JPH03120782A - Manufacture of printed-wiring board - Google Patents

Manufacture of printed-wiring board

Info

Publication number
JPH03120782A
JPH03120782A JP25852589A JP25852589A JPH03120782A JP H03120782 A JPH03120782 A JP H03120782A JP 25852589 A JP25852589 A JP 25852589A JP 25852589 A JP25852589 A JP 25852589A JP H03120782 A JPH03120782 A JP H03120782A
Authority
JP
Japan
Prior art keywords
energy rays
resist film
active energy
light
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25852589A
Other languages
Japanese (ja)
Inventor
Toshio Kondo
壽夫 近藤
Shinsuke Onishi
大西 晋輔
Naozumi Iwazawa
直純 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP25852589A priority Critical patent/JPH03120782A/en
Priority to US07/592,245 priority patent/US5236810A/en
Publication of JPH03120782A publication Critical patent/JPH03120782A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a printed-wiring board with improved resolution without being affected by the width of development conditions by performing a process for irradiating a small amount of activation energy rays onto the entire coated surface of resist on the printed-wiring board before the development process for making a light decomposition resin within an electrodeposition paint to be alkali-resistant against reaction at the part between light-sensitive base parts due to semi-light-exposure. CONSTITUTION:A positive type light-sensitive resist film is formed onto a printed-circuit board with a conductive film by the electrodeposition painting method. A small amount of activation energy rays are irradiated uniformly onto a positive-type light-sensitive resist film and activation energy rays are irradiated onto the positive type light-sensitive resist film through a photo mask screening the part for forming a conductor from the activation energy rays. A resist film where the activation energy rays are irradiated is developed, the exposed copper-plated part is eliminated by etching, and then a resist film on the remaining conductor forming part is eliminated. The positive type electrodeposition paint to be used mainly consists of an acryl resin with a light- sensitive base and a carrier base which ionizes by neutralization.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント回路基板の製造方法に関し、更に詳
しくは、ポジ型感光性電着塗料を使用して現像性のすぐ
れたプリント回路基板を製造する方法に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a printed circuit board, and more specifically, to a method for manufacturing a printed circuit board with excellent developability using a positive type photosensitive electrodeposition paint. It relates to a manufacturing method.

(従来の技術とその課題) 近年、感光性電着塗料を用いてプリント回路基板を製造
することが多々行なわれている。最近に至ってはプリン
ト回路の高密度、高集積化にともない、ファインパター
ンで且つ孔径が0.4mm以下の小さいスルーホールを
有するプリント回路基板を効率よ(、信頼性高く製造す
る方法が望まれており、その手段として例えば、ポジ型
感光性電着塗料を用いてプリント回路基板を製造する方
法が種々提案されている(例えば、特開昭602071
39号、特開昭61−206293号、特開昭62−1
57841号、特開昭63−6070号公報など)。
(Prior art and its problems) In recent years, printed circuit boards have been frequently manufactured using photosensitive electrodeposition paints. Recently, as printed circuits have become more dense and highly integrated, there has been a demand for a method for efficiently (and highly reliable) manufacturing of printed circuit boards with fine patterns and small through-holes with a hole diameter of 0.4 mm or less. As a means for this, various methods have been proposed for manufacturing printed circuit boards using positive-type photosensitive electrodeposition paints (for example, Japanese Patent Laid-Open No. 602071
No. 39, JP-A-61-206293, JP-A-62-1
No. 57841, Japanese Unexamined Patent Publication No. 63-6070, etc.).

ポジ型感光性電着塗料(以下、「ポジ型電着塗料」と略
すことがある)を使用してプリント回路基板を製造する
工業的利点は、電着塗装により、スルーホール内部にレ
ジスト被膜を形成することができ、かつネガ型レジスト
被膜の場合のようにレジスト被膜を活性エネルギー線に
より硬化させ、現像液に対して不溶化する必要がないた
め、露光することが困難な小径の導通孔(スルーホール
)を有する回路基板を容易に製造することが出来ること
である。
The industrial advantage of manufacturing printed circuit boards using positive-type photosensitive electrodeposition paints (hereinafter sometimes abbreviated as "positive-type electrodeposition paints") is that the resist coating is applied inside the through-holes by electrodeposition coating. It is possible to form small-diameter conductive holes (through-holes) that are difficult to expose to light because there is no need to harden the resist film with active energy rays and make it insoluble in the developing solution as in the case of negative-tone resist films. It is possible to easily manufacture a circuit board having holes (holes).

