JPH0312100B2 - - Google Patents

Info

Publication number
JPH0312100B2
JPH0312100B2 JP55115709A JP11570980A JPH0312100B2 JP H0312100 B2 JPH0312100 B2 JP H0312100B2 JP 55115709 A JP55115709 A JP 55115709A JP 11570980 A JP11570980 A JP 11570980A JP H0312100 B2 JPH0312100 B2 JP H0312100B2
Authority
JP
Japan
Prior art keywords
parts
copolymer
monomer
vinyl cyanide
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55115709A
Other languages
Japanese (ja)
Other versions
JPS5740536A (en
Inventor
Kazuo Kato
Norio Yagi
Takaya Hayashi
Yutaka Mitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11570980A priority Critical patent/JPS5740536A/en
Publication of JPS5740536A publication Critical patent/JPS5740536A/en
Publication of JPH0312100B2 publication Critical patent/JPH0312100B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性、耐衝撃性および加工時の熱
安定性に優れた熱可塑性樹脂組成物に係わり、さ
らに詳しくは、α−メチルスチレン単量体とシア
ン化ビニル単量体を主成分とし、シアン化ビニル
連鎖が2モル%以下である共重合体と、ポリカー
ボネートとを配合してなる熱可塑性樹脂組成物に
関する。 従来、軽量性、成形性、耐衝撃性、耐熱性等に
優れることから、金属部品に代わつて、アクリロ
ニトリルとスチレンの共重合樹脂又はこれにゴム
を配合したABS樹脂とポリカーボネートとを配
合して成形用樹脂として使用することが提案され
ている(特公昭38−15225号、特開昭49−99153
号、特開昭50−111150号)。 しかしながら、これら従来の樹脂組成物は、い
ずれも加工時の熱安定性が悪く、色調に劣り、物
性低下が非常に大きいため、これら欠点を回避す
るためには、ポリカーボネートの配合量を多くす
る必要があつた。しかし、ポリカーボネートの配
合量を多くしたものは、ポリカーボネートの高溶
融粘度特性のため、かえつて成形性が低下すると
いう欠点が生ずる。本発明者は、ポリカーボネー
トの配合量を増加させず、これら欠点を改善する
ことを目的として鋭意研究を重ねた結果、α−メ
チルスチレン単量体とシアン化ビニル単量体を主
成分とする共重合体においては、シアン化ビニル
の連鎖は加工温度が高い場合に変成や分解を起し
易く、これがポリカーボネートの分子切断を誘起
するため、成形された樹脂の色調劣化や物性低下
が生じ、一方、シアン化ビニルが連鎖を形成せず
交互共重合体を形成していると、共重合体が安定
化されることを発見し、特にシアン化ビニル連鎖
が2モル%以下であることが望ましいことを見出
し、本発明を完成するに至つたものである。 すなわち本発明の目的は、(A)α−メチルスチレ
ン単量体、シアン化ビニル単量体、およびこれら
と共重合可能なビニル単量体との混合物を共重合
させた、シアン化ビニル連鎖が2モル%以下であ
る共重合体40〜90重量部、(B)ブタジエン重合体も
しくはブタジエン共重合体、又はアクリル酸エス
テル重合体もしくはアクリル酸エステル共重合体
に、芳香族ビニル単量体とシアン化ビニル単量体
との混合物又は芳香族ビニル単量体、シアン化ビ
ニル単量体およびこれらと共重合可能なビニル単
量体との混合物をグラフト重合させたグラフト共
重合体0〜30重量部、および(C)ポリカーボネート
60〜10重量部、を含有してなる熱可塑性樹脂組成
物を提供することによつて達成される。 本発明において、その成分(A)のα−メチルスチ
レン単量体としては、一部ハロゲン等の核置換を
有するものであつてもよい。また、シアン化ビニ
ル単量体としては、アクリロニトリルやメタクリ
ロニトリルなどがあげられる。またこれらと共重
合可能なビニル単量体としては、スチレン、メタ
クリル酸メチル、メタクリル酸エチル、ハロゲン
核置換スチレン、アルキル核置換スチレンなどが
ある。これらの組成割合は、通常、α−メチルス
チレン単量体73〜83重量%およびシアン化ビニル
単量体17〜27重量%である。シアン化ビニル単量
体が多い場合は、シアン化ビニル連鎖が増すので
好ましくない。シアン化ビニル単量体が極端に少
ない場合、α−メチルスチレン単量体は著しく重
合しにくく、共重合体をつくることは困難であ
る。これらと共重合可能なビニル単量体は、共重
合体中10重量%以下含有してもよい。 成分(A)の共重合体中のシアン化ビニル連鎖は2
モル%以下好ましくは1モル%以下である。この
ような共重合体は、シアン化ビニル単量体と
ZnCl2等との錯体とα−アルキル芳香族ビニル単
量体とを共重合する方法(Journal of Polymer
Science:Polymer Chemistry Edition、
Vol.12、1965−1701、(1974);以下JOPSとい
う。)や、シアン化ビニル単量体とα−メチルス
チレン単量体とを、シアン化ビニル単量体の含量
をアゼオトロープ以下の比率に保つて共重合させ
る方法(好ましくは、共重合が完結する前に共重
合を停止させる。)などの方法によつて製造する
ことができる。 また、シアン化ビニル連鎖の程度は、前記
JOPSに記載の方法に準じて、成分(A)の共重合体
について 13C NMRの吸収スペクトルを求め、
その化学シフトで、118〜122ppmに存在するシア
ノ基の吸収スペクトルの吸収線で包まれた面積
と、118〜125ppmに存在するシアノ基の吸収スペ
クトルの吸収線で包まれた面積との比(吸収ピー
ク面積比)を求め、この吸収ピーク面積比を成分
(A)の共重合体中のシアン化ビニルのモル分率に乗
じてモル%で算出する。 つぎに成分(B)のブタジエン共重合体のブタジエ
