JPH0312056B2 - - Google Patents

Info

Publication number
JPH0312056B2
JPH0312056B2 JP60213154A JP21315485A JPH0312056B2 JP H0312056 B2 JPH0312056 B2 JP H0312056B2 JP 60213154 A JP60213154 A JP 60213154A JP 21315485 A JP21315485 A JP 21315485A JP H0312056 B2 JPH0312056 B2 JP H0312056B2
Authority
JP
Japan
Prior art keywords
reaction
acid
water
purity
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60213154A
Other languages
Japanese (ja)
Other versions
JPS6272663A (en
Inventor
Mikiro Nakazawa
Shigeo Miki
Tomoko Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON RIKA KK
Original Assignee
SHIN NIPPON RIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON RIKA KK filed Critical SHIN NIPPON RIKA KK
Priority to JP60213154A priority Critical patent/JPS6272663A/en
Publication of JPS6272663A publication Critical patent/JPS6272663A/en
Publication of JPH0312056B2 publication Critical patent/JPH0312056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyrrole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はABS,MMA,PVC等の樹脂の耐熱
性改良剤や医薬、農薬の中間原料として有用なN
−置換マレイミド化合物の製造改良方法に関す
る。 [従来の技術] 従来、無水マレイン酸と第1アミンからジカル
ボン酸モノアミド化合物を経てN−置換マレイミ
ド化合物を製造する方法として、後半の脱水反応
については(1)無水酢酸等の脱水剤を作用させる方
法(例えば、特公昭46−29140,USP2444536)、
(2)酸及び/又は塩基を触媒とし、生成水を溶媒と
共沸脱水させる方法(例えば、特公昭47−24024)
が知られている。しかし、(1)の方法は、生成水に
対し等モル量の脱水剤を消費し、経済的に不利で
ある。一方、(2)の方法は一般に高温を要し、収率
や品質が不十分である。 そこで、触媒や中間体のジカルボン酸モノアミ
ド化合物の溶解度を増加させ反応を円滑に進める
目的で非極性溶媒の一部又は全部をN,N−ジメ
チルホルムアミド、N,N−ジメチルアセトアミ
ド、N−メチルピロリドン等の非プロトン性極性
溶媒に代えて反応する方法(例えば、特公昭55−
46394、特開昭60−100554、特開昭60−112758)
も示されているが、これらの溶媒は、目的生成物
であるN−置換マレイミド化合物の溶解度も大き
いため、N−置換マレイミドを取り出すために
は、溶媒を蒸留除去するか、又は多量の水に添加
して結晶を析出させる等煩雑な分離工程を要す
る。又、これらの溶媒は一般に高価で経済上の負
担も大きい。 [発明が解決しようとする問題点] 発明者らは、非極性溶媒と酸触媒を用いる方法
に関し、前記した欠点を改善し、より有利な方法
を見い出すべく検討した。この結果、特定範囲の
炭素数を有するオニウム化合物を反応系に添加す
ることにより反応速度が著しく加速され、かつ副
反応が大幅に低減されることを見出し、本発明を
完成するに至つた。即ち、本発明は、無水マレイ
ン酸と第1アミンから得たジカルボン酸モノアミ
ド化合物を酸触媒の存在下、非極性溶媒中で脱水
環化してN−置換マレイミドを製造するに際し、
特定の構造を有するオニウム化合物を添加するこ
とを特徴とする新規な改良方法であつて、一般的
で安価な非極性溶媒と酸触媒を用い、高純度のN
−置換マレイミドが高収率で得られ、かつ溶媒や
触媒との分離が極めて容易な方法を提供すること
を目的とする。 [問題点を解決するための手段] 本発明で適用される第1アミンとは下記一般式
で示される化合物が推奨される。 RNH2 (式中、Rは置換基を有していてもよい炭素数
1〜20のアルキル基、シクロアルキル基、フエニ
ル基、又はアルキル、ハロゲン、アルコキシ、カ
ルボキシ、ニトロ若しくはヒドロキシル基で置換
されたフエニル基若しくはナフチル基を表わす) 具体的にはメチルアミン、エチルアミン、n−
ブチルアミン、n−オクチルアミン、2−エチル
ヘキシルアミン、n−ドデシルアミン、n−オク
タデシルアミン、シクロヘキシルアミン、アニリ
ン、トルイジン、キシリジン、エチルアニリン、
イソプロピルアニリン、ドデシルアニリン、p−
クロロアニリン、2,4−ジクロロアニリン、ア
ニシジン、フエネチジン、アミノ安息香酸、ニト
ロアニリン、アミノフエノール等が例示できる。 本発明において用いるオニウム化合物は、下記
一般式()で表わされる。 [R1R2R3MR4+Y- () 上記一般式においてR1,R2,R3及びR4に含ま
れる炭素数の合計は10〜80であり、好ましくは12
〜50である。この条件が満たされれば各置換基の
構造や組合せは問題とはならず、直鎖状、分枝鎖
状、置換基を有していてもよい環状、芳香環状又
は当該環若しくは芳香環を含む直鎖若しくは分枝
鎖状の炭化水素基いずれでもかまわない。更に、
下記のピリジンやピペリジン構造のものも使用出
来る。
[Industrial Application Field] The present invention is a N-based material useful as a heat resistance improver for resins such as ABS, MMA, and PVC, and as an intermediate raw material for pharmaceuticals and agricultural chemicals.
- An improved method for producing substituted maleimide compounds. [Prior Art] Conventionally, as a method for producing an N-substituted maleimide compound from maleic anhydride and a primary amine via a dicarboxylic acid monoamide compound, for the latter half of the dehydration reaction, (1) a dehydrating agent such as acetic anhydride is applied. method (e.g., Japanese Patent Publication No. 46-29140, USP2444536),
(2) A method of azeotropic dehydration of produced water with a solvent using an acid and/or a base as a catalyst (for example, Japanese Patent Publication No. 47-24024)