しかしながらポジ型電着塗料は、上記利点を有しながら
、他方でレジスト被膜の現像時に、露光部と未露光部の
アルカリ現像液に対する溶解性の差が小さいために、現
像条件(濃度、温度、時間等)によって現像性に影響を
受けやすく、解像性の良好なプリント配線板を再現良(
得ることができなくなるという欠点をもつ。
However, while positive electrodeposition paints have the above-mentioned advantages, on the other hand, when developing a resist film, the difference in solubility in an alkaline developer between exposed and unexposed areas is small, so the developing conditions (concentration, temperature, Developability is easily affected by changes in time (time, etc.), and reproduces printed wiring boards with good resolution (
It has the disadvantage that it cannot be obtained.

(課題を解決するための手段) 本発明者らは、上記点を解決する事を目的として鋭意検
討を重ねた結果、光分解性樹脂が少量の活性エネルギー
線により一部活性化し分解形態になる前に、樹脂の感光
性基部位間の反応により耐アルカリ性がますこと、つま
り現像液に溶解しにくくなることを見出し、本発明を完
成するに至った。
(Means for Solving the Problem) As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors found that the photodegradable resin is partially activated by a small amount of active energy rays and becomes decomposed. Previously, it was discovered that the reaction between the photosensitive group sites of the resin increases the alkali resistance, that is, the resin becomes less soluble in a developer, and the present invention was completed.

すなわち、本発明は、 1、(I)導伝性被膜を有する回路基板にポジ型感光性
レジスト被膜を電着塗装法により形成する工程; (II )該ポジ型感光性レジスト被膜上に、少量の活
性エネルギー線を一様に照射することにより耐アルカリ
性を向上させ、ついで該ポジ型感光性レジスト被膜上に
導線を形成する部分を活性エネルギー線から遮断するフ
ォトマスクを介して活性エネルギー線を照射する工程; (III )活性エネルギー線が照射されたレジスト被
膜を現像する工程;及び (IV )露出した銅メッキ部分をエツチング除去し、
さらに残存する導線形成部分上のレジスト被膜を除去す
る工程; からなるプリント回路基板の製造方法。
That is, the present invention provides the following steps: 1. (I) Forming a positive photosensitive resist film on a circuit board having a conductive film by electrodeposition; (II) Applying a small amount on the positive photosensitive resist film. The alkali resistance is improved by uniformly irradiating the active energy rays, and then the active energy rays are irradiated through a photomask that blocks the part where the conductive wire is to be formed on the positive photosensitive resist film from the active energy rays. (III) developing the resist film irradiated with active energy rays; and (IV) etching away the exposed copper plating,
and further removing the resist film on the remaining conductive wire forming portion.

2、前記(TI)工程が、 該ポジ型感光性レジスト被膜上に導線を形成する部分を
活性エネルギー線から遮断するフォトマスクを介して活
性エネルギー線を照射し、ついで該ポジ型感光性レジス
ト被膜上に、少量の活性エネルギー線を一様に照射する
ことにより耐アルカ5− J性を向上させる工程; である請求項第1項記載のプリント回路基板の製造方法
2. In the (TI) step, active energy rays are irradiated through a photomask that blocks active energy rays from the portion on which the conductive wire is to be formed on the positive photosensitive resist film, and then the positive photosensitive resist film is exposed to active energy rays. 2. The method of manufacturing a printed circuit board according to claim 1, further comprising: improving the alkali 5-J resistance by uniformly irradiating a small amount of active energy rays on the substrate.

3、前記(I)工程で用いるプリント回路基板がスルー
ホールを有し、前記(TI)工程で用いる少量の活性エ
ネルギー線が散乱光状である請求項第1項記載のプリン
ト回路基板の製造方法に関すにより導電性基板上にポジ
型レジスト被膜を形成し得るものであれば、特に限定さ
れることな(使用可能であるが、本発明において特に好
適なものは、分子中に下記式 等のキノンジアジドスルホン酸類な表わし、R2は水素
原子、アルキル基、シクロアルキル基又は6− アルキルエーテル基を表わし、R3はアルキレン基、シ
クロアルキレン基又はアルキレンエーテル基を表わす。
3. The method for producing a printed circuit board according to claim 1, wherein the printed circuit board used in the step (I) has a through hole, and the small amount of active energy ray used in the step (TI) is in the form of scattered light. There are no particular limitations on the resist as long as it can form a positive resist film on the conductive substrate (any resist can be used, but particularly preferred in the present invention are those having the following formula in the molecule). Quinonediazide sulfonic acids, R2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or a 6-alkyl ether group, and R3 represents an alkylene group, a cycloalkylene group or an alkylene ether group.

) で示される感光性基と中和によってイオン化するキャリ
ヤ基を有するアクリル樹脂を主成分とする電着塗料であ
る(例えば特願昭62−245840号、特願昭62−
279288号など)。このポジ型電着塗料は、それか
ら形成されるレジスト被膜のパターン解像力が高く、ま
た電着浴の安定性が優れているため長期ランニング安定
性が良好である。
) is an electrodeposition coating mainly composed of an acrylic resin having a photosensitive group represented by
279288 etc.). This positive-type electrodeposition paint has a high pattern resolution of the resist film formed therefrom, and also has excellent long-term running stability because the stability of the electrodeposition bath is excellent.