ンと共重合可能な単量体としては、スチレンやメ
チルメタクリレートなどがある。またアクリル酸
エステルのエステル部分は、メチル、エチルおよ
びブチル等の脂肪族アルキル基が好ましい。また
アクリル酸エステル共重合体のアクリル酸エステ
ルと共重合可能な単量体としては、エチレン、酢
酸ビニル、メタクリル酸メチルなどがある。また
芳香族ビニル単量体としては、スチレン、ハロゲ
ン核置換スチレン、アルキル核置換スチレン、α
−メチルスチレンなどがある。またシアン化ビニ
ル単量体としては、アクリロニトリルやメタクリ
ロニトリルなどがある。また芳香族ビニル単量体
およびシアン化ビニル単量体と共重合可能なビニ
ル単量体としては、スチレン、メタクリル酸メチ
ル、メタクリル酸エチル、ハロゲン核置換スチレ
ンなどがある。 ブタジエン重合体もしくはブタジエン共重合
体、またはアクリル酸エステル重合体もしくはア
クリル酸エステル共重合体と、グラフトさせる混
合物との配合割合は、前者100重量部に対して混
合物20〜200重量部、好ましくは50〜100重量部で
ある。グラフト部のシアン化ビニルも分解し易い
ので多くなることは好ましくない。 グラフト重合は、常法に従い、ブタジエン
(共)重合体やアクリル酸エステル(共)重合体
などのゴムエマルジヨンに対して、グラフトさせ
る単量体混合物を添加して重合させることにより
行なわれる。 つぎに、成分(C)のポリカーボネートとしては、
当業界において公知のものであり、これらは一般
にジヒドロキシ又はポリヒドロキシ化合物をフオ
スゲン又は炭酸のジエステルと反応させることに
よつてつくられ、たとえばビスフエノール類とホ
スゲン又はジアリールカーボネートを反応させて
得られる。ビスフエノール類としては、ビス(ヒ
ドロキシアリール)アルカンや、これらのフエニ
ル基に、一部ハロゲン基やアルキル基の置換基を
有するものがあり、好ましい例として、2,2′−
ビス(4,4′−ヒドロキシフエニル)プロパン
(ビスフエノールA)がある。 本発明組成物においては、成分(A)の共重合体40
〜90重量部に対して、成分(C)のポリカーボネート
60〜10重量部、好ましくは50〜20重量部を配合す
る。ポリカーボネートを60重量部より多く配合す
れば、成形性が低下する。10重量部未満では、成
形された樹脂に対する耐衝撃性の付与が不充分で
ある。成分(B)のグラフト共重合体は、耐衝撃性を
さらに向上させる場合に配合するが、30重量%を
超えて配合すると耐熱性が低下するので好ましく
ない。 なお、本発明組成物は、成分(A)、(B)および(C)か
ら、これらを適当な混合装置、たとえば押出機、
ニーダー、ボールミル、ロールミル、バンバリミ
キサーなどを使用して混合すること、又は、各共
重合体の溶液又は分散液を作成し、溶液同志、分
散液同志又は溶液と分散液とを混合し、共凝固さ
せることによつてつくることができるが、配合手
段は特に限定するものではない。成分を混合する
際、充填剤、安定剤、流動改善剤、型抜き剤、帯
電防止剤、その他の添加剤を加えることができ
る。 以上詳述したごとく本発明組成物は、成形加工
時の熱安定性が特に良好であり、またその成形物
は、耐熱性および耐衝撃性に優れることから、自
動車や電気器具の部材など種々の用途に対して有
用である。 以下実施例により、本発明をさらに詳しく説明
する。なお、実施例中記載の部および%は特記し
ない限り重量基準のものである。 実施例 1 α−メチルスチレン82部、アクリロニトリル18
部、水200部、ドデシルベンゼンスルホン酸ソー
ダ3部、連鎖移動剤としてt−ドデシルメルカプ
タン0.3部および重合触媒として過硫酸カリ0.06
部をステンレス製オートクレーブに仕込み、70℃
で3時間重合を行なつた。その重合率は56%であ
つた。重合体ラテツクスの一部を採つて揮発分を
加熱除去した後、アセトンに溶解し、次いでメタ
ノールで再沈して、精製共重合体とし、これを炭
素13NMRの測定に供した。 重合体ラテツクスに対して、塩化カルシウム
3PHRを添加し、常法によつて、脱水、洗浄、乾
燥を行つた。この共重合体粉末60部とポリカーボ
ネート(帝人化成社商品名、パンライトL1250)
40部を混合し、押出機により造粒し、射出成型機
により試験片を作製した。結果を表に示す。 比較例 1 実施例1において、α−メチルスチレン70部、
アクリロニトリル30部を20時間重合して重合率
99.5%の共重合体を得てこれを使用した他は、実
施例1と全く同様に実施した。 実施例 2 ポリブタジエンラテツクス(日本合成ゴム社商
品名、JSR−0700)50部(固型分)、硫酸第1鉄
0.005部、エチレンジアミン4酢酸2ナトリウム
0.01部、ホルムアルデヒドナトリウムスルホキシ
レート0.2部、および水をステンレス製オートク
レーブに仕込み、水の総量を220部とした。温度
を60℃に保ち、撹拌下でスチレン40部、アクリロ
ニトリル10部、クメンハイドロパーオキサイド
0.25部より成る混合物を8時間で滴下し、更に1
時間撹拌を続けて重合を完結させた。得られたグ
ラフト共重合体ラテツクスおよび実施例1で得ら
れたα−メチルスチレン−アクリロニトリル共重
合体ラテツクスをポリブタジエン配合割合が固形
分換算で7%となる様に混合し、これにヒンダー
トフエノール1.0PHRを添加し、実施例1と同様
の操作により、樹脂粉末を得た。この樹脂粉末70
部とポリカーボネート30部を混合、造粒した。 比較例 2 比較例1の共重合体を実施例2のα−メチルス
チレン−アクリロニトリル共重合体に代えて用い
た以外は実施例2と同様に実施した。 実施例 3 実施例1のα−メチルスチレン−アクリロニト
リル共重合体の代りに、α−メチルスチレン82
部、アクリロニトリル13部、メチルメタクリレー
ト5部を実施例1の方法によつて重合して得られ
た共重合体を用いた以外は実施例1と同様に実施
した。
