sphere 2 in Figure 2 is calculated as follows.

F、 =−(R’/2) (t++hz+(hz”+2
h+bs)Z +・)F、 =−(R’/2) ((h
l”/4−hlh3)y+・・司F、 =−(R’/2
) ((hz”/4−h+hx)x+”’)ま ただし、R:超伝導球の半径 Fξ:ξ方向の超伝導球に働く力 hl :点(0,O,O)の磁場 hl :θh/θZ h3 :θ”h+/θZt ここで、−R3/2h、ht= m gh2K +2h
lh3 > 0 hx”/4  hlh2>。
F, =-(R'/2) (t++hz+(hz"+2
h+bs)Z +・)F, =-(R'/2) ((h
l''/4-hlh3)y+... TsukasaF, =-(R'/2
) ((hz"/4-h+hx)x+"') However, R: Radius of the superconducting sphere Fξ: Force acting on the superconducting sphere in the ξ direction hl: Magnetic field at the point (0, O, O) hl: θh /θZ h3 :θ”h+/θZt Here, -R3/2h, ht= m gh2K +2h
lh3 > 0 hx”/4 hlh2>.

ただし、m:超伝導球質量 g:測定地点の平均重力加速度 を満足させるように超伝導コイルに流れる電流を調整す
ることにより超伝導球を点(0,O,O)に安定的に浮
上させることができる。
However, m: Superconducting sphere mass g: The superconducting sphere is stably levitated to the point (0, O, O) by adjusting the current flowing through the superconducting coil so as to satisfy the average gravitational acceleration at the measurement point. be able to.

この状態で重力がmgからm(g+Δg)(Δg:重力
加速度変位)に変化したとすると、超伝導球のZ座標は
、 Z=−m6g / (hz” +2hthi)となる、
従って、超伝導球のZ座標を測定することにより逆にΔ
gを知ることができる。
If the gravity changes from mg to m (g + Δg) (Δg: gravitational acceleration displacement) in this state, the Z coordinate of the superconducting sphere will be Z = -m6g / (hz" + 2hthi),
Therefore, by measuring the Z coordinate of the superconducting sphere, Δ
You can know g.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の重力計は以上のように構成されており、超伝導球
を安定的に浮上させるためには装置を静止した状態で使
用しなければならず、動揺中では使用できないといった
問題点があった。
Conventional gravimeters are configured as described above, but in order to stably levitate the superconducting sphere, the device must be used in a stationary state and cannot be used when it is in motion. .

この発明は上記のような従来のものの問題点を解消する
ためになされたもので、航空機等の動揺の中でも潜水艦
の存在等による重力の変化を測定できる装置を得ること
を目的としたものである。
This invention was made to solve the above-mentioned problems with the conventional devices, and its purpose is to obtain a device that can measure changes in gravity due to the presence of a submarine, etc. even when an aircraft is shaking. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る動揺自重力変位計は、磁場を発生させる
磁場発生装置と、この磁場発生装置によって発生された
磁場によって浮上する1対の超伝導球と、この超伝導球
の位置を測定する位置測定器と、超伝導球を格納する真
空容器と、磁場発生装置9位置測定器、真空容器を固定
する外箱と、外箱に取り付けられ高速で回転する回転球
、及び外箱を支持するスプリングと、上記1対の超伝導
球の位置の変化を比較することにより重力変位の有無を
検出する変位検出器とを設けたものである。
The oscillating self-gravity displacement meter according to the present invention includes a magnetic field generator that generates a magnetic field, a pair of superconducting balls that levitate due to the magnetic field generated by the magnetic field generator, and a position that measures the position of the superconducting balls. A measuring device, a vacuum container that stores the superconducting sphere, a magnetic field generator 9 position measuring device, an outer box that fixes the vacuum container, a rotating ball that is attached to the outer box and rotates at high speed, and a spring that supports the outer box. and a displacement detector that detects the presence or absence of gravitational displacement by comparing changes in the positions of the pair of superconducting spheres.

〔作用〕[Effect]

超伝導球はマイスナー効果により、ある特定の磁場配位
の下では鉛直方向には重力とつりあい、水平方向には力
が働かないようになる。
Due to the Meissner effect, a superconducting sphere balances gravity in the vertical direction under a certain magnetic field configuration, but no force acts in the horizontal direction.

この発明においては、このような条件下の超伝導球の位
置の測定を同時に2箇所で行い、2つの測定結果を比較
することにより、この2箇所間の重力の変位を求め、こ
れにより潜水艦等の存在を探知することができる。また
、回転球の遠心力。
In this invention, the position of the superconducting sphere under these conditions is measured at two locations at the same time, and by comparing the two measurement results, the displacement of gravity between these two locations is determined. can detect the existence of Also, the centrifugal force of the rotating ball.