It has been known. However, the method (1) consumes an equimolar amount of dehydrating agent with respect to the produced water, which is economically disadvantageous. On the other hand, method (2) generally requires high temperatures and has insufficient yield and quality. Therefore, in order to increase the solubility of the catalyst and intermediate dicarboxylic acid monoamide compounds and to facilitate the reaction, part or all of the nonpolar solvent was replaced with N,N-dimethylformamide, N,N-dimethylacetamide, or N-methylpyrrolidone. A method of reacting in place of an aprotic polar solvent such as
46394, JP-A-60-100554, JP-A-60-112758)
However, since these solvents also have a high solubility for the target product, the N-substituted maleimide compound, in order to remove the N-substituted maleimide, the solvent must be removed by distillation or the solvent must be poured into a large amount of water. A complicated separation process such as addition and precipitation of crystals is required. Furthermore, these solvents are generally expensive and impose a heavy economic burden. [Problems to be Solved by the Invention] The inventors conducted studies to improve the above-mentioned drawbacks and find a more advantageous method regarding the method using a nonpolar solvent and an acid catalyst. As a result, they discovered that by adding an onium compound having a carbon number within a specific range to the reaction system, the reaction rate was significantly accelerated and side reactions were significantly reduced, leading to the completion of the present invention. That is, in the present invention, when producing an N-substituted maleimide by cyclodehydrating a dicarboxylic acid monoamide compound obtained from maleic anhydride and a primary amine in a nonpolar solvent in the presence of an acid catalyst,
This is a novel and improved method characterized by the addition of an onium compound with a specific structure.
An object of the present invention is to provide a method in which a -substituted maleimide can be obtained in high yield and separation from a solvent and a catalyst is extremely easy. [Means for Solving the Problems] As the primary amine applied in the present invention, a compound represented by the following general formula is recommended. RNH 2 (wherein R is an alkyl group having 1 to 20 carbon atoms which may have a substituent, a cycloalkyl group, a phenyl group, or a group substituted with an alkyl, halogen, alkoxy, carboxy, nitro or hydroxyl group) phenyl group or naphthyl group) Specifically, methylamine, ethylamine, n-
Butylamine, n-octylamine, 2-ethylhexylamine, n-dodecylamine, n-octadecylamine, cyclohexylamine, aniline, toluidine, xylidine, ethylaniline,
Isopropylaniline, dodecylaniline, p-
Examples include chloroaniline, 2,4-dichloroaniline, anisidine, phenetidine, aminobenzoic acid, nitroaniline, and aminophenol. The onium compound used in the present invention is represented by the following general formula (). [R 1 R 2 R 3 MR 4 ] + Y - () In the above general formula, the total number of carbon atoms contained in R 1 , R 2 , R 3 and R 4 is 10 to 80, preferably 12
~50. If this condition is met, the structure or combination of each substituent does not matter, and includes straight chain, branched chain, cyclic structure which may have a substituent, aromatic ring structure, or such ring or aromatic ring. Either a straight chain or a branched hydrocarbon group may be used. Furthermore,
Those with the following pyridine or piperidine structures can also be used.

