JPH03120466A - Immunoassay device - Google Patents

Immunoassay device

Info

Publication number
JPH03120466A
JPH03120466A JP25853689A JP25853689A JPH03120466A JP H03120466 A JPH03120466 A JP H03120466A JP 25853689 A JP25853689 A JP 25853689A JP 25853689 A JP25853689 A JP 25853689A JP H03120466 A JPH03120466 A JP H03120466A
Authority
JP
Japan
Prior art keywords
antigen
fluorescence
antibody
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25853689A
Other languages
Japanese (ja)
Other versions
JP2525678B2 (en
Inventor
Osamu Iwasaki
修 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1258536A priority Critical patent/JP2525678B2/en
Priority to US07/591,181 priority patent/US5032730A/en
Publication of JPH03120466A publication Critical patent/JPH03120466A/en
Application granted granted Critical
Publication of JP2525678B2 publication Critical patent/JP2525678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the influence of 4-methyl unbellifer phosphate (MUP) and to improve measurement accuracy by irradiating a base with excitation light of a specific central wavelength. CONSTITUTION:A substrate and a fluorescent material are respectively the 4-methyl umbellifer phosphate (MUP) and 4-methyl umbelliferone (MU) and the base is irradiated with the excitation light having 370 to 375nm central wavelength and <=5nm DELTAlambda(1/10) when the wavelength band to have 1/10 intensity with respect to the central intensity of spectra is designated as DELTAlambda(1/10). The fluorescence emitted from the base is then photodetected via a filter having 460+ or -5nm central transmission wavelength and <=10nm DELTAlambda(1/10), by which the quantity of the prescribed antigens or antibodies in a liquid to be measured is measured. The measurement is made with the high accuracy in this way with substantially no influence of the fluorescence of the 4MUP or further the influence of Raman scattered light.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗原抗体反応を利用して、例えば自戒等の被
測定液中の所定の抗原あるいは抗体の量を測定する免疫
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an immunoassay device that uses antigen-antibody reactions to measure the amount of a predetermined antigen or antibody in a liquid to be measured, such as self-adjudication. It is.

(従来の技術) 抗原抗体反応を定量化した種々の免疫測定法が現在迄に
考えられ、実用化されている。この種々の免疫測定法を
大別すると二種類に分類される。
(Prior Art) Various immunoassay methods for quantifying antigen-antibody reactions have been considered and put into practical use. These various immunoassay methods can be roughly classified into two types.

その一つは免疫拡散法と呼ばれ、抗原抗体反応の結果生
じた不溶性の複合体がゲル内で沈降し、その量を測定す
るものであり、代表的なものとしてレーザの散乱を利用
したレーザ濁度測定法(LASERNEPHELOME
TRY)と呼ばれる方法がある。他の一つは、標識免疫
測定法と呼ばれ、抗原あるいは抗体の一方を何らかで識
別することにより、上記免疫拡散法の感度限界を越えた
より高い感度の測定を可能とするものである。標識とし
ては、放射性同位原素、バクテリオファージ、酵素、蛍
光物質。
One of these is called the immunodiffusion method, in which insoluble complexes generated as a result of antigen-antibody reactions are precipitated within a gel, and the amount of this precipitated is measured. Turbidity measurement method (LASERNEPHELOME)
There is a method called TRY. The other method is called a labeled immunoassay, and by identifying either the antigen or the antibody in some way, it is possible to perform measurements with higher sensitivity than the sensitivity limit of the immunodiffusion method described above. Labels include radioisotopes, bacteriophages, enzymes, and fluorescent substances.

金属等がある。There are metals, etc.

上記種々の測定法のうち、標識として酵素を用いた標識
免疫測定法の一つとして、所定の抗原(抗体)と反応す
る抗体(抗原)が固定化された支持体を用い、該支持体
上に上記所定の抗原(抗体)が含まれていることが期待
される被測定液を点着して抗原抗体反応を生じさせ、さ
らに標識の付された前記所定の抗原(抗体)を点着し、
さらにその後上記標識の触媒作用により蛍光物質に変化
する基質を含有する洗浄液を上記支持体上に流して上記
抗体(抗原)と反応していない標識の付された所定の抗
原(抗体)を流し出すとともに上記抗体(抗原)と反応
している標識の付された所定の抗原(抗体)により上記
蛍光物質を生成させ、該蛍光物質の量を測定し、これに
より上記被測定液中の上記所定の抗原(抗体)の有無や
その量の測定を行なう逐次反応法が考えられている。
Among the various measurement methods mentioned above, one of the labeled immunoassay methods using an enzyme as a label uses a support on which an antibody (antigen) that reacts with a predetermined antigen (antibody) is immobilized, and A liquid to be measured that is expected to contain the above-mentioned predetermined antigen (antibody) is spotted on the sample to cause an antigen-antibody reaction, and further a labeled predetermined antigen (antibody) is spotted on the sample. ,
Furthermore, a washing solution containing a substrate that is converted into a fluorescent substance by the catalytic action of the label is then flowed over the support to flush out the labeled antigen (antibody) that has not reacted with the antibody (antigen). The above-mentioned fluorescent substance is generated by the labeled predetermined antigen (antibody) reacting with the above-mentioned antibody (antigen), and the amount of the fluorescent substance is measured. A sequential reaction method is being considered that measures the presence or absence of antigen (antibody) and its amount.