スプリングの弾性により測定系の動揺の回転運動成分(
1回の測定に要する時間と比べて周期が十分大きくない
もの)を抑えることができる。
Due to the elasticity of the spring, the rotational motion component of the oscillation of the measurement system (
(The period is not sufficiently large compared to the time required for one measurement) can be suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による動揺自重力変位計を
示す断面図であり、図において、lは磁場発生装置、2
は超伝導球、3は位置測定器、4は真空容器、5はスプ
リング、6は回転球、7は外箱である。
FIG. 1 is a sectional view showing an oscillating self-gravity displacement meter according to an embodiment of the present invention, in which l is a magnetic field generator, 2
3 is a superconducting ball, 3 is a position measuring device, 4 is a vacuum container, 5 is a spring, 6 is a rotating ball, and 7 is an outer box.

磁場内の超伝導球に働く力は次のように表わされる。The force acting on a superconducting sphere in a magnetic field is expressed as:

ただし、Hは磁場である。However, H is a magnetic field.

磁場発生装置1は真空容器の任意の点で次の条件を満た
す磁場を発生させる。
The magnetic field generator 1 generates a magnetic field that satisfies the following conditions at any point in the vacuum container.

ただし、gは測定範囲での平均重力加速度である。However, g is the average gravitational acceleration in the measurement range.

これにより、超伝導球に働く磁力は鉛直方向には平均重
力とつりあい、水平方向にはゼロである。
As a result, the magnetic force acting on the superconducting sphere is balanced with the average gravity in the vertical direction, and is zero in the horizontal direction.

位置測定器3は測定系に固定された座標軸に対する超伝
導球2の座標を測定する。測定系の動揺の回転運動(周
波数の高いもの)はスプリング5および回転球6多こよ
り抑えられているので、変位検出器は2つの超伝導球の
測定結果を比較することにより、A点、B点での重力の
差を得ることができる。その計算方法は次の通りである
。即ち超伝導球の位置を、1回のサンプリングにつき3
回ずつ測定してその加速度を求め、その差異により重力
加速度の差異を求めるというものである。
The position measuring device 3 measures the coordinates of the superconducting sphere 2 with respect to the coordinate axes fixed to the measurement system. Since the rotational movement (high frequency) of the measurement system is suppressed by the spring 5 and the rotating balls 6, the displacement detector compares the measurement results of the two superconducting balls to detect points A and B. You can get the difference in gravity at a point. The calculation method is as follows. In other words, the position of the superconducting sphere is changed by 3 times per sampling.
The method is to calculate the acceleration by measuring each time, and then calculate the difference in gravitational acceleration based on the difference.

θ t(xA−xm) Δgg= θ tま ただし、 Δgξは(A点に働くξ方向の重力加速度)−(B点に
働くξ方向の重力加速度)、ξTは1点で測定した超伝
導球のξ座標である。
θ t (xA - xm) Δgg = θ t, where Δgξ is (gravitational acceleration in the ξ direction acting on point A) - (gravitational acceleration in the ξ direction acting on point B), ξT is the superconducting sphere measured at one point is the ξ coordinate of

潜水艦の存在により重力は(G・Δm)/r2 (G:
万有引力定数、r:航空機と潜水艦の距離。
Due to the presence of the submarine, the gravity becomes (G・Δm)/r2 (G:
Universal gravitational constant, r: distance between the aircraft and the submarine.

Δm=潜水艦と海水との質量差)だけ変化する。Δm=difference in mass between the submarine and seawater).

地球上の重力は高度、地形等により変化するが、これら
を航空機の位置の正確な把握、測定範囲の重力のデータ
の蓄積により補正することにより、潜水艦の存在による
重力の変化を探知することができる。なお、上述のよう
に、周期の短い揺動の影響はスプリングと回転球により
抑えることができるが、周期の長い揺動に対しては、こ
の揺動に対して充分短いとみなせるようなサンプリング
周期とすることにより対処することができる。
Gravity on Earth changes depending on altitude, topography, etc., but by correcting these by accurately understanding the aircraft's position and accumulating gravity data in the measurement range, it is possible to detect changes in gravity due to the presence of submarines. can. As mentioned above, the influence of short-cycle swings can be suppressed by springs and rotating balls, but for long-cycle swings, the sampling period must be short enough to be considered short enough for this swing. This can be dealt with by

なお、上記の説明では航空機に搭載して潜水艦を探知す
る場合について述べたが、ヘリコプタ。
In addition, in the above explanation, we talked about the case where submarines are detected by being mounted on an aircraft, but a helicopter is used.

艦船に搭載しても同様の効果を奏する。The same effect can be achieved even when installed on a ship.