電着浴は樹脂成分のキャリヤ基の種類によってアニオン
型電着塗料を例として本発明の各工程を以下に説明する
。電着塗装されるべき基板は通常の導通孔及び非導通孔
用の孔を有する銅メッキされたプリント回路基板用銅メ
ッキ基板であれば、厚さ、形状等に限定なく使用できる
Each step of the present invention will be explained below using an anionic electrodeposition paint as an example, depending on the type of carrier group in the resin component of the electrodeposition bath. The substrate to be electrodeposited may be any copper-plated printed circuit board substrate having ordinary conductive holes and non-conductive holes, without any limitations on thickness, shape, etc.

回路基板への電着塗装は、従来のポジ型感光性レジスト
被膜の形成と同様にして行なうことができる。すなわち
、回路基板を陽極として電着塗料浴中に浸漬し、対極と
の間に20〜400Vの直流を通電することにより行な
われる。一般に通電時間は、30〜300秒程度である
。回路基板上に形成されるレジスト被膜の膜厚は2〜1
00μm、好ましくは2〜20μmの範囲である。
Electrodeposition coating on a circuit board can be performed in the same manner as in the formation of a conventional positive photosensitive resist film. That is, the circuit board is immersed in an electrodeposition paint bath as an anode, and a direct current of 20 to 400 V is applied between it and a counter electrode. Generally, the current application time is about 30 to 300 seconds. The thickness of the resist film formed on the circuit board is 2 to 1
00 μm, preferably in the range of 2 to 20 μm.

通電終了後回路基板を電着浴より引き上げ、水洗した後
、レジスト被膜中に含まれる水分等を熱風、エアナイフ
などで除去する。
After energization, the circuit board is lifted out of the electrodeposition bath, washed with water, and then moisture contained in the resist film is removed using hot air, an air knife, or the like.

ついで露光工程について説明する。本工程は、次の(1
)、(2)のどちらから行なってもよい。
Next, the exposure process will be explained. This process consists of the following (1)
) or (2).

(1)レジスト被膜を電着塗装により形成させた回路基
板上に、少量の活性エネルギー線を一様に照射し、スル
ーホールがある基板ではスルーホールの中にも同様に照
射する; (2)レジスト被膜上に、導線を形成する部分を活性エ
ネルギー線から有効に遮断するフォトマスクを介して活
性エネルギー線を照射する。
(1) A small amount of active energy rays is uniformly irradiated onto a circuit board on which a resist film is formed by electrodeposition, and in the case of a board with through holes, the inside of the through hole is also irradiated; (2) Active energy rays are irradiated onto the resist film through a photomask that effectively blocks the active energy rays from the portion where the conducting wire is to be formed.

本工程では上記において回路基板の導線を形成し、露光
部と半露光部の現像液に対する溶解性が差別化されるも
のである。半露光状態となる、つ理由は、まだ解明する
に至っていないが、感光性基部分間で何らかの反応が起
こったものと推測される。例えば、感光性基部位にキノ
ンジアジドスルホン酸類を有する樹脂を例に上げて考え
ると以下のように推測される。
In this step, conductive wires of the circuit board are formed in the above step, and the solubility of exposed areas and semi-exposed areas in a developer is differentiated. Although the reason for the half-exposed state has not yet been elucidated, it is presumed that some kind of reaction occurred between the photosensitive groups. For example, considering a resin having a quinonediazide sulfonic acid in the photosensitive group site, the following conclusions can be made.

該樹脂は活性エネルギー線を特定量以上照射すると感光
性基部分であるキノンジアジド部がケテンを経てカルボ
ン酸となり、弱アルカリ溶液にて容易に現像しうるもの
である。ところが活性エネルギー線量が少量であると感
光性基部分のアゾ基(N=)部分が残存した状態で活性
化し、アゾカップリングを起こしたり、又は三量化等を
起こし、樹脂の分子量が増大することによって弱アルカ
リ性である現像液では溶解しない樹脂形態にな9− ったと考えられる。
When this resin is irradiated with active energy rays in a certain amount or more, the quinone diazide part, which is a photosensitive group part, changes to carboxylic acid through ketene, and can be easily developed with a weak alkaline solution. However, if the active energy dose is small, the azo group (N=) portion of the photosensitive group portion may be activated while remaining, causing azo coupling or trimerization, resulting in an increase in the molecular weight of the resin. It is thought that this resulted in a resin form that did not dissolve in weakly alkaline developing solutions.