【式】【formula】

【式】 更に下記のベタイン構造のものも有効である。 R1R2R3M+CH2COO- () 一般式においてR1,R2及びR3はそれらの炭
素数の合計が10〜80の炭化水素基を表わし、その
詳細については一般式と同様である。 一般式における置換基R1,R2,R3及びR4
びに一般式における置換基R1,R2及びR3に含
まれる炭素数の合計が10未満の場合には、酸触媒
を反応系に均一化する能力を有する場合でも反応
速度や収率の改善効果が認められず、逆に反応速
度に対し負の効果を示すオニウム化合物もある。
逆に、その合計炭素数が大きすぎるとオニウム化
合物の分離が困難となるため目的とするN−置換
マレイミド化合物の純度が低下する。 又、M+はN+,P+,As+又はSb+を表わす。 アニオンY-はCl-,Br-,I-等のハロゲンイオ
ン、HSO4 -,ClO4 -,CN-,H2PO4 -,OH-等の
無機アニオン、CH3SO3 -
[Formula] Furthermore, those having the following betaine structure are also effective. R 1 R 2 R 3 M + CH 2 COO - () In the general formula, R 1 , R 2 and R 3 represent a hydrocarbon group having a total of 10 to 80 carbon atoms. The same is true. When the total number of carbon atoms contained in substituents R 1 , R 2 , R 3 and R 4 in the general formula and substituents R 1 , R 2 and R 3 in the general formula is less than 10, an acid catalyst is added to the reaction system. Even when onium compounds have the ability to homogenize, no improvement effect on the reaction rate or yield is observed, and on the contrary, some onium compounds exhibit a negative effect on the reaction rate.
On the other hand, if the total number of carbon atoms is too large, separation of the onium compound becomes difficult and the purity of the target N-substituted maleimide compound decreases. Further, M + represents N + , P + , As + or Sb + . The anion Y - is a halogen ion such as Cl - , Br - , I - , an inorganic anion such as HSO 4 - , ClO 4 - , CN - , H 2 PO 4 - , OH - , CH 3 SO 3 - ,