また、支持体上に固定された抗体と被測定液中の抗原と
が反応し、さらに抗原と反応する標識抗体を点着し、抗
原と標識抗体とを反応させた後洗浄液により反応してい
ない標識抗体を流し出すサンドイツチ法や被測定液に標
識抗原あるいは標識抗体を加え、同時に支持体上に点着
する競合法などが知られている。
In addition, the antibody immobilized on the support reacts with the antigen in the liquid to be measured, and then a labeled antibody that reacts with the antigen is spotted, and after the antigen and labeled antibody are reacted, a washing solution is used to remove the reaction. Known methods include the sandwich method in which labeled antibodies are flushed out, and the competitive method in which a labeled antigen or labeled antibody is added to a liquid to be measured and spotted on a support at the same time.

そして上記基質、蛍光物質として最適なものの一つとし
て、それぞれ4メチルウンベリフェル燐酸(以下、r4
MUPJと称する。)および4メチルウンベリフェロン
(以下、r4MUJと称する。)の存在が知られている
As one of the most suitable substrates and fluorescent substances, 4-methylumbellifer phosphoric acid (hereinafter referred to as r4
It is called MUPJ. ) and 4-methylumbelliferone (hereinafter referred to as r4MUJ) are known to exist.

上記方法は、支持体を用いることにより従来の湿式法と
比べ取扱いが格段に容易となり、多数の被測定液につい
て順次自動的に測定を行なう装置を構成することが可能
となるという長所を有する。
The above method has the advantage that it is much easier to handle than the conventional wet method due to the use of a support, and that it is possible to construct an apparatus that automatically sequentially measures a large number of liquids to be measured.

上記原理を用いた免疫測定装置において、生成された上
記蛍光物質の量をお」定するには、所定の波長領域の励
起光を該蛍光物質が生成された支持体に照射して該蛍光
物質を励起し、該蛍光物質から発せられる蛍光の光量を
光電的に測定することにより行なわれる。
In an immunoassay device using the above principle, in order to determine the amount of the fluorescent substance produced, excitation light in a predetermined wavelength range is irradiated onto the support on which the fluorescent substance has been produced. This is done by exciting the fluorescent substance and photoelectrically measuring the amount of fluorescence emitted from the fluorescent substance.

(発明が解決しようとする課yIrJ)上記のようにし
て蛍光の光量を測定するにあたり、4MUを励起するた
めの励起光として水銀ランプから発せられる波長λ−3
85nmの輝線を用い、これにより4MUから発せられ
る蛍光のうち中心透過波長λ−450nIlの干渉フィ
ルタ等を介して測定することが考えられている(CLI
NICAL CHEMISTRY、Vol、34.に9
.1988:172B−1732参照)。
(Issues to be Solved by the Invention) In measuring the amount of fluorescence light as described above, the wavelength λ-3 is emitted from a mercury lamp as excitation light for exciting 4MU.
It is considered to use an emission line of 85 nm to measure the fluorescence emitted from 4MU through an interference filter with a center transmission wavelength of λ-450nIl (CLI).
NICAL CHEMISTRY, Vol, 34. 9
.. 1988:172B-1732).

しかしながら、支持体上には4MUのほか4MUPも同
時に存在し、4MUP自身も蛍光性を有し、上記励起光
λ−m385na 、受光用フィルタλ−450nsの
組み合わせでは、本来測定したい4MUの蛍光と、測定
誤差となる4MUPの蛍光を十分に分離することができ
ないという問題点がある。
However, in addition to 4MU, 4MUP also exists on the support, and 4MUP itself has fluorescence, so with the combination of the excitation light λ-m385na and the light reception filter λ-450ns, the fluorescence of 4MU that is originally desired to be measured, There is a problem in that it is not possible to sufficiently separate the fluorescence of 4MUPs, which causes measurement errors.

本発明は、上記事情に鑑み、4MUPの影響を極力減少
させ測定精度を向上させた免疫測定装置を提供すること
を目的とするものである。
In view of the above circumstances, it is an object of the present invention to provide an immunoassay device that reduces the influence of 4MUP as much as possible and improves measurement accuracy.