The present invention relates to a thermoplastic resin composition that has excellent heat resistance, impact resistance, and thermal stability during processing, and more specifically, the present invention relates to a thermoplastic resin composition that is mainly composed of α-methylstyrene monomer and vinyl cyanide monomer. , relates to a thermoplastic resin composition formed by blending a copolymer having 2 mol % or less of vinyl cyanide chains and polycarbonate. Traditionally, in place of metal parts, molding has been made using acrylonitrile and styrene copolymer resin or ABS resin mixed with rubber and polycarbonate because of its excellent lightness, moldability, impact resistance, heat resistance, etc. It has been proposed to be used as a resin for
No., Japanese Patent Publication No. 111150/1973). However, all of these conventional resin compositions have poor thermal stability during processing, poor color tone, and a significant decline in physical properties, so in order to avoid these drawbacks, it is necessary to increase the amount of polycarbonate blended. It was hot. However, those containing a large amount of polycarbonate have the disadvantage that moldability is reduced due to the high melt viscosity of polycarbonate. As a result of extensive research aimed at improving these drawbacks without increasing the amount of polycarbonate blended, the present inventors have discovered a copolymer containing α-methylstyrene monomer and vinyl cyanide monomer as main components. In polymers, vinyl cyanide chains are susceptible to denaturation and decomposition at high processing temperatures, which induces molecular scission in polycarbonate, resulting in deterioration in color tone and physical properties of the molded resin. It was discovered that the copolymer is stabilized when the vinyl cyanide does not form chains but forms an alternating copolymer, and it is particularly desirable that the vinyl cyanide chains account for 2 mol% or less. This is the heading that led to the completion of the present invention. That is, the object of the present invention is to provide (A) a vinyl cyanide chain obtained by copolymerizing an α-methylstyrene monomer, a vinyl cyanide monomer, and a mixture of a vinyl monomer copolymerizable with these. 40 to 90 parts by weight of a copolymer that is 2 mol% or less, (B) a butadiene polymer or butadiene copolymer, or an acrylic ester polymer or an acrylic ester copolymer, an aromatic vinyl monomer and cyanide. 0 to 30 parts by weight of a graft copolymer obtained by graft polymerizing a mixture with a vinyl monomer or an aromatic vinyl monomer, a vinyl cyanide monomer, and a vinyl monomer copolymerizable with these. , and (C) polycarbonate
This is achieved by providing a thermoplastic resin composition containing 60 to 10 parts by weight. In the present invention, the α-methylstyrene monomer as component (A) may partially have nuclear substitution such as halogen. Furthermore, examples of vinyl cyanide monomers include acrylonitrile and methacrylonitrile. Vinyl monomers that can be copolymerized with these include styrene, methyl methacrylate, ethyl methacrylate, halogen-substituted styrene, and