【式】 等の有機アニオンが使用出来る。 具体的には、トリエチルヘキシルアンモニウム
ブロミド、トリメチルデシルアンモニウムブロミ
ド、トリメチルドデシルアンモニウムクロリド、
トリメチルテトラデシルアンモニウムブロミド、
トリメチルオクタデシルアンモニウムクロリド、
テトラブチルアンモニウムブロミド、トリエチル
デシルアンモニウムブロミド、メチルトリフエニ
ルアンモニウムクロリド、テトラヘキシルアンモ
ニウムクロリド、トリエチルヘキサデシルアンモ
ニウムブロミド、メチルトリデシルアンモニウム
クロリド、メチルトリノニルアンモニウムクロリ
ド、ジメチルジオクタデシルアンモニウムクロリ
ド、ベンジルトリメチルアンモニウムクロリド、
ベンジルトリエチルアンモニウムブロミド、トリ
エチルヘキシルアンモニウムヨージド、テトラブ
チルアンモニウムビサルフエイト、ベンジルトリ
エチルアンモニウムハイドロオキサイド、メチル
トリオクチルアンモニウムパークロレイト、ブチ
ルピリジニウムブロミド、ヘプチルピリジニウム
シアニド、ドデシルピリジニウムクロリド、テト
ラフエニルホスホニウムブロミド、テトラフエニ
ルアルソニウムクロリド、テトラフエニルスチボ
ニウムブロミド、及びジメチルドデシルアミノ酢
酸ベタイン、ジメチルオレイルアミノ酢酸ベタイ
ン等が例示される。 次に酸触媒は硫酸、リン酸、亜リン酸、次亜リ
ン酸、無水硫酸、メタリン酸、ピロリン酸、トリ
ポリリン酸、ポリリン酸等の無機酸や、メタンス
ルホン酸、p−トルエンスルホン酸、ベンゼンス
ルホン酸、ナフタレンスルホン酸等の有機酸が使
用出来る。 溶媒は単独、又は混合物で好ましくは沸点範囲
90〜150℃である非極性であつて生成水を共沸留
去出来る溶剤であればよい。例えば、トルエン、
キシレン、エチルベンゼン、クメン、ヘキサン、
オクタン、デカン、シクロヘキサン、メチルシク
ロヘキサン、エチルシクロヘキサン、軽油等の炭
化水素、クロルベンゼン、ジクロルエタン、トリ
クロルエタン、パークロルエタン等含ハロゲン炭
化水素化合物が単独又は任意の二種以上の混合物
で使用出来る。 本発明方法における反応は無水マレイン酸と前
記の第1アミンを非極性溶媒中で温度150℃以下
好ましくは20〜80℃で反応させてジカルボン酸モ
ノアミドを生成させ、次いで得られた反応混合物
に酸触媒とオニウム化合物とを加え、90〜150℃
好ましくは100〜140℃で撹拌加熱し、反応生成水
を共沸脱水することによつて行うのが一般的であ
る。しかし、ジカルボン酸モノアミド化合物の脱
水反応と異なる溶媒、例えばアセトン中で無水マ
レイン酸と第1アミンを反応させ、中間体のジカ
ルボン酸モノアミド化合物を一旦分離してから、
非極性溶媒中で酸触媒及びオニウム化合物の存在
下反応させることもできる。 ここで無水マレイン酸と第1アミンの使用量は
第1アミン1モルに対し、無水マレイン酸1.0〜
1.5モルが好ましい。又、非極性溶媒は第1アミ
ンに対し2〜15倍量(重量)用いるのが良い。オ
ニウム化合物は第1アミンに対し0.1〜15重量%、
特に1.0〜10重量%が好ましい。このオニウム化
合物の添加量が少なすぎると反応速度が遅く、目
的のN−置換マレイミド化合物の純度、収率とも
低くなる。逆に15%より多く加えても経済的に不
利となるのみで何ら利点は認められない。 次に酸触媒は、その種類にもよるが第1アミン
に対し0.5〜20重量%が適当である。 以上の条件で反応を行つた場合、反応混合液を
冷却すれば、目的とするN−置換マレイミドが結
晶として析出してくるので、これを濾別又は遠心
分離し、水及び/又はアルカリ水で洗浄後乾燥す
れば目的物を得ることができる。又、反応後一旦
70℃程度まで反応液を冷却し、水及び/又はアル
カリ水で洗浄後室温まで冷却し、析出するN−置
換マレイミドの結晶を分離、乾燥することも可能
である。更に、高度に精製を望む場合は、イソプ
ロピルアルコール等の溶媒にて再結晶精製するこ
とも出来る。 結晶として析出したN−置換マレイミドを除去
して残つた反応液は、そのまま、又は残存する酸
触媒をアルカリで中和し、場合によつては生成し
た塩を水洗除去してから次の反応に繰返し使用す
ることが出来る。 [実施例] 以下に実施例を掲げ、本発明を詳説する。 実施例 1 水分離器付冷却管、温度計及び撹拌機を備えた
四つ口フラスコに無水マレイン酸47.5g(0.50モ
ル)及びキシレン130g、及びトルエン88gを仕
込み、反応温度40℃で撹拌しつつアニリン44.7g
(0.48モル)を少量ずつ1時間で滴下し、同温度
でさらに30分間反応させた。得られた反応混合物
に硫酸2.5gとベンジルトリメチルアンモニウム
クロリド0.9gを加え撹拌しながら還流温度(125
〜130℃)で加熱し、生成水を除去しながら約3
時間反応させた。 反応終了後、室温まで冷却すると淡黄色針状の
N−フエニルマレイミドが析出した。これを濾別
し、10%炭酸ソーダ水及び水で洗浄後乾燥し、N
−フエニルマレイミド47gを得た。この融点は88
〜90℃でGPC分析による純度は97.5%であつた。
又、反応液中に残存するN−フエニルマレイミド
を分析した結果、30gで、結晶として得たN−フ
エニルマレイミドと合わせると収率は用いたアニ
リンに対し93%であつた。次に残つた反応液を用
い、最初の反応と同様にして無水マレイン酸とア
ニリンを反応させて、反応液を繰り返し使用し
た。この結果、濾別、洗浄、乾燥してN−フエニ
ルマレイミド78gを得た。収率はアニリンに対し
94%で、純度97.5%であつた。反応液を再使用す
ると、結晶として得られるN−フエニルマレイミ
ド量が増加するのは、反応液中に溶解する量が無
視できるからである。 実施例 2 実施例1と同様の四つ口フラスコに無水マレイ
ン酸47.5gをトルエン88gとキシレン130gに溶
解し、これにアニリン44.7gを30℃で撹拌しなが
ら1時間を要して滴下後、さらに30分間同温度で
加熱撹拌してN−フエニルマレアミド酸を得た。
得られた反応混合物にp−トルエンスルホン酸一
水塩9.5g及びトリメチルテトラデシルアンモニ
ウムブロミド0.8gを加え、還流温度(125〜130
℃)で加熱撹拌し、生成水を除去しながら約2.5
時間反応させた。反応終了後約70℃まで冷却し、
10%炭酸水素ナトリウム水溶液と、温水で洗浄
後、室温まで冷し、得られた結晶を濾別乾燥して
N−フエニレマレイミド50gを得た。この融点は
88〜90℃でGPC分析結果、純度は98.0%であつ
た。又、反応液中に残存するN−フエニルマレイ
ミドは26gで、結晶として得たものと合わせると
収率は用いたアニリンに対し92%であつた。次に
残つた反応液を用いて、最初の反応と同様にして
無水マレイン酸とアニリンを反応させて反応液を
繰り返し使用した結果、結晶を濾別乾燥してN−
フエニルマレイミド77gを得た。収率は用いたア
ニリンに対し93%で純度98%であつた。 実施例 3 オニウム化合物の種類とその添加量のみを変更
し、他の条件は実施例2と同様とし、反応液を繰
返し使用した場合の収率及び純度を表1に示す。 実施例 4 実施例2においてアニリンの代りに表2に示す
各種第1アミンを0.48モル用いる以外は実施例2
と同様として反応した結果を表2に示す。収率、
純度は反応液を再使用した場合の結果である。 比較例 1 実施例1において、ベンジルトリメチルアンモ
ニウムクロリドを添加しない以外は実施例1と同
じ条件で反応を行なつた。この場合、3時間反応
しても不溶性の結晶が残り、これを温度80℃で濾
別水洗して、反応中間体のN−フエニルマレアミ
ド酸を36.7g得た。さら室温まで冷却し析出した
N−フエニルマレアミド酸を濾別、10%炭酸ソー
ダ水及び水で洗浄後乾燥してN−フエニルマレイ
ミド19gを得た。この融点は84〜87℃で、GPC
分析結果純度93.5%であつた。 次に残つた反応液を用いて最初の反応と同様に
して無水マレイン酸と反応液の繰返しを行なつた
結果、濾別、洗浄、乾燥してNフエニルマレイミ
ド43gを得た。収率はアニリンに対し53%で純度