(課題を解決するための手段) 本発明の免疫測定装置は、 標識が付与された抗原あるいは抗体に、前記標識の作用
で蛍光物質となる基質を含有する洗浄液を付与し、前記
抗体あるいは抗原に蛍光物質を生成させ、該蛍光物質に
励起光を照射して該蛍光物質が発する蛍光の量を測定す
ることで、支持体上に担持された被測定液中の所定の抗
原あるいは抗体の量を測定する免疫測定装置において、
前記基質および前記蛍光物質がそれぞれ4メチルウンベ
リフェル燐酸および4メチルウンベリフェロンであって
、 スペクトルの中心強度に対してl/10の強度となる波
長帯域をΔλ(1/10)としたとき、前記支持体に中
心波長が370〜375niであってΔλ(1710)
が5nm以下である励起光を照射し、前記支持体から発
せられた蛍光を中心透過波長が460±5na+であっ
てΔλ(1/10)が10nm以下であるフィルタを介
して受光することにより前記被測定液中の前記所定の抗
原あるいは抗体の量を測定するように構成されているこ
とを特徴とするものである。
(Means for Solving the Problems) The immunoassay device of the present invention applies a washing liquid containing a substrate that becomes a fluorescent substance by the action of the label to an antigen or antibody to which a label has been attached, and By generating a fluorescent substance, irradiating the fluorescent substance with excitation light, and measuring the amount of fluorescence emitted by the fluorescent substance, the amount of a given antigen or antibody in the liquid to be measured supported on the support can be determined. In the immunoassay device that measures
When the substrate and the fluorescent substance are 4-methylumbellifer phosphate and 4-methylumbelliferone, respectively, and the wavelength band in which the intensity is 1/10 with respect to the center intensity of the spectrum is Δλ (1/10), The support has a center wavelength of 370 to 375ni and Δλ(1710)
is 5 nm or less, and the fluorescence emitted from the support is received through a filter whose central transmission wavelength is 460±5 na+ and Δλ (1/10) is 10 nm or less. It is characterized in that it is configured to measure the amount of the predetermined antigen or antibody in the liquid to be measured.

(作  用) 本発明の免疫測定装置は、前記支持体に、中心波長37
0〜375nm 、Δλ(1/10)≦5nmの励起光
を照射し、前記支持体から発せられた蛍光のうち中心透
過波長460±5 nap、Δλ(1/10)≦10n
mのフィルタを介して受光するようにしたため、4MU
Pの蛍光の影響を押え精度の、よいn1定を行なうこと
ができる。
(Function) The immunoassay device of the present invention has a center wavelength of 37 cm on the support.
0 to 375 nm, Δλ (1/10) ≦ 5 nm excitation light, and the center transmission wavelength of the fluorescence emitted from the support was 460 ± 5 nap, Δλ (1/10) ≦ 10 nm.
Since the light is received through a filter of 4MU,
It is possible to perform n1 determination with good accuracy while suppressing the influence of P fluorescence.

(実 施 例) 以下本発明の実施例について、図面を参照して説明する
(Example) Examples of the present invention will be described below with reference to the drawings.

第2図は、本発明の免疫測定の原理を説明するための説
明図である。
FIG. 2 is an explanatory diagram for explaining the principle of immunoassay of the present invention.

第2図(a)は、支持体の一例であるスライド1上に抗
体2が固定化されており、該スライド1上に抗原3を含
有する血液が点心される様子を模式的に表わした図であ
る。血液中の′抗原3の量に応じて、第2図(b)に示
すように、抗原抗体反応の生じた抗体2aと反応の生じ
ていない抗体2bとが生じ、血液中の抗原3の量が多い
ほど反応の生じた抗体2aが増え、反応の生じていない
抗体2bが減る。
FIG. 2(a) is a diagram schematically showing how antibody 2 is immobilized on slide 1, which is an example of a support, and blood containing antigen 3 is poured onto slide 1. It is. Depending on the amount of antigen 3 in the blood, as shown in FIG. 2(b), antibody 2a with which an antigen-antibody reaction has occurred and antibody 2b with which no reaction has occurred are generated, and the amount of antigen 3 in the blood increases. As the number increases, the number of antibodies 2a with which a reaction has occurred increases, and the number of antibodies 2b with which a reaction has not occurred decreases.

次に、第2図(C)に示すように標識4aの付された抗
原4がスライド1上に点着されると1.第2図(d)に
示すようにその抗原4の一部は血液中の抗原3によって
まだ抗原抗体反応の生じていない抗体2と反応し、残り
は反応しない状態で残る。
Next, as shown in FIG. 2(C), when the antigen 4 with the label 4a is spotted on the slide 1, 1. As shown in FIG. 2(d), a part of the antigen 4 reacts with the antibody 2 which has not yet undergone an antigen-antibody reaction due to the antigen 3 in the blood, and the rest remains unreacted.

その後、4MUPSを含有する洗浄液(水溶液)を例え
ば30秒間に渡って一完全スライド上に流すと、先ず第
2図(e)に示すように反応の生じていない抗原4aが
流し出され、その後標識4aの触媒作用により4MUP
5が4MU6に変化する。洗浄液を30秒間スライド上
に流した後、例えば10秒毎に5分間該スライドに励起
光を照射し4MU6から発せられる蛍光の光量を測定す
ることにより生成された4MU6の時間変化量が求めら
れ、これにより上記血液中の抗原3の量が求められる。
Thereafter, when a washing solution (aqueous solution) containing 4MUPS is flowed over a complete slide for, for example, 30 seconds, first the unreacted antigen 4a is washed out, and then the labeled antigen 4a is washed out, as shown in FIG. 2(e). 4MUP due to the catalytic action of 4a
5 changes to 4MU6. After flowing the cleaning solution onto the slide for 30 seconds, the slide is irradiated with excitation light for 5 minutes every 10 seconds, and the amount of change in 4MU6 generated over time is determined by measuring the amount of fluorescence emitted from 4MU6, This determines the amount of antigen 3 in the blood.