この状態でさらに活性エネルギー線を特定量以上照射す
れば、感光性基部分の結合部が分解され、現像可能とな
る。また、光分解が完了したものは、三量化等、高分子
量化することはない。該樹脂の活性エネルギー線量によ
る一連の変化の過程は薄層クロマトグラフィーによって
確認された。
If a specific amount or more of active energy rays are further irradiated in this state, the bonding portion of the photosensitive group portion is decomposed and development becomes possible. Furthermore, once photodecomposition has been completed, the polymer will not undergo trimerization or other polymerization. A series of changes in the resin depending on the active energy dose was confirmed by thin layer chromatography.

本工程の(1)で半露光状態とするための活性エネルギ
ー線照射量は2〜150 mj/ cm2の範囲が適当
であり、さらにlO〜100 mj/ cm2が好まし
い。活性エネルギー線量が2 mj/ cm2より少な
いと耐アルカリ性の形態への変化はな(現像時に本工程
の効果が現れず、又150 mj/ cm”を越えると
、光分解が進み、現像時に全面が溶解しかねなくなるの
で好ましくない。
The amount of active energy ray irradiation to bring the film into a semi-exposed state in step (1) is suitably in the range of 2 to 150 mj/cm2, more preferably 10 to 100 mj/cm2. If the active energy dose is less than 2 mj/cm2, there will be no change to an alkali-resistant form (the effect of this process will not appear during development, and if it exceeds 150 mj/cm2, photodecomposition will proceed and the entire surface will be destroyed during development. This is not preferable since it may lead to dissolution.

また、(2)で完全露光の照射量は200 mj/cm
2以上が適当であり、該照射量により光分解は完全とな
る。
In addition, in (2), the irradiation amount for complete exposure is 200 mj/cm
2 or more is appropriate, and photodecomposition is complete with this irradiation amount.

また本工程の(1)で、特にスルーホールな有 0 する回路基板の場合には、活性エネルギー線に散乱光状
のものを使用することが好ましい。これによってスルー
ホール内の半露光が容易となり、スルーホール内の耐ア
ルカリ性が良好となる。
In step (1), especially in the case of a circuit board having through holes, it is preferable to use scattered light as the active energy ray. This facilitates semi-exposure of the inside of the through hole and improves the alkali resistance inside the through hole.

(2)で、スルーホール部がランド付スルーホールの場
合はランド径に対応する円内(又は領域)を活性エネル
ギー線より遮断し得るフォトマスクを使用し、ランドレ
ススルーホールの場合もスルーホール部に対して活性エ
ネルギー線を遮断するフォトマスクを使用する。ポジ型
レジスト被膜の露光に使用する活性エネルギー線として
は250〜450nmの波長を有する光線がよい。これ
らの光源としては太陽光、水銀灯、キセノンランプ、ア
ーク灯などが挙げられる。照射は通常1〜20秒の範囲
で行なわれる。
In (2), if the through hole part is a through hole with a land, use a photomask that can block the inside of the circle (or area) corresponding to the land diameter from active energy rays, and if the through hole part is a landless through hole, also use a photomask that can block the through hole part from active energy rays. A photomask that blocks active energy rays is used. The active energy rays used for exposing the positive resist film are preferably light rays having a wavelength of 250 to 450 nm. These light sources include sunlight, mercury lamps, xenon lamps, arc lamps, and the like. Irradiation is usually carried out for a period of 1 to 20 seconds.

またランド付スルーホールと非導通孔のみよりなる回路
基板の場合は光源として平行光及び散乱光を使用するこ
とが出来るが、ランドレススルーホールの場合は平行光
かそれに準する光源を使用する必要がある。
In addition, in the case of a circuit board consisting only of through holes with land and non-conducting holes, parallel light and scattered light can be used as the light source, but in the case of landless through holes, it is necessary to use parallel light or a similar light source. be.

ついで露光を終了した基板は、炭酸ソーダ、メタケイ酸
ソーダ、アミン等の1〜3%程度の弱アルカリ性の現像
液で現像した後、基板上に露出した銅メッキ部分(非回
路部分)を例えば塩化第二銅水溶液等のエツチング液に
より処理して除去する。次いで回路パターン上のレジス
ト被膜(未露光部)を3〜10%程度の苛性ソーダ等の
強アルカリ性剥離液又は未露光のレジスト被膜を溶解し
得る溶剤等で処理することにより除去する。かくして、
ポジ型電着塗料としてアニオン型のものを使用した場合
の回路基板が形成される。
The exposed board is then developed with a weak alkaline developer of about 1 to 3%, such as soda carbonate, sodium metasilicate, or amine, and then the copper plated parts (non-circuit parts) exposed on the board are treated with chloride, for example. It is removed by treatment with an etching solution such as a cupric aqueous solution. Next, the resist film (unexposed area) on the circuit pattern is removed by treatment with a strong alkaline stripping solution such as about 3 to 10% caustic soda or a solvent capable of dissolving the unexposed resist film. Thus,
A circuit board is formed when an anionic type is used as the positive type electrodeposition paint.