alkyl-substituted styrene. These composition ratios are usually 73 to 83% by weight of α-methylstyrene monomer and 17 to 27% by weight of vinyl cyanide monomer. A large amount of vinyl cyanide monomer is not preferred because the number of vinyl cyanide chains increases. When the amount of vinyl cyanide monomer is extremely small, it is extremely difficult to polymerize α-methylstyrene monomer, making it difficult to form a copolymer. Vinyl monomers copolymerizable with these may be contained in the copolymer in an amount of 10% by weight or less. The vinyl cyanide chain in the copolymer of component (A) is 2
It is less than mol %, preferably less than 1 mol %. Such copolymers are made of vinyl cyanide monomers and
A method of copolymerizing a complex with ZnCl 2 etc. and an α-alkyl aromatic vinyl monomer (Journal of Polymer
Science: Polymer Chemistry Edition,
Vol.12, 1965-1701, (1974); hereinafter referred to as JOPS. ), or a method of copolymerizing a vinyl cyanide monomer and an α-methylstyrene monomer while keeping the content of vinyl cyanide monomer at a ratio below an azeotrope (preferably, before the copolymerization is completed). It can be produced by a method such as stopping the copolymerization. In addition, the degree of vinyl cyanide chain is
Obtain the 13 C NMR absorption spectrum of the copolymer of component (A) according to the method described in JOPS,
The chemical shift is the ratio of the area enclosed by the absorption line of the absorption spectrum of the cyano group existing at 118 to 122 ppm to the area enclosed by the absorption line of the absorption spectrum of the cyano group existing at 118 to 125 ppm (absorption Calculate the peak area ratio) and calculate this absorption peak area ratio as
Calculated in mol% by multiplying by the molar fraction of vinyl cyanide in the copolymer (A). Next, examples of monomers that can be copolymerized with butadiene in the butadiene copolymer of component (B) include styrene and methyl methacrylate. Further, the ester moiety of the acrylic ester is preferably an aliphatic alkyl group such as methyl, ethyl, and butyl. Monomers that can be copolymerized with the acrylic ester of the acrylic ester copolymer include ethylene, vinyl acetate, and methyl methacrylate. In addition, aromatic vinyl monomers include styrene, halogen-substituted styrene, alkyl-substituted styrene, α
- Examples include methylstyrene. Examples of vinyl cyanide monomers include acrylonitrile and methacrylonitrile. Examples of vinyl monomers copolymerizable with aromatic vinyl monomers and vinyl cyanide monomers include styrene, methyl methacrylate, ethyl methacrylate, and halogen-substituted styrene. The blending ratio of the butadiene polymer or butadiene copolymer, or the acrylic ester polymer or acrylic ester copolymer and the mixture to be grafted is 20 to 200 parts by weight, preferably 50 parts