第3図は、4MUPと4MUの励起スペクトルおよび蛍
光スペクトルを示した図である。
FIG. 3 is a diagram showing the excitation spectrum and fluorescence spectrum of 4MUP and 4MU.

図のグラフ41.グラフ42は、4MUのそれぞれ励起
スペクトル、蛍光スペクトルを表わしている。
Graph 41 in the figure. Graph 42 represents the excitation spectrum and fluorescence spectrum of 4MU, respectively.

またグラフ51.グラフ52は、4MUPのそれぞれ励
起スペクトル、蛍光スペクトルを表わしている。
Also, graph 51. Graph 52 represents the excitation spectrum and fluorescence spectrum of 4MUPs, respectively.

この図に示すように4MUPも蛍光性を有し、4MUの
蛍光を測定する際に4MUPの蛍光も同時に測定してし
まうことも考えられ、その場合4MUPの蛍光の混入分
だけ測定誤差となる。
As shown in this figure, 4MUP also has fluorescence, and when measuring the fluorescence of 4MUP, it is possible that the fluorescence of 4MUP is also measured at the same time, in which case a measurement error will be caused by the amount of contamination of the fluorescence of 4MUP.

以下に示す表11表2は、実験的に求めた、4MUと4
MUPを分離して各励起波長により独立に励起させたと
きの蛍光の光量(相対値)を示した表であり、表11表
2は励起波長の幅をそれぞれ5 nm、  3 nmと
したときのものである。
Table 11 and Table 2 shown below show the experimentally determined 4MU and 4
This is a table showing the amount of fluorescence (relative value) when MUP is separated and excited independently with each excitation wavelength. It is something.

表   1 但し、励起波長幅を5nmとしたとき 表 2 上記表11表2に見られるように、A/B、即ち4MU
Pの蛍光光量に対する4MUの蛍光光量の比が最大とな
るのは励起波長幅が5 nap、 3 nmのいずれの
場合も励起光の中心波長が370naのときである。
Table 1 However, when the excitation wavelength width is 5 nm, Table 2 As seen in Table 11 above, A/B, that is, 4MU
The ratio of the amount of fluorescence light of 4MU to the amount of fluorescence light of P becomes maximum when the center wavelength of the excitation light is 370 na in both cases where the excitation wavelength width is 5 nap and 3 nm.

また受光側でも4MUの影響を減少させることが考えら
れる。第3図グラフ52に見られるように4MUPの蛍
光スペクトルは約470na+まで延びている。したが
って波長が470noより長波長側にある光を受光する
ことが考えられるが長波長側にいくと4MUの蛍光スペ
クトルの強度(縦軸の高さ)も減少し、受光光量が減少
することによるS/N比の低下が考えられるため460
na程度で測定するのが最適である。
It is also possible to reduce the influence of 4MU on the light receiving side. As seen in graph 52 of FIG. 3, the fluorescence spectrum of 4MUP extends to about 470 na+. Therefore, it is possible that light with a wavelength longer than 470no is received, but as the wavelength goes to the longer wavelength side, the intensity of the fluorescence spectrum of 4MU (height on the vertical axis) also decreases, and the amount of received light decreases. 460 due to a possible decrease in /N ratio.
It is best to measure at around na.

第1図は、本発明の免疫測定装置の一実施例の1、主に
蛍光光量をΔか1定する蛍光光量測定部の構成を表わし
た図である。
FIG. 1 is a diagram showing the configuration of a fluorescence light amount measurement section that mainly determines the fluorescence light amount by Δ or 1 in an embodiment of the immunoassay apparatus of the present invention.

スライド1が蛍光光量測定部20の上部に載置され、イ
ンキユベータ40に内蔵されたヒータ41により、一定
温度(例えば37.5℃)に保持される。
The slide 1 is placed on the upper part of the fluorescence light amount measuring section 20 and is maintained at a constant temperature (for example, 37.5° C.) by a heater 41 built into the incubator 40 .

その状態で点着手段10のシリンジ11により容器12
に収容された血液13がパルプ14を経由して取り出さ
れ、バルブ15.ノズル10を経由してスライド1上に
所定量点着される(第2図(a) 、 (b)参照)。
In this state, the syringe 11 of the spotting means 10 is used to
The blood 13 contained in the valve 15 is taken out via the pulp 14. A predetermined amount is deposited on the slide 1 via the nozzle 10 (see FIGS. 2(a) and 2(b)).