は93%であつた。 比較例 2 ベンジルトリメチルアンモニウムクロリドに代
えて所定の炭素数以下のオニウム化合物を用い、
実施例1に準じて反応した結果を表3に示す。収
率及び純度は反応液を再使用した場合の結果であ
る。 [発明の効果] 本発明方法によれば、反応速度が増大し、一般
的で安価な非極性溶媒を使用しても充分な反応速
度が得られ、副反応も少ないことから高純度のN
−置換マレイミドが高収率で得られる。更に、本
発明は極性溶媒を用いないため、目的のN−置換
マレイミド化合物が反応後冷却するのみで結晶と
して析出し、容易に分離出来る。
Organic anions such as [Formula] can be used. Specifically, triethylhexylammonium bromide, trimethyldecylammonium bromide, trimethyldodecylammonium chloride,
trimethyltetradecylammonium bromide,
trimethyloctadecyl ammonium chloride,
Tetrabutylammonium bromide, triethyldecylammonium bromide, methyltriphenylammonium chloride, tetrahexylammonium chloride, triethylhexadecylammonium bromide, methyltridecylammonium chloride, methyltrinonylammonium chloride, dimethyldioctadecylammonium chloride, benzyltrimethylammonium chloride,
Benzyltriethylammonium bromide, triethylhexylammonium iodide, tetrabutylammonium bisulfate, benzyltriethylammonium hydroxide, methyltrioctylammonium perchlorate, butylpyridinium bromide, heptylpyridinium cyanide, dodecylpyridinium chloride, tetraphenylphosphonium bromide , tetraphenylarsonium chloride, tetraphenylstibonium bromide, dimethyldodecylaminoacetic acid betaine, dimethyloleylaminoacetic acid betaine, and the like. Next, acid catalysts include inorganic acids such as sulfuric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, sulfuric anhydride, metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, and polyphosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, and benzene. Organic acids such as sulfonic acid and naphthalenesulfonic acid can be used. Solvents may be used alone or in mixtures, preferably within the boiling point range.
Any solvent may be used as long as it is non-polar and has a temperature of 90 to 150°C and can azeotropically distill off the produced water. For example, toluene,
xylene, ethylbenzene, cumene, hexane,
Hydrocarbons such as octane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, light oil, etc., and halogen-containing hydrocarbon compounds such as chlorobenzene, dichloroethane, trichloroethane, perchloroethane, etc. can be used alone or in a mixture of two or more of them. The reaction in the method of the present invention is to react maleic anhydride and the above-mentioned primary amine in a nonpolar solvent at a temperature of 150°C or less, preferably 20 to 80°C to produce a dicarboxylic acid monoamide, and then add the resulting reaction mixture to the Add catalyst and onium compound and heat to 90-150℃
It is generally carried out by stirring and heating, preferably at 100 to 140°C, and azeotropically dehydrating the water produced by the reaction. However, after the dehydration reaction of the dicarboxylic acid monoamide compound, maleic anhydride and a primary amine are reacted in a different solvent, such as acetone, and the intermediate dicarboxylic acid monoamide compound is once separated,
The reaction can also be carried out in a non-polar solvent in the presence of an acid catalyst and an onium compound. Here, the amount of maleic anhydride and primary amine used is 1.0 to 1.0 to 1 mol of maleic anhydride per mol of primary amine
1.5 mol is preferred. Further, it is preferable to use the nonpolar solvent in an amount of 2 to 15 times (by weight) the amount of the primary amine. The onium compound is 0.1 to 15% by weight based on the primary amine,