by weight, per 100 parts by weight of the former. ~100 parts by weight. Vinyl cyanide in the graft portion is also easily decomposed, so it is not preferable to increase the amount. Graft polymerization is carried out by adding a monomer mixture to be grafted to a rubber emulsion such as a butadiene (co)polymer or an acrylic acid ester (co)polymer and polymerizing the rubber emulsion according to a conventional method. Next, as the polycarbonate of component (C),
Known in the art, they are generally made by reacting dihydroxy or polyhydroxy compounds with diesters of phosgene or carbonic acid, such as by reacting bisphenols with phosgene or diaryl carbonates. Examples of bisphenols include bis(hydroxyaryl)alkanes and those having a substituent of a halogen group or an alkyl group on the phenyl group, and preferred examples include 2,2'-
Bis(4,4'-hydroxyphenyl)propane (bisphenol A). In the composition of the present invention, the copolymer of component (A) 40
~90 parts by weight of component (C) polycarbonate
60 to 10 parts by weight, preferably 50 to 20 parts by weight. If more than 60 parts by weight of polycarbonate is blended, moldability will decrease. If it is less than 10 parts by weight, the impact resistance imparted to the molded resin is insufficient. Component (B), a graft copolymer, is blended to further improve impact resistance, but if it is blended in an amount exceeding 30% by weight, heat resistance decreases, which is not preferable. The composition of the present invention is prepared by mixing components (A), (B), and (C) in a suitable mixing device, such as an extruder,
Mixing using a kneader, ball mill, roll mill, Banbury mixer, etc., or by creating a solution or dispersion of each copolymer and mixing the solutions together, the dispersions together, or the solutions and dispersions to co-coagulate. However, the method of blending is not particularly limited. When mixing the ingredients, fillers, stabilizers, flow improvers, demolding agents, antistatic agents, and other additives can be added. As detailed above, the composition of the present invention has particularly good thermal stability during molding, and the molded product has excellent heat resistance and impact resistance, so it can be used for various purposes such as parts for automobiles and electrical appliances. Useful for the application. The present invention will be explained in more detail with reference to Examples below. In addition, parts and percentages described in the examples are based on weight unless otherwise specified. Example 1 82 parts α-methylstyrene, 18 parts acrylonitrile
200 parts of water, 3 parts of sodium dodecylbenzenesulfonate, 0.3 parts of t-dodecylmercaptan as a chain transfer agent, and 0.06 parts of potassium persulfate as a polymerization catalyst.
Place the sample in a stainless steel autoclave and heat at 70℃.