次に図示しない同様の点着手段により酵素標識抗原を含
有する液が上記血液と同様にして点着される(第2図(
e) 、 (d)参照)。さらにその後、図示しない同
様の点着手段により、蛍光基質として4メチルウンベリ
フェル燐酸(4MUP)を含有する洗浄液が一定量ずつ
30秒間に渡ってスライド1上に流し出される(第2図
(e)参照)。30秒後に洗浄液を停止し、その後10
秒間隔で5分間に渡って上記酵素標識によって4MUP
が変化した4メチルウンベリフェロン(4MU)の量が
測定される。
Next, a solution containing an enzyme-labeled antigen is spotted using a similar spotting means (not shown) in the same manner as the blood (see Figure 2).
e), see (d)). Furthermore, after that, a fixed amount of a washing solution containing 4-methylumbellifer phosphate (4MUP) as a fluorescent substrate is poured onto the slide 1 for 30 seconds by a similar spotting means (not shown) (Fig. 2(e)). reference). Stop the cleaning solution after 30 seconds, then 10 seconds.
4MUP with the above enzyme label for 5 minutes at second intervals.
The amount of 4-methylumbelliferone (4MU) that has changed is measured.

蛍光光量測定部20は楕円ミラー21aを備えたランプ
21を光源として用いている。このランプ21としては
例えば連続スペクトルを有する光を発するXeランプ等
が用いられる。該ランプ21から発せられた光22はス
リット23.レンズ24.干渉フィルタ25.平行平面
基板26.レンズ27を経由して、下方からスライド1
を照射する。干渉フィルタ25は、第3図の曲線61(
第3図の縦軸は相対値を表わす)に示すように、ランプ
21から発せられた光22のうち中心波長λが370〜
375naで、かつ、スペクトルの中心強度に対し11
10の強度となる波長帯域Δλ(1/10)が5na以
下となる光のみを通過させるもので、スライド1上の4
MUはこの励起光により励起される。
The fluorescence light amount measuring section 20 uses a lamp 21 equipped with an elliptical mirror 21a as a light source. As this lamp 21, for example, a Xe lamp or the like that emits light having a continuous spectrum is used. The light 22 emitted from the lamp 21 passes through the slit 23. Lens 24. Interference filter 25. Parallel plane substrate 26. Slide 1 from below via lens 27
irradiate. The interference filter 25 has a curve 61 (
(The vertical axis in FIG. 3 represents relative values), the center wavelength λ of the light 22 emitted from the lamp 21 is 370~
375 na and 11 to the center intensity of the spectrum.
It allows only the light whose wavelength band Δλ (1/10), which has an intensity of 10, is 5na or less to pass through.
The MU is excited by this excitation light.

平行平面基板2Bで反射された光はレンズ28を経由し
て第一の受光器29によって受光され励起光の光量がモ
ニタされる。このモニタされた信号S1は光源電源部3
0に入力されランプ20から常に一定の光量が発せられ
るようにその印加電圧が制御される。また信号S1は、
信号処理部31にも入力される。
The light reflected by the parallel plane substrate 2B is received by the first light receiver 29 via the lens 28, and the amount of excitation light is monitored. This monitored signal S1 is transmitted to the light source power supply unit 3.
0 and the applied voltage is controlled so that the lamp 20 always emits a constant amount of light. Moreover, the signal S1 is
It is also input to the signal processing section 31.

スライド1がλ−370n園の励起光で照射されると、
4MUから蛍光が発せられる。この蛍光はレンズ32.
干渉フィルタ33.レンズ34を経由し第二の受光器3
5により光電的に検出される。この干渉フィルタ33は
、第1図に示す曲線B2に示す透過波長帯域を備えてお
り、λ−460n*を中心とした狭い波長帯域(Δλ(
1710)≦10no+)の光を透過させるものである
When slide 1 is illuminated with λ-370n excitation light,
Fluorescence is emitted from 4MU. This fluorescence is caused by lens 32.
Interference filter 33. The second light receiver 3 via the lens 34
5 is photoelectrically detected. This interference filter 33 has a transmission wavelength band shown by curve B2 shown in FIG. 1, and has a narrow wavelength band (Δλ(
1710)≦10no+) is transmitted.

第二の受光器35で検出された蛍光の光量を表わす信号
S2は、信号処理部31に入力される。信号処理部31
には前述したように第一の受光器29で得られた信号S
1も入力され、信号S2が信号S1で規格化される。こ
のような測定、演算が10秒毎に5分間に渡って行われ
、4MUが生成される速度を表わすグラフが求められる
。5分間の測定が終了した後、得られたグラフに基づい
て血液13中の抗原の量が求められる。求められた抗原
の量を表わす値は、デイスプレィ36に表示される。
A signal S2 representing the amount of fluorescence detected by the second light receiver 35 is input to the signal processing section 31. Signal processing section 31
As mentioned above, the signal S obtained by the first photoreceiver 29 is
1 is also input, and the signal S2 is normalized with the signal S1. Such measurements and calculations are performed every 10 seconds for 5 minutes, and a graph representing the rate at which 4 MUs are generated is obtained. After the 5-minute measurement is completed, the amount of antigen in the blood 13 is determined based on the obtained graph. The value representing the amount of antigen determined is displayed on the display 36.