Particularly preferred is 1.0 to 10% by weight. If the amount of the onium compound added is too small, the reaction rate will be slow, and both the purity and yield of the target N-substituted maleimide compound will be low. On the other hand, if more than 15% is added, it will only be economically disadvantageous and no advantage will be recognized. Next, the acid catalyst is suitably used in an amount of 0.5 to 20% by weight based on the primary amine, although it depends on the type. When the reaction is carried out under the above conditions, if the reaction mixture is cooled, the target N-substituted maleimide will precipitate as crystals, which should be filtered or centrifuged and then treated with water and/or alkaline water. After washing and drying, the desired product can be obtained. Also, once after the reaction
It is also possible to cool the reaction solution to about 70°C, wash it with water and/or alkaline water, and then cool it to room temperature to separate and dry the precipitated N-substituted maleimide crystals. Furthermore, if a high degree of purification is desired, recrystallization can be performed using a solvent such as isopropyl alcohol. The reaction solution that remains after removing the N-substituted maleimide that has precipitated as crystals can be used as is, or the remaining acid catalyst can be neutralized with an alkali, and in some cases, the formed salt can be washed away with water before being used in the next reaction. Can be used repeatedly. [Example] The present invention will be explained in detail with reference to Examples below. Example 1 47.5 g (0.50 mol) of maleic anhydride, 130 g of xylene, and 88 g of toluene were charged into a four-necked flask equipped with a cooling tube with a water separator, a thermometer, and a stirrer, and the mixture was stirred at a reaction temperature of 40°C. Aniline 44.7g
(0.48 mol) was added dropwise little by little over 1 hour, and the reaction was continued for an additional 30 minutes at the same temperature. To the resulting reaction mixture were added 2.5 g of sulfuric acid and 0.9 g of benzyltrimethylammonium chloride, and the mixture was heated to reflux temperature (125
~130℃) and remove the produced water for about 30 minutes.
Allowed time to react. After the reaction was completed, the mixture was cooled to room temperature, and pale yellow needle-shaped N-phenylmaleimide was precipitated. This was filtered, washed with 10% sodium carbonate water and water, dried, and
-47 g of phenylmaleimide were obtained. This melting point is 88
Purity was 97.5% by GPC analysis at ~90°C.
Further, as a result of analysis of N-phenylmaleimide remaining in the reaction solution, 30 g was found to be 93% yield based on the aniline used when combined with the N-phenylmaleimide obtained as crystals. Next, using the remaining reaction solution, maleic anhydride and aniline were reacted in the same manner as the first reaction, and the reaction solution was repeatedly used. As a result, 78 g of N-phenylmaleimide was obtained by filtering, washing and drying. Yield is based on aniline
The purity was 94% and the purity was 97.5%. When the reaction solution is reused, the amount of N-phenylmaleimide obtained as crystals increases because the amount dissolved in the reaction solution is negligible. Example 2 In a four-necked flask similar to Example 1, 47.5 g of maleic anhydride was dissolved in 88 g of toluene and 130 g of xylene, and 44.7 g of aniline was added dropwise thereto over 1 hour while stirring at 30°C. The mixture was further heated and stirred at the same temperature for 30 minutes to obtain N-phenylmaleamic acid.