また、潜水艦の探知のみならず、地下資源の探索、地震
の予知等にも有効である。
Moreover, it is effective not only for detecting submarines, but also for searching for underground resources, predicting earthquakes, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る動揺内重力変位計によれ
ば、スプリングと回転球により高周波の回転運動の影響
を抑えた測定系とし、かつ磁場のなかで浮上した1対の
超伝導球の位置の変化を測定し、その測定結果を比較す
ることにより2箇所の重力の変位を検出するようにした
ので、航空機等の動揺の中でもその影響を受けることな
く重力の変位を測定できる効果がある。
As described above, according to the oscillating gravity displacement meter according to the present invention, the measurement system uses a spring and a rotating ball to suppress the influence of high-frequency rotational motion, and a pair of superconducting balls levitated in a magnetic field. By measuring the change in position and comparing the measurement results, the displacement of gravity at two locations is detected, so it has the effect of being able to measure the displacement of gravity without being affected by the shaking of an aircraft, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の重力計を示す構成図である。 図において、1は磁場発生装置、2は超伝導球、3は位
置測定器、4は真空容器、5はスプリング、6は回転球
、7は外箱、8は超伝導コイルである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a configuration diagram showing a conventional gravimeter. In the figure, 1 is a magnetic field generator, 2 is a superconducting ball, 3 is a position measuring device, 4 is a vacuum container, 5 is a spring, 6 is a rotating ball, 7 is an outer box, and 8 is a superconducting coil. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)動揺のある物体内で使用される重力変位計であっ
て、 磁場を発生させる磁場発生装置と、 この磁場発生装置によって発生された磁場によって浮上
する1対の超伝導球と、 この超伝導球のそれぞれの位置を測定する位置測定器と
、 上記超伝導球を格納する真空容器と、 上記磁場発生装置、位置測定器、真空容器を固定する外
箱と、 該外箱に取り付けられ高速で回転する回転球と、上記外
箱を支持するスプリングと、 上記超伝導球の位置の変化を比較することにより重力変
位の有無を検出する変位検出器とを備えたことを特徴と
する動揺内重力変位計。
(1) A gravitational displacement meter used inside an object with vibration, which includes a magnetic field generator that generates a magnetic field, a pair of superconducting spheres that levitate due to the magnetic field generated by the magnetic field generator, and this superconducting sphere. a position measuring device that measures the position of each of the conducting spheres; a vacuum container that stores the superconducting sphere; an outer box that fixes the magnetic field generator, the position measuring device, and the vacuum container; and a high-speed device that is attached to the outer box. a rotating ball that rotates at a speed, a spring that supports the outer box, and a displacement detector that detects the presence or absence of gravitational displacement by comparing changes in the position of the superconducting ball. Gravity displacement meter.
JP1260736A 1989-10-05 1989-10-05 Gravity displacement meter within shaking Pending JPH03122590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260736A JPH03122590A (en) 1989-10-05 1989-10-05 Gravity displacement meter within shaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260736A JPH03122590A (en) 1989-10-05 1989-10-05 Gravity displacement meter within shaking

Publications (1)

Publication Number Publication Date
JPH03122590A true JPH03122590A (en) 1991-05-24

Family

ID=17352039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260736A Pending JPH03122590A (en) 1989-10-05 1989-10-05 Gravity displacement meter within shaking

Country Status (1)

Country Link
JP (1) JPH03122590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012804A1 (en) * 2001-08-01 2003-02-13 Duksung Co., Ltd. Apparatus for control of uniform gravity utilizing superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012804A1 (en) * 2001-08-01 2003-02-13 Duksung Co., Ltd. Apparatus for control of uniform gravity utilizing superconducting magnet
US6891455B2 (en) 2001-08-01 2005-05-10 Duksung Co., Ltd. Apparatus for control of uniform gravity utilizing superconducting magnet

Similar Documents

Publication Publication Date Title
US3926054A (en) Gravity gradiometer
US8079258B1 (en) Gyroscope and pendulous gyroscopic accelerometer with adjustable scale factor, and gravity gradiometer using such
CN109597133B (en) Apparatus and method for vector component data acquisition
US11175305B2 (en) Accelerometer based on diamagnetic levitation in a ring magnet
US7252001B2 (en) Three axis active magnetic levitation for inertial sensing systems
US6615660B1 (en) Real-time self-compensating gravity gradiometer instrument
US20200103435A1 (en) Vertical superconducting magnetic mass-spring oscillator with adjustable natural frequency
CN110068876A (en) Based on carrier self-excited oscillation airborne gradiometer kinematic error compensation method
Metzger Recent gravity gradiometer developments
Liu et al. Design of cable parallel air-core coil sensor to reduce motion-induced noise in helicopter transient electromagnetic system
US6079267A (en) Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing
US2595268A (en) Instrument providing a vertical reference for dirigible craft
US3062051A (en) Portable gravimeter
US2290232A (en) Gyroscopic instrument
JPH03122590A (en) Gravity displacement meter within shaking
CN207051509U (en) Axial symmetry elastic system and gravimeter
US4821423A (en) Instrument producing electrical signals in response to acceleration forces
US2497614A (en) Stable vertical
US11041878B2 (en) Three dimensional sensing element suspension method and measurement system
US5886260A (en) Centripetal opposed pendulous accelerometer
Fremerey Residual drag torque on magnetically suspended rotating spheres
Hu et al. Analysis of mass unbalance torque on a spinning superconducting rotor
Hull et al. Gravimeter using high-temperature superconducting bearing
US5708206A (en) Centripetal opposed pendulous accelerometer
Tajmar et al. Investigation of Frame‐Dragging‐Like Signals from Spinning Superconductors using Laser Gyroscopes