ここで上記実施例においては、第3図の曲線61で表わ
される中心透過波長λ−370nsの干渉フィルタを通
過した光をスライド1に照射し、該スライド1から発せ
られた蛍光を、第3図の曲線62で表わされる中心透過
波長λ−48On−の干渉フィルタを介して測定してい
るため、4MUPの蛍光がほとんど無視し得る程度に取
り除かれ、4MUの蛍光の光量を精度よく測定すること
ができる。
In the above embodiment, the slide 1 is irradiated with light that has passed through an interference filter with a center transmission wavelength λ-370 ns represented by the curve 61 in FIG. 3, and the fluorescence emitted from the slide 1 is Since the measurement is performed through an interference filter with a center transmission wavelength λ-48On- represented by the curve 62, the fluorescence of 4MUP is removed to an almost negligible extent, making it possible to accurately measure the amount of fluorescence of 4MU. can.

第4図は水のラマン散乱光スペクトルを表わした図であ
る。各グラフの上部に記載された数値は水に照射する光
の波長を表わし、各グラフはその波長の光を照射した際
に水から発せられるラマン散乱光のスペクトルを表わし
ている。
FIG. 4 is a diagram showing the Raman scattered light spectrum of water. The numerical value written at the top of each graph represents the wavelength of light irradiated onto water, and each graph represents the spectrum of Raman scattered light emitted from water when irradiated with light of that wavelength.

ラマン散乱とは、単色光を物質(ここでは洗浄液(水)
)に照射したときその散乱光の中に入射光と少し波長の
異なる散乱光が混入する現象をいう。
Raman scattering is the process of converting monochromatic light into a substance (here, cleaning liquid (water)).
) is a phenomenon in which scattered light with a slightly different wavelength from the incident light is mixed into the scattered light.

スライド1に中心波長370nmの励起光を照射した際
に洗浄液(水)によって生じるラマン散乱光のスペクト
ルは第4図のグラフ71で示されるが、干渉フィルタ3
3(第1図参照)の透過波長は第3図の曲線62で表わ
されるように480na+を中心としたものであり、し
たがってこの干渉フィルタ33によりラマン散乱光も遮
られ、ラマン散乱光が測定結果に影響を及ぼすこともな
い。
The spectrum of Raman scattered light generated by the cleaning solution (water) when slide 1 is irradiated with excitation light with a center wavelength of 370 nm is shown in graph 71 in FIG.
3 (see FIG. 1) is centered around 480 na+ as shown by the curve 62 in FIG. It has no effect on the

尚、上記実施例では励起光の中心波長はλ−370ns
であり、蛍光の受光の中心波長はλ−480nmである
In the above example, the center wavelength of the excitation light is λ-370ns.
The center wavelength of fluorescence reception is λ-480 nm.

また、連続スペクトル光源と干渉フィルタとを用いた場
合の干渉フィルタの透過スペクトル幅は、その中心波長
が水銀ランプの輝線スペクトルの中心波長λ−385n
mによって制限される。この場合干渉フィルタの透過ス
ペクトルの中心波長がλ−370nmの場合について考
えれば良い。即ち干渉フィルタの透過スペクトルと水銀
ランプの輝線スペクトルとの重なりが無ければ、水銀ラ
ンプの輝線スペクトルを励起に用いた場合よりも4MU
Pの影響を少なくできる。水銀ランプの輝線スペクトル
幅は、Δλ(1/10)−2〜3nmであり、これとの
重なりを無くするためには、干渉フィルタの透過スペク
トル幅はΔλ(1/10)≦5na+であれば十分であ
る。
Furthermore, when a continuous spectrum light source and an interference filter are used, the transmission spectrum width of the interference filter has a center wavelength of λ-385n, which is the center wavelength of the bright line spectrum of the mercury lamp.
limited by m. In this case, consider the case where the center wavelength of the transmission spectrum of the interference filter is λ-370 nm. In other words, if there is no overlap between the transmission spectrum of the interference filter and the emission line spectrum of the mercury lamp, 4MU is lower than when the emission line spectrum of the mercury lamp is used for excitation.
The influence of P can be reduced. The emission line spectrum width of a mercury lamp is Δλ(1/10)−2 to 3 nm, and in order to eliminate overlap with this, the transmission spectrum width of the interference filter must be Δλ(1/10)≦5na+. It is enough.

さらに蛍光受光側の干渉フィルタの透過スペクトル幅は
洗浄液のラマンスペクトルによって制限される。この場
合には、励起光の中心波長がλ−375naの場合につ
いて考えれば良い。第4図によれば励起光の中心波長が
375nmである場合ラマンスペクトルは、445n自
付近まで裾野がある。したがって蛍光受光の中心波長が
最も短いλ−445niであった場合蛍光受光用の干渉
フィルタの透過スペクトル幅はΔλ(1/10)≦10
nmであれば十分である。
Furthermore, the transmission spectrum width of the interference filter on the fluorescence receiving side is limited by the Raman spectrum of the cleaning liquid. In this case, consider the case where the center wavelength of the excitation light is λ-375na. According to FIG. 4, when the center wavelength of the excitation light is 375 nm, the Raman spectrum has a tail up to around 445 nm. Therefore, if the center wavelength of fluorescence reception is the shortest λ-445ni, the transmission spectrum width of the interference filter for fluorescence reception is Δλ (1/10)≦10
nm is sufficient.