Polymerization was carried out for 3 hours. The polymerization rate was 56%. A portion of the polymer latex was taken and heated to remove volatile components, then dissolved in acetone and reprecipitated with methanol to obtain a purified copolymer, which was subjected to carbon 13 NMR measurement. For polymer latexes, calcium chloride
3PHR was added, and dehydration, washing, and drying were performed by conventional methods. 60 parts of this copolymer powder and polycarbonate (Teijin Kasei Co., Ltd. trade name, Panlite L1250)
40 parts were mixed, granulated using an extruder, and a test piece was produced using an injection molding machine. The results are shown in the table. Comparative Example 1 In Example 1, 70 parts of α-methylstyrene,
Polymerization rate by polymerizing 30 parts of acrylonitrile for 20 hours
Example 1 was carried out in exactly the same manner as in Example 1, except that a 99.5% copolymer was obtained and used. Example 2 Polybutadiene latex (Japan Synthetic Rubber Co., Ltd. trade name, JSR-0700) 50 parts (solid content), ferrous sulfate
0.005 part, disodium ethylenediaminetetraacetate
0.01 part of sodium formaldehyde sulfoxylate, and water were charged into a stainless steel autoclave, making the total amount of water 220 parts. Maintaining the temperature at 60℃, add 40 parts of styrene, 10 parts of acrylonitrile, and cumene hydroperoxide under stirring.
A mixture consisting of 0.25 parts was added dropwise over 8 hours, and an additional 1
Stirring was continued for an hour to complete the polymerization. The obtained graft copolymer latex and the α-methylstyrene-acrylonitrile copolymer latex obtained in Example 1 were mixed so that the blending ratio of polybutadiene was 7% in terms of solid content, and 1.0% hindered phenol was added to the mixture. A resin powder was obtained by adding PHR and performing the same operation as in Example 1. This resin powder 70
and 30 parts of polycarbonate were mixed and granulated. Comparative Example 2 The same procedure as Example 2 was carried out except that the copolymer of Comparative Example 1 was used in place of the α-methylstyrene-acrylonitrile copolymer of Example 2. Example 3 Instead of the α-methylstyrene-acrylonitrile copolymer of Example 1, α-methylstyrene 82
Example 1 was carried out in the same manner as in Example 1, except that a copolymer obtained by polymerizing 13 parts of acrylonitrile, 13 parts of acrylonitrile, and 5 parts of methyl methacrylate by the method of Example 1 was used.

【表】 実施例 4 実施例1の組成物に更にAAS樹脂(アクリル
酸n−ブチルゴムに対して、アクリロニトリルと
スチレンをグラフト重合した樹脂)として市販さ
れているバイタツクス6100(日立化成製)を20部
混合して造粒した。(α−メチルスチレン−アク
リロニトリル共重合体:ポリカーボネート:
AAS樹脂=50:33:17)。これを290℃で成型し
たが成型片は白色に近い黄色であつた。アイゾツ
トの衝撃強度は1/4インチ試験片で25Kg・cm/cm
であつた。 実施例 5 実施例1において配合割合を変え、α−メチル
スチレン−アクリロニトリル共重合体80部とポリ
カーボネート20部を混合し、290℃で成形したが、
成型片は白色に近い黄色であつた。アイゾツトの
衝撃強度は、1/8インチ試験片で15Kg・cm/cmで
あつた。
[Table] Example 4 In addition to the composition of Example 1, 20 parts of Vitax 6100 (manufactured by Hitachi Chemical), which is commercially available as an AAS resin (a resin obtained by graft polymerizing acrylonitrile and styrene to n-butyl acrylate rubber), was added. The mixture was mixed and granulated. (α-methylstyrene-acrylonitrile copolymer: polycarbonate:
AAS resin = 50:33:17). When this was molded at 290°C, the molded piece was yellow, almost white. The impact strength of Izotsu is 25Kg・cm/cm using a 1/4 inch test piece.
It was hot. Example 5 The blending ratio in Example 1 was changed, and 80 parts of α-methylstyrene-acrylonitrile copolymer and 20 parts of polycarbonate were mixed and molded at 290°C.
The molded piece was yellow, almost white. The impact strength of IZOT was 15 kg cm/cm using a 1/8 inch test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)α−メチルスチレン単量体、シアン化ビニ
ル単量体、およびこれらと共重合可能なビニル単
量体との混合物を共重合させた、シアン化ビニル
連鎖が2モル%以下である共重合体40〜90重量
部、(B)ブタジエン重合体もしくはブタジエン共重
合体、またはアクリル酸エステル重合体もしくは
アクリル酸エステル共重合体に、芳香族ビニル単
量体とシアン化ビニル単量体との混合物または芳
香族ビニル単量体、シアン化ビニル単量体および
これらと共重合可能なビニル単量体との混合物を
グラフト重合させたグラフト共重合体0〜30重量
部、および(C)ポリカーボネート60〜10重量部を含
有してなる熱可塑性樹脂組成物。
1 (A) A copolymerized mixture of α-methylstyrene monomer, vinyl cyanide monomer, and a vinyl monomer copolymerizable with these, and the vinyl cyanide chain is 2 mol% or less 40 to 90 parts by weight of copolymer, (B) butadiene polymer or butadiene copolymer, or acrylic ester polymer or acrylic ester copolymer, and aromatic vinyl monomer and vinyl cyanide monomer. 0 to 30 parts by weight of a graft copolymer obtained by graft polymerization of a mixture of or a mixture of an aromatic vinyl monomer, a vinyl cyanide monomer, and a vinyl monomer copolymerizable with these, and (C) polycarbonate A thermoplastic resin composition containing 60 to 10 parts by weight.
JP11570980A 1980-08-22 1980-08-22 Thermoplastic resin composition Granted JPS5740536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11570980A JPS5740536A (en) 1980-08-22 1980-08-22 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11570980A JPS5740536A (en) 1980-08-22 1980-08-22 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5740536A JPS5740536A (en) 1982-03-06
JPH0312100B2 true JPH0312100B2 (en) 1991-02-19

Family

ID=14669251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11570980A Granted JPS5740536A (en) 1980-08-22 1980-08-22 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5740536A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1302602C (en) * 1986-06-17 1992-06-02 Masafumi Hongo Polycarbonate resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365356A (en) * 1976-11-23 1978-06-10 Bayer Ag Thermoplastic molding composition
JPS5381561A (en) * 1976-11-23 1978-07-19 Bayer Ag Thermoplastic molding composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365356A (en) * 1976-11-23 1978-06-10 Bayer Ag Thermoplastic molding composition
JPS5381561A (en) * 1976-11-23 1978-07-19 Bayer Ag Thermoplastic molding composition

Also Published As

Publication number Publication date
JPS5740536A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
JPH0374699B2 (en)
JPH04314750A (en) Thermoplastic resin composition
JPS58129043A (en) Thermoplastic resin composition
JPS63156852A (en) Thermoplastic molding mixture based on special graft polymer
EP0051875B1 (en) Thermoplastic resin composition having toughness and high thermal deformation resistance
US3637555A (en) Additive systems for abs graft copolymers
JPS61163950A (en) Thermoplastic resin composition
JPS59207910A (en) Crosslinked copolymer of brominated styrene and n-brominatedphenylmaleimide
JPH0423661B2 (en)
JPH0312100B2 (en)
US3163683A (en) Ternary blends of vinyl chloride polymer-butadiene/acrylonitrile copolymer rubber-ethylene polymer and processes for making the same
JPH07258513A (en) Low-luster polycarbonate/abs composition
JPS61127755A (en) Thermoplastic resin composition
EP0108350B1 (en) Thermoplastic resin composition having toughness and high heat distortion resistance
JP2955944B2 (en) Thermoplastic resin composition with improved fatigue properties
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JPH046216B2 (en)
JPH0312101B2 (en)
JPS60139739A (en) Vinyl chloride resin composition
JPH0312102B2 (en)
JPS596253A (en) Heat- and impact-resistant resin composition
JPH04356514A (en) Thermoplastic resin composition excellent in platability, impact resistance and oversize moldability
JPS6365105B2 (en)
KR100356461B1 (en) Thermoplastic Resin Composition
JPH0125337B2 (en)