ポジ型電着塗料として、カチオン型のものを使用する場
合は、回路基板を陰極とすること、エツチング液として
水酸化アンモニウムと塩化アンモニウムの混合液等のア
ルカリ性エツチング液を使用すること及び未露光のレジ
スト被膜の除去に酸又は溶剤を使用する以外はアニオン
型の場合と同様にして実施することが出来る。
When using a cationic type of positive electrocoating paint, use the circuit board as the cathode, use an alkaline etching solution such as a mixture of ammonium hydroxide and ammonium chloride, and use unexposed etching solutions. It can be carried out in the same manner as in the anionic type except that an acid or a solvent is used to remove the resist film.

(発明の効果) 本発明によれば、回路基板上のレジスト被膜全面に少量
の活性エネルギー線を照射する工程を現像工程前に行な
うことによって電着塗料中の光分解性樹脂が半露光によ
る感光性基部位間の反応から耐アルカリ性となり、被膜
上にフォトマスクをして露光し現像したときに、露光部
と半露光部のアルカリ現像液に対する溶解性の差が拡が
って、現像条件の幅に影響をうけることなく、解像性の
良好なプリント配線板を再現よく得ることができた。
(Effects of the Invention) According to the present invention, by performing the step of irradiating the entire surface of the resist film on the circuit board with a small amount of active energy rays before the development step, the photodegradable resin in the electrodeposition paint becomes sensitized by half-exposure. It becomes alkali resistant due to the reaction between the chemical groups, and when a photomask is placed on the film and exposed and developed, the difference in solubility in an alkaline developer between the exposed and semi-exposed areas widens, allowing for a wide range of development conditions. A printed wiring board with good resolution could be obtained with good reproducibility without being affected.

(実施例) 以下、実施例によって本発明をさらに具体的に説明する
。部及び%は、重量部及び重量%を示す。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples. Parts and percentages refer to parts and percentages by weight.

ポジ型感光性電着塗料の製造例−1 4つロフラスコに1.2−ナフトキノンジアジド−5−
スルホン酸クロライド269部及びジオキサン1345
部を入れ室温で撹拌しながら、N−メチルエタノールア
ミン150部を1時間で適13− 下した。滴下終了後、約3時間撹拌を継続し、赤外スペ
クトルの3300crn−’付近のアミノ基の吸収がな
くなるのを確認した後反応を終了した。
Production example of positive type photosensitive electrodeposition paint-1 1.2-naphthoquinonediazide-5-
269 parts of sulfonic acid chloride and 1345 parts of dioxane
150 parts of N-methylethanolamine was added thereto over 1 hour while stirring at room temperature. After the dropwise addition was completed, stirring was continued for about 3 hours, and after confirming that the absorption of amino groups around 3300 crn-' in the infrared spectrum disappeared, the reaction was terminated.

次に、この溶液を脱イオン水中にいれ、反応中発生した
塩酸をトラップした4級アンモニウム塩を除去した。次
いで酢酸イソブチルで生成物を抽出した後、溶媒を留去
し、減圧乾燥器に入れ乾燥し、水酸基含有オルトキノン
ジアジド化合物(a)を得た。
Next, this solution was poured into deionized water to remove the quaternary ammonium salt that trapped the hydrochloric acid generated during the reaction. Next, the product was extracted with isobutyl acetate, the solvent was distilled off, and the product was dried in a vacuum dryer to obtain a hydroxyl group-containing orthoquinonediazide compound (a).

ついで、ジブチル錫ジラウレート0.5部とトリレンジ
イソシアネート174部を60℃に加熱したなかに、上
記化合物(a)309部をジオキサン1,500部に溶
解した溶液を1時間かけて滴下し、その温度に4時間保
持し、化合物(b)溶液を得た。該化合物(b)溶液2
,157部に2.3.4−トリヒドロキシベンゾフェノ
ン77部をジオキサン300部に溶解した溶液を加え、
さらに60℃でIRスペクトルの2250cm−’付近
のイソシアネートの吸収が消失するまで反応させた後、
多量の脱イオン水中に反応混合物を投入14− して析出した固形分を濾別し、水で良く洗浄した後50
℃で減圧乾燥して感光剤Aを得た。
Next, a solution of 309 parts of the above compound (a) dissolved in 1,500 parts of dioxane was added dropwise over 1 hour to 0.5 parts of dibutyltin dilaurate and 174 parts of tolylene diisocyanate heated to 60°C. The temperature was maintained for 4 hours to obtain a compound (b) solution. The compound (b) solution 2
, a solution of 77 parts of 2.3.4-trihydroxybenzophenone dissolved in 300 parts of dioxane was added to 157 parts of
After further reacting at 60°C until the absorption of isocyanate around 2250 cm-' in the IR spectrum disappears,
The reaction mixture was poured into a large amount of deionized water for 14 hours, the precipitated solids were filtered out, and washed thoroughly with water.
The photosensitive agent A was obtained by drying under reduced pressure at °C.

別の4つロフラスコにメチルイソブチルケトン1000
部を仕込み100℃に加熱した中にn −ブチルアクリ
レート500部、アクリル酸90部、メチルメタアクリ
レート300部、スチレン110部及びアゾビスイソブ
チロニトリル3部の混合物を3時間かけて滴下し、その
温度に3時間脂溶液に感光剤A300部をジメチルジグ
ライム900部に溶解した溶液を加えよく混合した後、
l・リエチルアミン63部、ブチルセロソルブ100部
を加え中和した後該混合物を1000〜1500rpm
の速度で撹拌しつつ脱イオン水10150部を徐々に加
え安定な水分散体を得た。
1000 methyl isobutyl ketone in another 4 flasks
A mixture of 500 parts of n-butyl acrylate, 90 parts of acrylic acid, 300 parts of methyl methacrylate, 110 parts of styrene and 3 parts of azobisisobutyronitrile was added dropwise to the mixture heated to 100°C over 3 hours. After adding a solution of 300 parts of photosensitizer A dissolved in 900 parts of dimethyl diglyme to the fat solution for 3 hours at that temperature and mixing well,
After neutralizing by adding 63 parts of l-ethylamine and 100 parts of butyl cellosolve, the mixture was heated at 1000 to 1500 rpm.
While stirring at a speed of 10,150 parts of deionized water was gradually added to obtain a stable water dispersion.

ポジ型感光性電着塗料の製造例−2 4つロフラスコに、ジメチルジグライム1.030部を
仕込み100℃に加熱したなかにn−ブチルアクリレー
ト500部、アクリル酸90部、2−ヒドロキシエチル
アクリレート130部、メチルメタアクリレート280
部及びアゾビスイソブチロニトリル3部の混合物を3時
間かけて滴下しその温度に3時間保った後60°Cまで
冷却し、製造例−1で得た化合物(b)の溶液1340
部及びジブチル錫ジラウレート1.0部を加え60℃で
赤外スペクトルの2250cm−’付近のインシアネー
トの吸収が消失するまで反応させた後、減圧下に固形分
が60%になるまで濃縮した。この樹脂溶液にトリエチ
ルアミン63部及びブチルセロソルブ100部を加え中
和した後、該混合物を1,000〜1.50Orpmの
速度で撹拌しつつ脱イオン水10,650部を徐々に加
えて安定な水分散体を得た。
Production example of positive-type photosensitive electrodeposition paint-2 1.030 parts of dimethyl diglyme was charged into a four-bottle flask and heated to 100°C, and 500 parts of n-butyl acrylate, 90 parts of acrylic acid, and 2-hydroxyethyl acrylate were added. 130 parts, methyl methacrylate 280
A mixture of 1 part and 3 parts of azobisisobutyronitrile was added dropwise over 3 hours, maintained at that temperature for 3 hours, and then cooled to 60°C to form a solution of compound (b) obtained in Production Example-1.
1 part and 1.0 part of dibutyltin dilaurate were added, and the mixture was reacted at 60°C until the absorption of incyanate around 2250 cm-' in the infrared spectrum disappeared, and then concentrated under reduced pressure until the solid content became 60%. After neutralizing the resin solution by adding 63 parts of triethylamine and 100 parts of butyl cellosolve, 10,650 parts of deionized water was gradually added to the mixture while stirring at a speed of 1,000 to 1.50 Orpm to achieve stable water dispersion. I got a body.

実施例−1 板厚1.6mm、孔径0.8mm、銅メッキ厚35μm
のメッキ基板を25℃に保った製造例−1の水分散体か
ら得た浴塗料中に浸漬し、100Vで90秒通電を行っ
た後、水洗、乾燥して膜厚10μmのレジスト被膜を得
た。該レジスト被膜で覆われた基板にスキャニング型露
光機(超高圧水銀灯80 W / cm)で50 mj
/ cm2の光量を全面に照射した。ついで該被膜に導
線を形成する部分を活性エネルギー線から遮断するフォ
トマスクを介して同露光機で300 mj/ cm2の
光量を照射した。
Example-1 Plate thickness 1.6 mm, hole diameter 0.8 mm, copper plating thickness 35 μm
The plated substrate was immersed in a bath paint obtained from the aqueous dispersion of Production Example-1 kept at 25°C, and after being energized at 100V for 90 seconds, it was washed with water and dried to obtain a resist film with a thickness of 10μm. Ta. The substrate covered with the resist film was exposed to 50 mj using a scanning type exposure machine (ultra high pressure mercury lamp 80 W/cm).
/cm2 of light was applied to the entire surface. Then, the same exposure machine was used to irradiate the film with a light amount of 300 mj/cm2 through a photomask that shielded the part where the conducting wire was to be formed from active energy rays.

得られた露光基板に30℃の2%メタケイ酸ソーダ水溶
液を2分間吹き付け、水洗し現像を行なった。次いで塩
化第2銅水溶液でエツチングを行い更に塩化メチレンで
残存している導線部上のレジスト被膜を剥離して回路基
板を得た。現像工程で現像液温が設定温・度に対して±
5℃の変動があっても上記工程で作製した300枚の回
路基板はすべてライン/スペース=100/100〜2
00/200 (μm/μm)のパターン中で孔中のメ
ッキが完全に保護され、解像性は良好であった。
The resulting exposed substrate was sprayed with a 2% sodium metasilicate aqueous solution at 30° C. for 2 minutes, washed with water, and developed. Next, etching was performed using a cupric chloride aqueous solution, and the resist film remaining on the conductive wire portions was peeled off using methylene chloride to obtain a circuit board. During the development process, the developer temperature is ± the set temperature/degree.
Even with a 5°C fluctuation, all 300 circuit boards produced using the above process had a line/space ratio of 100/100 to 2.
The plating in the holes was completely protected in the 00/200 (μm/μm) pattern, and the resolution was good.

実施例−2 製造例−2の水分散体から得た浴塗料を用いる事及び、
現像液に35℃の3%メタケイ酸ソーグ 7− 水溶液を用いる事態外は実施例−1と同様にして300
枚の回路基板を得た。パターンの状態及び孔中のメッキ
はすべて良好であった。
Example-2 Using a bath paint obtained from the aqueous dispersion of Production Example-2, and
Except for the case where a 3% metasilicic acid sorg 7-aqueous solution at 35°C was used as the developer, the same procedure as in Example-1 was carried out.
A circuit board was obtained. The condition of the pattern and the plating in the holes were all good.

実施例−3 実施例−1と同様にして得られたレジスト被膜で覆われ
た基板に導線を形成する部分を活性エネルギー線から遮
断するフォトマスクを介してスキャニング型露光機(8
0W/cmの超高圧水銀灯)で2SOmj/ cm2の
光量を照射した。ついで、該被膜上全面に、同露光機で
60 mj/ cm2の光量を照射した。得られた露光
基板に30℃の1%メタケイ酸ソーダ水溶液を2分間吹
きつけ水洗し現像を行ない、露出した銅メッキ部分を塩
化第2銅水溶液でエツチング除去し、更に3%苛性ソー
ダ水溶液で残存している導線部分上のレジスト被膜を剥
離した。現像工程で現像液温が設定温度に対して±5℃
の変動があっても上記工程で作製した300枚の回路基
板はすべてライン/スペース=150/150(μm/
μm)のファインパターンは、欠陥がなく、解像性は良
好であった。
Example 3 A substrate covered with a resist film obtained in the same manner as Example 1 was exposed to a scanning exposure machine (8
A light intensity of 2 SOmj/cm2 was irradiated using an ultra-high pressure mercury lamp (0 W/cm). Then, the entire surface of the film was irradiated with a light amount of 60 mj/cm2 using the same exposure machine. The resulting exposed substrate was sprayed with a 1% sodium metasilicate aqueous solution at 30°C for 2 minutes, washed with water, and developed. The exposed copper plated portion was etched away with a cupric chloride aqueous solution, and the remaining copper plated portion was removed with a 3% caustic soda aqueous solution. The resist film on the conductive wire portion was peeled off. During the development process, the developer temperature is ±5℃ relative to the set temperature.
Even if there is a variation in the line/space = 150/150 (μm/
The fine pattern (μm) had no defects and had good resolution.

18− 比較例−1 実施例−1において全面露光工程を入れない車量外は実
施例−1と全(同様にして300枚の回路基板を得た。
18- Comparative Example-1 300 circuit boards were obtained in the same manner as in Example-1 except for the amount of vehicles in which the entire surface exposure step was not performed in Example-1.

現像工程で現像液温が設定温度に対して±5℃の変動が
あったため、ライン/スペースのパターンの一部に切れ
やパターンギザがみられたり、膜残りからタッチが起っ
たりした回路基板が何枚もあった。
A circuit board where there were cuts and pattern burrs in some of the line/space patterns, and where touches occurred from film residue because the developer temperature fluctuated by ±5°C from the set temperature during the development process. There were many.

Claims (3)

【特許請求の範囲】[Claims] 1.( I )導伝性被膜を有する回路基板にポジ型感光
性レジスト被膜を,電着塗装法により形成する工程; (II)該ポジ型感光性レジスト被膜上に、 少量の活性エネルギー線を一様に照射することにより耐
アルカリ性を向上させ●、ついで、該ポジ型感光性レジ
スト被膜上に導線を形成する部分を活性エネルギー線か
ら遮断するフォトマスクを介して活性エネルギー線を照
射する工程; (III)活性エネルギー線が照射されたレジ スト被膜を現像する工程;及び (IV)露出した銅メッキ部分をエッチング 除去し、さらに残存する導線形成部分上のレジスト被膜
を除去する工程; からなるプリント回路基板の製造方法。
1. (I) Forming a positive photosensitive resist film on a circuit board having a conductive film by electrodeposition coating; (II) Uniformly applying a small amount of active energy rays onto the positive photosensitive resist film. (III ) developing the resist film irradiated with active energy rays; and (IV) etching away the exposed copper plated portion and further removing the resist film on the remaining conductor forming portion; Production method.
2.前記(II)工程が、 該ポジ型感光性レジスト被膜上に導線を形成する部分を
活性エネルギー線から遮断するフォトマスクを介して活
性エネルギー線を照射し、ついで、該ポジ型感光性レジ
スト被膜上に、少量の活性エネルギー線を一様に照射す
ることにより耐アルカリ性を向上させる工程; である請求項第1項記載のプリント回路基板の製造方法
2. In the step (II), active energy rays are irradiated through a photomask that blocks active energy rays from the portion on which the conductive wire is to be formed on the positive photosensitive resist film, and then active energy rays are irradiated on the positive photosensitive resist film. 2. The method of manufacturing a printed circuit board according to claim 1, further comprising: uniformly irradiating a small amount of active energy rays to improve alkali resistance.
3.前記( I )工程で用いるプリント回路基板がスル
ーホールを有し、前記(II)工程で用いる少量の活性エ
ネルギー線が散乱光状である請求項第1項記載のプリン
ト回路基板の製造方法。
3. 2. The method of manufacturing a printed circuit board according to claim 1, wherein the printed circuit board used in the step (I) has a through hole, and the small amount of active energy rays used in the step (II) are in the form of scattered light.
JP25852589A 1989-10-03 1989-10-03 Manufacture of printed-wiring board Pending JPH03120782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25852589A JPH03120782A (en) 1989-10-03 1989-10-03 Manufacture of printed-wiring board
US07/592,245 US5236810A (en) 1989-10-03 1990-10-03 Process for preparing printed-circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25852589A JPH03120782A (en) 1989-10-03 1989-10-03 Manufacture of printed-wiring board

Publications (1)

Publication Number Publication Date
JPH03120782A true JPH03120782A (en) 1991-05-22

Family

ID=17321423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25852589A Pending JPH03120782A (en) 1989-10-03 1989-10-03 Manufacture of printed-wiring board

Country Status (1)

Country Link
JP (1) JPH03120782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504138A (en) * 1985-05-31 1996-04-02 Jacobs; Richard Circuit board devices with superconducting bonds and lines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504138A (en) * 1985-05-31 1996-04-02 Jacobs; Richard Circuit board devices with superconducting bonds and lines

Similar Documents

Publication Publication Date Title
US5004672A (en) Electrophoretic method for applying photoresist to three dimensional circuit board substrate
KR930010060B1 (en) Manufacturing method of circuit board having solder through hole
JPH0562835B2 (en)
JP2749646B2 (en) Positive photosensitive electrodeposition coating composition and method for producing circuit board using the same
JPH07119374B2 (en) Positive type photosensitive cationic electrodeposition coating composition
JPH02289660A (en) Positive type photosensitive electrodeposition coating composition and production of circuit board using same composition
KR970004758B1 (en) Method for producing printed wiring board
KR100211433B1 (en) Positive photosensitive anionic electrodeposition resist composition and process for pattern formation using said composition
JP3965434B2 (en) Reaction development image forming method
JPS62235496A (en) Production of substrate having resist pattern
JPH03120782A (en) Manufacture of printed-wiring board
US4259421A (en) Improving etch-resistance of casein-based photoresist pattern
JPH04361265A (en) Peeling liquid
JPH02218197A (en) Manufacture of printed-circuit board
JPH03120783A (en) Manufacture of printed-circuit board
JP2865147B2 (en) Positive photosensitive electrodeposition coating composition
JPH03132757A (en) Production of printed circuit board
US4230794A (en) Improving etch resistance of a casein-based photoresist
US4237210A (en) Aqueous photoresist method
AU633592B2 (en) A method for forming a resist pattern
JPH04139890A (en) Manufacture of printed circuit board
US5236810A (en) Process for preparing printed-circuit board
DE3246403A1 (en) METHOD FOR DEVELOPING RELIEF STRUCTURES BASED ON RADIATION-CROSSLINKED POLYMER PRE-STAGES OF HIGH-HEAT-RESISTANT POLYMERS
JPS636070A (en) Positive photosensitive electrodeposition coating
JP3583455B2 (en) Circuit board manufacturing method