また、上記実施例は、逐次反応法を用いての説明であっ
たが、本発明はサンドイツチ法や競合法などにも適用可
能である。
Furthermore, although the above embodiments were explained using a sequential reaction method, the present invention is also applicable to the Sand-Deutsch method, competitive method, and the like.

(発明の効果) 以上詳細に説明したように、本発明の免疫測定装置は、
支持体に中心波長370〜375nm 、Δλ(1/1
0)≦5naの励起光を照射し、該支持体から発せられ
た蛍光のうち中心透過波長460±5 nap。
(Effects of the Invention) As explained in detail above, the immunoassay device of the present invention has the following features:
The support has a center wavelength of 370 to 375 nm, Δλ (1/1
0) Excitation light of ≦5na was irradiated, and the center transmission wavelength of the fluorescence emitted from the support was 460±5nap.

Δλ(1/1G)≦1Ona+のフィルタを介して受光
するようにしたため、4MUPの蛍光の影響さらにはラ
マン散乱光の影響がほとんどない高精度の測定を行なう
ことができる。
Since the light is received through a filter with Δλ(1/1G)≦1Ona+, it is possible to perform highly accurate measurement with almost no influence of fluorescence from 4MUPs and almost no influence of Raman scattered light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の免疫測定装置の一実施例の、主に蛍
光光量を測定する蛍光光量測定部の構成を表わした図、 第2図は、本発明の免疫測定装置の測定原理を説明する
ための説明図、 第3図は、4MUPと4MUの励起スペクトルおよび蛍
光スペクトルを示した図、 第4図は水のラマン散乱光スペクトルを表わした図であ
る。 1・・・スライド     2・・・抗体3・・・抗原
       4・・・標識抗原5・・・4MUP (
4メチルウンベリフェル燐酸)6・・・4MU (4メ
チルウンベリフェロン)10・・・点若手段     
13・・・血液20・・・蛍光光量測定部  21・・
・低圧水銀ランプ25、33・・・干渉フィルタ 29
・・・第一の受光器35・・・第二の受光器   30
・・・光源電源部31・・・信号処理部    3B・
・・デイスプレィ40・・・インキュベータ (d) (e) (f) 6゜ 補正の対象 平成01 年 1 月 2 日 明細書の「発明の詳細な説明」の欄 特 許 庁 長 官 古 田 文 毅 殿 7゜ 補正の内容 日 (1) 明細書第17頁第13行 「λ−445nm Jを「λ−455nm Jと訂正す
る。 2゜ 発明の名称 免疫測定siは 3゜ 補正をする者 事件との関係
FIG. 1 is a diagram showing the configuration of a fluorescence light amount measuring section that mainly measures the fluorescence light amount in an embodiment of the immunoassay device of the present invention. FIG. 2 is a diagram showing the measurement principle of the immunoassay device of the present invention. Figure 3 is a diagram showing the excitation spectrum and fluorescence spectrum of 4MUP and 4MU, and Figure 4 is a diagram showing the Raman scattered light spectrum of water. 1... Slide 2... Antibody 3... Antigen 4... Labeled antigen 5... 4MUP (
4 methyl umbellifer phosphate) 6...4 MU (4 methyl umbelliferone) 10...
13...Blood 20...Fluorescence light amount measuring section 21...
・Low pressure mercury lamp 25, 33...Interference filter 29
...First light receiver 35...Second light receiver 30
...Light source power supply section 31...Signal processing section 3B.
...Display 40...Incubator (d) (e) (f) 6゜ Subject of amendment January 2, 1999 "Detailed description of the invention" column of the specification Mr. Bunki Furuta, Commissioner of the Japan Patent Office 7゜Date of amendment (1) Page 17, line 13 of the specification, "λ-445nm J" is corrected to "λ-455nm J." 2゜Name of the invention Immunoassay si is 3゜Relationship with the case of the person making the amendment

Claims (1)