9.5 g of p-toluenesulfonic acid monohydrate and 0.8 g of trimethyltetradecylammonium bromide were added to the resulting reaction mixture, and the mixture was heated to reflux temperature (125-130
Heat and stir at a temperature of approximately 2.5 °C) while removing generated water.
Allowed time to react. After the reaction is completed, cool to approximately 70℃,
After washing with a 10% aqueous sodium bicarbonate solution and warm water, the crystals were cooled to room temperature and the resulting crystals were filtered and dried to obtain 50 g of N-phenylemaleimide. This melting point is
As a result of GPC analysis at 88-90°C, the purity was 98.0%. Further, 26 g of N-phenylmaleimide remained in the reaction solution, and when combined with that obtained as crystals, the yield was 92% based on the aniline used. Next, using the remaining reaction solution, maleic anhydride and aniline were reacted in the same manner as in the first reaction, and the reaction solution was used repeatedly. As a result, the crystals were filtered and dried.
77 g of phenylmaleimide was obtained. The yield was 93% based on the aniline used, and the purity was 98%. Example 3 Table 1 shows the yield and purity when the reaction solution was repeatedly used, except that only the type of onium compound and the amount added were changed, and the other conditions were the same as in Example 2. Example 4 Example 2 except that 0.48 mol of various primary amines shown in Table 2 was used instead of aniline in Example 2.
Table 2 shows the results of the same reaction. yield,
Purity is the result when the reaction solution is reused. Comparative Example 1 In Example 1, the reaction was carried out under the same conditions as in Example 1 except that benzyltrimethylammonium chloride was not added. In this case, even after 3 hours of reaction, insoluble crystals remained, which were filtered and washed with water at a temperature of 80 DEG C. to obtain 36.7 g of N-phenylmaleamic acid as a reaction intermediate. The mixture was further cooled to room temperature, and N-phenylmaleimide precipitated was separated by filtration, washed with 10% sodium carbonate water and water, and dried to obtain 19 g of N-phenylmaleimide. Its melting point is 84-87℃, GPC
The analysis results showed a purity of 93.5%. Next, using the remaining reaction solution, the reaction solution was repeatedly reacted with maleic anhydride in the same manner as in the first reaction. As a result, 43 g of N-phenylmaleimide was obtained by filtering, washing, and drying. The yield was 53% based on aniline, and the purity was 93%. Comparative Example 2 Using an onium compound having a predetermined number of carbon atoms or less in place of benzyltrimethylammonium chloride,
Table 3 shows the results of the reaction according to Example 1. The yield and purity are the results when the reaction solution was reused. [Effects of the Invention] According to the method of the present invention, the reaction rate increases, a sufficient reaction rate can be obtained even when using a common and inexpensive non-polar solvent, and there are few side reactions, so high purity N can be obtained.
-Substituted maleimides are obtained in high yields. Furthermore, since the present invention does not use a polar solvent, the desired N-substituted maleimide compound precipitates as crystals simply by cooling after the reaction, and can be easily separated.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【特許請求の範囲】[Claims]

1 マレイミド類を重合禁止剤の存在下、アクリ
ロニトリル溶液の形態で取扱うことを特徴とする
マレイミド類の移送ならびに貯蔵方法。
1. A method for transporting and storing maleimides, which comprises handling maleimides in the form of an acrylonitrile solution in the presence of a polymerization inhibitor.

JP60213154A 1985-09-25 1985-09-25 Production of n-substituted maleimide Granted JPS6272663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213154A JPS6272663A (en) 1985-09-25 1985-09-25 Production of n-substituted maleimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213154A JPS6272663A (en) 1985-09-25 1985-09-25 Production of n-substituted maleimide

Publications (2)

Publication Number Publication Date
JPS6272663A JPS6272663A (en) 1987-04-03
JPH0312056B2 true JPH0312056B2 (en) 1991-02-19

Family

ID=16634457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213154A Granted JPS6272663A (en) 1985-09-25 1985-09-25 Production of n-substituted maleimide

Country Status (1)

Country Link
JP (1) JPS6272663A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138467A (en) * 1985-12-11 1987-06-22 New Japan Chem Co Ltd Production of n-substituted maleimide
DE69228840T2 (en) * 1991-01-16 1999-09-16 Akzo Nobel Nv Process for the preparation of citraconimides
EP0495544B1 (en) 1991-01-16 1999-04-07 Akzo Nobel N.V. Process for the synthesis of citraconimides
JP4694734B2 (en) * 2001-08-21 2011-06-08 三井化学株式会社 Method for producing maleimides

Also Published As

Publication number Publication date
JPS6272663A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
US3966726A (en) Process for the production of cyclic carboxylic acid imides
US3491092A (en) Substituted benzoxazinones and a process for their preparation
US5773630A (en) Process for the preparation of N-substituted cyclic imides
JPH0312056B2 (en)
KR910004790B1 (en) Process for producing n-substituted maleimide
SU906372A3 (en) Method for preparing urea derivatives
CA1050034A (en) Process for the preparation of 2,5-disubstituted benzamides
US7622597B2 (en) Method of preparation of maleimides by thermal cyclization of maleamic acids in the presence of a catalyst
JPH0535141B2 (en)
JP4694734B2 (en) Method for producing maleimides
US4683308A (en) Process for the preparation of 2-arylamino-4,6-dichloro-s-triazines
JPH0339503B2 (en)
US2525621A (en) Process for the preparation of aromatic orthodinitriles
Kraska et al. Synthesis of amides of 3-hydroxy-2-naphthoic acid: derivatives of benzimidazolone and benzoxazolone
DK169621B1 (en) Propionamidine derivatives and process for their preparation
US4088657A (en) Process for manufacturing N-acyl derivatives of glycines α-substituted by radicals of aromatic nature and novel products thereof
JPS60100554A (en) Preparation of n-phenylmaleimide compound
US3074943A (en) Substituted tkiazines and process
JPH0774195B2 (en) Process for producing N-substituted-α, β-unsaturated dicarboxylic acid cyclic imide
US5994557A (en) Method of acylating amines using N,N'-diacylimidazolone derivatives
JPH01283264A (en) Production of n-substituted maleimides
JP3085610B2 (en) Method for producing bismaleimides
US5684163A (en) Process for the preparation of N-(ortho-alkylphenyl)-imides
SU1121261A1 (en) Process for preparing heterylthiocarboxylic acid arylamides
JPH01216969A (en) Purification of n-substituted maleimides