【特許請求の範囲】 標識が付与された抗原あるいは抗体に、前記標識の作用
で蛍光物質となる基質を含有する洗浄液を付与し、前記
抗体あるいは抗原に蛍光物質を生成させ、該蛍光物質に
励起光を照射して該蛍光物質が発する蛍光の量を測定す
ることで、支持体上に担持された被測定液中の所定の抗
原あるいは抗体の量を測定する免疫測定装置において、 前記基質および前記蛍光物質がそれぞれ4メチルウンベ
リフェル燐酸および4メチルウンベリフェロンであって
、 スペクトルの中心強度に対して1/10の強度となる波
長帯域をΔλ(1/10)としたとき、前記支持体に中
心波長が370〜375nmであってΔλ(1/10)
が5nm以下である励起光を照射し、前記支持体から発
せられた蛍光を中心透過波長が460±5nmであって
Δλ(1/10)が10nm以下であるフィルタを介し
て受光することにより前記被測定液中の前記所定の抗原
あるいは抗体の量を測定するように構成されていること
を特徴とする免疫測定装置。
[Scope of Claims] A cleaning solution containing a substrate that becomes a fluorescent substance by the action of the label is applied to an antigen or antibody to which a label has been attached, so that the antibody or antigen generates a fluorescent substance, and the fluorescent substance is excited. In an immunoassay device that measures the amount of a predetermined antigen or antibody in a test liquid supported on a support by irradiating light and measuring the amount of fluorescence emitted by the fluorescent substance, the substrate and the The fluorescent substances are 4-methylumbellifer phosphate and 4-methylumbelliferone, respectively, and when the wavelength band in which the intensity is 1/10 of the center intensity of the spectrum is Δλ (1/10), The center wavelength is 370 to 375 nm and Δλ (1/10)
is 5 nm or less, and the fluorescence emitted from the support is received through a filter whose central transmission wavelength is 460±5 nm and Δλ (1/10) is 10 nm or less. An immunoassay device characterized in that it is configured to measure the amount of the predetermined antigen or antibody in the liquid to be measured.
JP1258536A 1989-10-02 1989-10-03 Immunoassay device Expired - Fee Related JP2525678B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1258536A JP2525678B2 (en) 1989-10-03 1989-10-03 Immunoassay device
US07/591,181 US5032730A (en) 1989-10-02 1990-10-01 Immunoassay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258536A JP2525678B2 (en) 1989-10-03 1989-10-03 Immunoassay device

Publications (2)

Publication Number Publication Date
JPH03120466A true JPH03120466A (en) 1991-05-22
JP2525678B2 JP2525678B2 (en) 1996-08-21

Family

ID=17321587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258536A Expired - Fee Related JP2525678B2 (en) 1989-10-02 1989-10-03 Immunoassay device

Country Status (1)

Country Link
JP (1) JP2525678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153385A (en) * 2005-12-05 2007-06-21 Showa Denko Packaging Co Ltd Content sticking preventive lid material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951353A (en) * 1975-04-28 1984-03-24 マイルス・ラボラトリ−ズ・インコ−ポレ−テツド Unhomogeneous system immunity analysis method and reagent for analyzing hapten or antigen in liquid
JPS59160743A (en) * 1982-09-03 1984-09-11 アンリイ・ド・フランス Observing and quantitative device for phenomenon which can be detected by fluorescence
JPH029396A (en) * 1988-06-29 1990-01-12 Hitachi Ltd Fluorescent measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951353A (en) * 1975-04-28 1984-03-24 マイルス・ラボラトリ−ズ・インコ−ポレ−テツド Unhomogeneous system immunity analysis method and reagent for analyzing hapten or antigen in liquid
JPS59160743A (en) * 1982-09-03 1984-09-11 アンリイ・ド・フランス Observing and quantitative device for phenomenon which can be detected by fluorescence
JPH029396A (en) * 1988-06-29 1990-01-12 Hitachi Ltd Fluorescent measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153385A (en) * 2005-12-05 2007-06-21 Showa Denko Packaging Co Ltd Content sticking preventive lid material

Also Published As

Publication number Publication date
JP2525678B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
FI76432B (en) FARING REQUIREMENTS FOR THE CONSTITUTION OF THE ELEMENT I LOESNING MED EN LJUSLEDARE.
US4447546A (en) Fluorescent immunoassay employing optical fiber in capillary tube
USRE33064E (en) Method for the determination of species in solution with an optical wave-guide
EP0517516B1 (en) Multiple output referencing system for evanescent wave sensor
US4822746A (en) Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors
US5143853A (en) Absorbance modulated fluorescence detection methods and sensors
US7679749B2 (en) Optical waveguide surface plasmon resonance sensor
JPS6222066A (en) Latex agglutination reaction measuring instrument
CN207248894U (en) Bladder chalone C time resolution detection card and kit
US5719063A (en) Multiplex immunoassay system
JP4068148B2 (en) Assay method
JPH03120466A (en) Immunoassay device
JPH03272466A (en) Multiple immunologocal evaluating analyzing system
US5717494A (en) Method of optically measuring liquid in porous material
JP2654698B2 (en) Immunoassay device
US5032730A (en) Immunoassay apparatus
EP0711992A2 (en) Method of determination of a fluorescent substance, and a method of assay of an enzyme activity
JPH08313533A (en) Method and device for updating calibration curve
JPH09509480A (en) Ultrasensitive competitive immunoassay using optical waveguide
JPH0650314B2 (en) Immune reaction measuring device
JP2533845B2 (en) Immunological analysis method
JPS6166151A (en) Automatic immunoreaction measuring apparatus
KR20240033262A (en) Articles and methods for performing analysis
JPH08210978A (en) Quantitative determining method of fluorescent material and enzyme activity measuring method
JPH07113638B2 (en) Immunoassay method and immunosensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees