JPH03119891A - Convergence measuring device - Google Patents

Convergence measuring device

Info

Publication number
JPH03119891A
JPH03119891A JP1258283A JP25828389A JPH03119891A JP H03119891 A JPH03119891 A JP H03119891A JP 1258283 A JP1258283 A JP 1258283A JP 25828389 A JP25828389 A JP 25828389A JP H03119891 A JPH03119891 A JP H03119891A
Authority
JP
Japan
Prior art keywords
area
measurement
color
projected
measuring area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1258283A
Other languages
Japanese (ja)
Other versions
JP2765102B2 (en
Inventor
Koji Ichigaya
市ケ谷 弘司
Satoshi Sato
智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1258283A priority Critical patent/JP2765102B2/en
Priority to US07/591,048 priority patent/US5077600A/en
Priority to MYPI90001709A priority patent/MY106962A/en
Priority to ES90310808T priority patent/ES2095863T3/en
Priority to EP90310808A priority patent/EP0421750B1/en
Priority to DE69029500T priority patent/DE69029500T2/en
Priority to KR1019900015826A priority patent/KR0167772B1/en
Publication of JPH03119891A publication Critical patent/JPH03119891A/en
Application granted granted Critical
Publication of JP2765102B2 publication Critical patent/JP2765102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To almost fix the current value of each primary color in a measuring block and to prevent measurement error caused by high voltage fluctuation by dividing the surface of a tube into a measuring area to project a luminescent line and a non-measuring area to project the other two colors not to be measured, and almost samely setting the total area of the luminescent line to be projected in the measuring area and the picture area of the respective colors to be projected in the non-measuring area. CONSTITUTION:A convergence measuring device A is arranged at a position faced to a tube surface 2 of a color CRT 1 and equipped with an optical sensor 4 with the property of directional sensitivity of uni-model property, CPU 8 and pattern generator 15. The CPU 8 executes arithmetic for comparing light intensity data for each primary color according to the detection output of an optical sensor 4' and calculates the amount of miss convergence. The pattern generator 15 divides the tube surface into the measuring area and the non-measuring area. In the measuring area, the luminescent ling for each primary color is arranged at fixed intervals and a pattern to be moved in a vertical direction is projected. In the non-measuring area, the other two colors, which are not desired to be measured, are projected. Then, a video signal is outputted to the color CRT 1 so as to almost samely set the total area of the luminescent line to be projected in the measuring area and the picture area of the respective colors to be projected in the non-measuring area.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテレビジョン受像機のカラーCRTのコンバー
センス状1を測定するコンバーゼンス測定装置Iこ関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a convergence measuring device I for measuring the convergence pattern 1 of a color CRT of a television receiver.

[発明の概要] 本発明は、カラーCRTの管面に各原色のR線を映し、
各原色の光強度データを検出してミスコンバーゼンスm
を測定するコンバーゼンス、f7定装置にあって、前記
管面を前記輝線を映ず測定領域と測定していない他の2
色を映す非測定領域とに区分けし、測定領域に映る輝線
の合計面積と非測定領域に映る各色の画像面積のそれぞ
れとをほぼ同一に設定することにより、 カラーCRTに通電される各原色の電流値か測定区間中
はぼ一定であるため、各原色の電流値が異なることによ
る高圧変動に起因する測定誤差を防止でさるものである
[Summary of the invention] The present invention projects R-rays of each primary color on the screen of a color CRT,
Misconvergence is detected by detecting the light intensity data of each primary color.
In the convergence and f7 constant device that measures
By dividing the area into a non-measuring area that reflects colors and setting the total area of bright lines reflected in the measuring area and the image area of each color reflected in the non-measuring area to be almost the same, each primary color that is energized to the color CRT can be Since the current value is approximately constant during the measurement period, measurement errors due to high voltage fluctuations due to different current values for each primary color can be prevented.

[先行の技術] 本出願人は、先に位相検出型のコンバーゼンス測定装置
を提案した(特願昭63−310670号明細書参照)
[Prior Art] The present applicant previously proposed a phase detection type convergence measurement device (see Japanese Patent Application No. 310670/1983).
.

このコンバーゼンス測定装置は、測定対象であるカラー
CRTに映像信号を出力するパターンジェネレータを有
する。このパターンジェネレータはカラーCRTの管面
の一部の領域に各原色の輝線(縦方向又は横方向)をそ
の垂直方向に徐々にシフトさせると共に他の領域にホワ
イトパターンを映し出すような映像信号を作成する。管
面の対向位置には光センナが配置され、この光センサは
単峰特性の指向感度特性を有している。この先センサの
検出出力は演算手段に供給され、この演算手段が各原色
の光強度データよりミスコンバーゼンス量を算出する。
This convergence measuring device has a pattern generator that outputs a video signal to a color CRT that is a measurement target. This pattern generator creates a video signal that gradually shifts the bright lines (vertical or horizontal) of each primary color in a part of the screen of a color CRT in the vertical direction, and projects a white pattern in other areas. do. An optical sensor is arranged at a position facing the tube surface, and this optical sensor has a single-peak directional sensitivity characteristic. The detection output of the sensor is then supplied to a calculation means, and this calculation means calculates the amount of misconvergence from the light intensity data of each primary color.

而して、光センサをカラーCRTの管面の任意位置に配
置し、パターンジェネレータにてカラーCRTの管面に
原色毎に輝線を映し出す。光センサの各原色毎の検出出
力より演算手段が各原色毎のエンベロープ曲線を作成し
てこのエンベロープ曲線のピーク値の位置を出し、各原
色毎のピーク値の位置を比較することによってミスコン
バーゼンスmを算出する。そして、光センサの管面上の
位置を変えてこのようなミスコンバーゼンス量の測定を
カラーCRTの管面の複数箇所で行う。
An optical sensor is placed at an arbitrary position on the screen of the color CRT, and a pattern generator projects bright lines for each primary color on the screen of the color CRT. The calculation means creates an envelope curve for each primary color from the detection output of each primary color of the optical sensor, calculates the position of the peak value of this envelope curve, and compares the position of the peak value for each primary color to prevent misconvergence m. Calculate. The amount of misconvergence is measured at a plurality of locations on the screen of the color CRT by changing the position of the optical sensor on the screen.

上記測定に際して、管面にホワイト領域を発生させるの
は、管面に緑、赤及び青色の輝線をそれぞれ単独で映し
出すと、カラーCRTのビーム電流に変化が生じ高圧が
変化する。このように高圧が変化すると色の電子ピーク
の位置ずれが生じるために管面の一部にホワイト領域を
設けて高圧の不安定を改善している。
In the above measurement, the reason why a white area is generated on the tube surface is that when green, red, and blue bright lines are individually projected on the tube surface, the beam current of the color CRT changes and the high voltage changes. When the high voltage changes in this way, the position of the color electron peak shifts, so a white area is provided on a part of the tube surface to improve the instability of the high voltage.

[発明が解決しようとする課題] ところが、上述のようにホワイト領域を設けても現在の
輝線色の電流値が他の色の電流値よりも大きいために輝
線の色が切り換わる毎にRGBの電流値h゛(変動する
。この電流値の変化による高圧の変動、具体的には高圧
のドロップの仕方によって輝線の位置ずれをきたすため
にこれが測定誤差になるという欠点がある。これを防止
するために輝線の幅を細くして各原色の電流値の差を少
なくすることが一般に考えられるが、輝線の幅を細くす
るとS/Nが劣化する等の不具合が生じるため採用でき
ない。
[Problems to be Solved by the Invention] However, even if the white area is provided as described above, the current value of the current bright line color is larger than the current value of other colors, so the RGB color is changed every time the bright line color is switched. The current value h゛(varies).This change in current value causes fluctuations in high voltage, specifically the way the high voltage drops, which causes a positional shift in the bright line, which has the disadvantage of causing measurement errors.To prevent this. Therefore, it is generally considered to reduce the difference between the current values of each primary color by narrowing the width of the bright line, but this cannot be adopted because reducing the width of the bright line causes problems such as deterioration of S/N.

そこで、本発明は各原色の電流値が異なることによる高
圧の変動を防止して高圧変動に起因する測定誤差を解消
したコンバーゼンス測定装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a convergence measuring device that prevents high voltage fluctuations due to differences in current values of each primary color and eliminates measurement errors caused by high voltage fluctuations.

[課題を解決するための手段] 上記目的を達成するための本発明のコンバーゼンス測定
装置は、カラーCRTの管面の対向位置に配し、単峰特
性の指向感度特性を有する光センサと、 この先センサの検出出力より各原色毎の光強度データを
比較演算してミスコンバーゼンス量を算出するミスコン
バーゼンス量算出手段と、前記管面を測定領域と非測定
領域に区分けし、測定領域には各原色の輝線を一定間隔
毎に配しかつその垂直方向に移動させるパターンを映し
、非測定領域には測定していない他の2色を映すと共に
、測定領域に映る輝線の合計面積と非測定領域に映る各
色の画像面積のそれぞれとをほぼ同一に設定する映像信
号を前記カラーCRTに出力するパターンジェネレータ
とを備えたものである。
[Means for Solving the Problems] A convergence measurement device of the present invention for achieving the above object includes a light sensor arranged at opposing positions on the tube surface of a color CRT and having a single-peak directional sensitivity characteristic; A misconvergence amount calculation means that calculates the amount of misconvergence by comparing and calculating the light intensity data for each primary color from the detection output of the sensor; A pattern in which bright lines are arranged at regular intervals and moved in the vertical direction is projected, and the other two colors that are not measured are projected in the non-measurement area, and the total area of the bright lines reflected in the measurement area and the non-measurement area are and a pattern generator that outputs a video signal to the color CRT to set the image area of each color to be approximately the same.

[作用] 管面の測定領域に例えば赤色の輝線パターンが映される
と非測定領域には緑色と青色の画像が映され、次に、測
定領域に例えば緑色の輝線パターンが映されると非測定
領域には赤色と青色が映される等して輝線パターンが変
更され、各原色の光強度データが検出されてミスコンバ
ーゼンス量が算出される。そして、この測定に際して、
輝線の合計面積と非測定領域の他の2色の各画像面積と
が測定区間中宮にほぼ同一であるため、カラーCRTに
通電される各原色の電流値がほぼ一定となり高圧変動が
生じず、高圧変動によって輝線位置がずれることがない
[Function] When a red bright line pattern is projected on the measurement area of the tube surface, green and blue images are projected on the non-measurement area, and then when a green bright line pattern is projected on the measurement area, a non-measurement area is displayed. The bright line pattern is changed by projecting red and blue in the measurement area, and the light intensity data of each primary color is detected to calculate the amount of misconvergence. And when making this measurement,
Since the total area of the bright line and the image area of each of the other two colors in the non-measurement area are almost the same in the middle of the measurement section, the current value of each primary color applied to the color CRT is almost constant, and high voltage fluctuations do not occur. The emission line position does not shift due to high pressure fluctuations.

C実施例] 以下、本発明の実施例を図面を用いて説明する。C Example] Embodiments of the present invention will be described below with reference to the drawings.

第2図にはコンバーゼンス測定袋g!iへの測定状聾が
示されている。第2図において、テレビジョン受像機B
には測定対象となるカラー〇ULT (カラー陰極線管
)1が内蔵され、このカラーCRTlの管面2が正面に
露出している。コンバーゼンス測定装置Aの信号ケーブ
ル3はテレビジジン受像機Bの映像信号入力端子に接続
され、コンバーゼンス測定袋riAが出力する映像信号
によりカラーCRTIの管面2に映像が映し出される。
Figure 2 shows the convergence measurement bag g! The measured deafness to i is shown. In Figure 2, television receiver B
has a built-in color CRT (color cathode ray tube) 1 to be measured, and the tube surface 2 of this color CRT is exposed to the front. The signal cable 3 of the convergence measurement device A is connected to the video signal input terminal of the television receiver B, and an image is projected on the screen 2 of the color CRTI by the video signal output from the convergence measurement bag riA.

又、コンバーゼンス測定装置Aはケーブルで接続された
光センサ4を存し、この先センサ4が管面2の接触位置
で管面2に対向して配置されている。
Further, the convergence measurement device A includes an optical sensor 4 connected by a cable, and the sensor 4 is disposed facing the tube surface 2 at a contact position with the tube surface 2.

第3図には管面2と光センサ4の位置関係を示す断面図
が示されている。第3図において、管面2はパネルガラ
ス2aの内面に蛍光部2bが配置されて成り、この蛍光
部2bに電子ビームが照射されると発光する。又、光セ
ンサ4にはマイクロスイッチSWが設けられ、光センサ
4を管面2に接触さけるとマイクロスイッチSWがオン
する。
FIG. 3 shows a cross-sectional view showing the positional relationship between the tube surface 2 and the optical sensor 4. In FIG. 3, the tube surface 2 is made up of a fluorescent section 2b arranged on the inner surface of a panel glass 2a, and when the fluorescent section 2b is irradiated with an electron beam, it emits light. Further, the optical sensor 4 is provided with a microswitch SW, and when the optical sensor 4 is brought into contact with the tube surface 2, the microswitch SW is turned on.

このマイクロスイッチSWのオン信号で測定が開始され
て第11図に示すフローチャートが実行される。
Measurement is started by the ON signal of this microswitch SW, and the flowchart shown in FIG. 11 is executed.

第4図には光センサ4の指向感度特性線図が示されてい
る。第4図において、横軸はカラーCRT!の管面2か
ら光センサ4に入射する光の入射角度(度)を示し、縦
軸は各入射角度における光センサ4への入射光の強度(
入射角度がOoのときの光強度を100%としたときの
相対光強度)を示す。光センサ4の指向感度特性は入射
角度か0°のときが最大で、入射角度の絶対値が大きく
なるに従って光強度が小さくなり入射角度の絶対値がほ
ぼ20′程度で0%となるいわゆる単峰特性を呈する。
FIG. 4 shows a directional sensitivity characteristic diagram of the optical sensor 4. In Figure 4, the horizontal axis is color CRT! The incident angle (degrees) of light incident on the optical sensor 4 from the tube surface 2 is shown, and the vertical axis represents the intensity (in degrees) of the incident light on the optical sensor 4 at each incident angle.
Relative light intensity when the light intensity when the incident angle is Oo is taken as 100%) is shown. The directional sensitivity characteristics of the optical sensor 4 are maximum when the incident angle is 0°, and as the absolute value of the incident angle increases, the light intensity decreases and becomes 0% when the absolute value of the incident angle is approximately 20', which is a so-called simple type. exhibits peak characteristics.

第1図にはコンバーゼンス測定袋gIAの回路ブロック
図が示されている。第1図において、光センサ4の検出
出力(光強度データ)はアンプ5を介してA/D変換器
6に導かれ、A/D変換器6にてディジタル化される。
FIG. 1 shows a circuit block diagram of the convergence measuring bag gIA. In FIG. 1, the detection output (light intensity data) of an optical sensor 4 is guided to an A/D converter 6 via an amplifier 5, and is digitized by the A/D converter 6.

ディジタル化された光強度データはCPU8の書き込み
信号に基づいて測定データメモリ7に書き込まれる。c
pusはこの測定データメモリ7の他に演算用メモリ9
及びプログラム用メモリIOの読み出し・書き込みを制
御する。演算用メモリ9には各種のデータを演算処理す
る場合に必要な演算データが格納されている。プログラ
ム用メモリIOには測定プログラム、変調度算出プログ
ラム、非へ11定頗域変更プログラム、輝線間隔自動修
正プログラム、ミスコンバーゼンスm算出プログラム及
び表示プログラムを実行するためのデータが格納されて
いる。この各プログラムの内容については下記の作用と
共に説明する。CPU8は変調度算出プログラムに従っ
て駆動する変調度算出手段と測定プログラムに従って駆
動するミスコンバーゼンスm算出手段とを有する。変調
度算出手段は最初に測定する原色の光強度データの内最
大値MAXと最小値MINをリストアツブし、(MAX
−MI N)/ (MAX+MNN)=Fの式を実行し
て変調度Fを算出する。この変調度の値が0.2〜0.
6の範囲であれば適正と判別し、又、この範囲以外であ
れば不適正と判別する。不適正と判別した場合には変調
度データを#線間隔算出部11に送る。又、変g、11
度の値がほぼ0の値であれば非測定領域設定部!2に非
測定領域変更指令を送る。尚、この実施例では変調度算
出手段は光強度データの最大値と最小値の差より変調度
を判別したが、光強度データのエンベロープ曲線の状態
(例えば曲線の最大値と最小値の差や傾斜角度)より判
別してもよい。
The digitized light intensity data is written into the measurement data memory 7 based on a write signal from the CPU 8. c.
In addition to this measurement data memory 7, pus is a calculation memory 9.
and controls reading and writing of the program memory IO. The calculation memory 9 stores calculation data necessary for processing various data. The program memory IO stores data for executing a measurement program, a modulation degree calculation program, a non-heterogeneous constant region change program, a bright line spacing automatic correction program, a misconvergence m calculation program, and a display program. The contents of each program will be explained together with the following operations. The CPU 8 has a modulation degree calculation means that is driven according to a modulation degree calculation program and a misconvergence m calculation means that is driven according to a measurement program. The modulation degree calculation means first restores the maximum value MAX and minimum value MIN of the light intensity data of the primary colors to be measured, and calculates (MAX
-MIN)/(MAX+MNN)=F to calculate the modulation degree F. The value of this modulation degree is 0.2 to 0.
If it is within the range of 6, it is determined to be appropriate, and if it is outside this range, it is determined to be inappropriate. If it is determined that it is inappropriate, the modulation degree data is sent to the # line spacing calculating section 11. Also, g-flat, 11
If the degree value is almost 0, it is the non-measurement area setting part! Sends a non-measurement area change command to 2. In this embodiment, the modulation degree calculation means discriminates the modulation degree from the difference between the maximum value and the minimum value of the light intensity data, but it also determines the modulation degree based on the difference between the maximum value and the minimum value of the light intensity data. It may also be determined based on the angle of inclination).

ミスコンバーゼンスm算出手段は測定データメモリより
読み出す離散的な光強度データ(第5図に示す)を補間
処理することによって第6図にて破線で示す如く細かく
変化する光強度データ(エンベロープ曲線)に変換し、
各原色毎の光強度データ(エンベロープ曲線)のピーク
値の得られる時点(位置)を検出し、例えば、緑の光強
度データのピーク値の得られる時点(位置)に対する赤
及び青の光強度データのピーク値の得られる時点(位r
l)との差、即ち、ミスコンバーゼンス量を算出する。
The misconvergence m calculating means performs interpolation processing on the discrete light intensity data (shown in FIG. 5) read from the measurement data memory to produce light intensity data (envelope curve) that changes finely as shown by the broken line in FIG. Converted,
The time point (position) at which the peak value of the light intensity data (envelope curve) for each primary color is obtained is detected, and for example, the red and blue light intensity data for the time point (position) at which the peak value of the green light intensity data is obtained. The time point at which the peak value of is obtained (position r
1), that is, the amount of misconvergence is calculated.

又、CPU8は各プログラムに従って輝線間隔算出部I
I、非測定領域設定部I2及び表示部13を駆動制御す
る。輝線間隔設定部11は管面2に映し出される輝線の
間隔δを決める輝線間隔データを出力するもので、CP
U8より出力される変調度の値が0.2〜0,6以外の
値であればその変調度の値に応じた輝線間隔データを出
力する。非測定領域設定部!2は画面の非測定領域S、
を指定するもので、この実施例では管面2の右側の1/
4スペース又は左側の1/4スペースのいずれか一方を
非測定領域S、に設定するよう構成されている。CPU
8から非測定領域変更指令が送られてくると、今までと
反対の領域を非測定領域S!とする非測定領域データを
出力する。
Further, the CPU 8 operates the bright line interval calculation unit I according to each program.
I drives and controls the non-measurement area setting section I2 and the display section 13. The bright line interval setting unit 11 outputs bright line interval data that determines the interval δ between bright lines projected on the tube surface 2.
If the value of the modulation degree outputted from U8 is a value other than 0.2 to 0.6, bright line interval data corresponding to the value of the modulation degree is output. Non-measurement area setting section! 2 is the non-measurement area S of the screen,
In this example, the right 1/1 of the tube surface 2 is specified.
The configuration is such that either one of the four spaces or the left 1/4 space is set as the non-measurement area S. CPU
When a non-measurement area change command is sent from 8, the opposite area is changed to non-measurement area S! Output the non-measurement area data.

表示部13はミスコンバーゼンス量などを表示し、又、
輝線間隔自動修正プログラムを有しない場合には輝線間
隔をマニュアルで修正するため変調度の値を表示する。
The display unit 13 displays the amount of misconvergence, etc.
If the bright line spacing automatic correction program is not available, the value of the modulation degree is displayed in order to manually correct the bright line spacing.

さらに、CPU8にはキーボード部14の信号が入力さ
れている。キーボード部14よりデータを入力すること
によって演算用メモリ9.プログラム用メモリlO等の
データを更新できる。又、輝線間隔をマニュアルで修正
する場合にはキーボード部I4よりデータ入力して修正
する。
Furthermore, signals from the keyboard section 14 are input to the CPU 8. By inputting data from the keyboard section 14, the calculation memory 9. Data such as program memory IO can be updated. If the bright line spacing is to be corrected manually, the correction is made by inputting data from the keyboard section I4.

パターンジェネレータ15にはCPU8を介して輝線間
隔データ及び非測定領域データが入力される。パターン
ジェネレータI5は、第7図に示すような映像を映す映
像信号を生成してカラーCRTIに出力する。即ち、管
面2を非測定領域データにて指定される領域を非測定領
域S、とし、それ以外を測定領域Slとして区分けし、
測定領域S1には赤、緑又は青の一定間隔δ毎に配され
た複数本の輝線をその垂直方向に一フレーム毎にその間
隔δのI/N(Nは2以上の整数であり、この実施例で
は4である)ずつシフトさせる輝線パターンを映し、非
測定領域Stには測定していない他の2色の合成色をベ
タ状に映す。そして、測定領域S、の複数の輝線の合計
面積と非測定領域S、の各色の画像面積のそれぞれとを
ほぼ同一になるよう設定する。ここで、各色の画像面積
とは、当該色の電子ビームを照射する面積をいい、合成
色の領域については当該領域をそれぞれ各色の画像面積
として計算する。輝線のシフト量が輝線間隔δの1/H
の場合には、第7図に示すように、測定領域SIと非測
定領域S、の比率をN:1゜輝線間隔δに対する輝線幅
の割合を1/Nとする。
Bright line interval data and non-measurement area data are input to the pattern generator 15 via the CPU 8. The pattern generator I5 generates a video signal that displays an image as shown in FIG. 7, and outputs it to the color CRTI. That is, the tube surface 2 is divided into a region specified by the non-measurement region data as a non-measurement region S, and the other region as a measurement region SL,
In the measurement area S1, a plurality of bright lines of red, green, or blue arranged at regular intervals δ are arranged in the vertical direction for each frame by I/N of the interval δ (N is an integer of 2 or more, and this In the embodiment, a bright line pattern shifted by 4) is projected, and a composite color of the other two colors that are not measured is projected solidly in the non-measurement area St. Then, the total area of the plurality of bright lines in the measurement region S is set to be approximately the same as the image area of each color in the non-measurement region S. Here, the image area of each color refers to the area to which the electron beam of the color is irradiated, and for the composite color area, the area is calculated as the image area of each color. The shift amount of the bright line is 1/H of the bright line interval δ
In this case, as shown in FIG. 7, the ratio of the measurement area SI to the non-measurement area S is N:1°, and the ratio of the bright line width to the bright line interval δ is 1/N.

このように設定すれば、管面2の縦寸法をH1横寸法を
Lとすると、各面積はB=G=1/(N+1)・H,R
=N/(N+ 1 )・17N−H=1/ (N+ 1
 )・Hとなって同一となる。この実施例ではN=4の
ため、測定領域S、と非測定領域S、の比率を4:Iと
し、輝線間隔δに対する輝線幅の割合を1/4となって
いる。
With this setting, if the vertical dimension of the tube surface 2 is H1 and the horizontal dimension is L, each area is B=G=1/(N+1)・H,R
=N/(N+1)・17N-H=1/(N+1
)・H and become the same. In this example, since N=4, the ratio of the measurement area S to the non-measurement area S is 4:I, and the ratio of the bright line width to the bright line interval δ is 1/4.

また、上記輝線パターンは第8図に示すように、輝線の
配置がフレームが進む毎に実線の位置−一点鎖線の位置
−二点鎖線の位置−三点鎖線の位置と変わりこの配置を
繰り返す。管面2にこのような輝線が発生すると、光セ
ンサ4の検出出力は、第5図に示すように、フレーム切
り替わり時間置きの時点A、B、C,D、a、b、c、
d、α。
Further, as shown in FIG. 8, in the bright line pattern described above, the arrangement of the bright lines changes from the position of the solid line - the position of the dashed dot line - the position of the dashed double dot line - the position of the dashed three dot line as each frame progresses, and this arrangement is repeated. When such a bright line is generated on the tube surface 2, the detection output of the optical sensor 4 is, as shown in FIG. 5, at time points A, B, C, D, a, b, c,
d, α.

・・・における光強度が、交流的に変化する特性を呈す
るflujl的な光強度データとなる。従って、光セン
サ4をカラーCRT 1の管面2に対し任意の位置にお
いて良く、測定期間も原理的には4フレ一ム期間で良い
。又、パターンジェネレータ15は輝線の方向が第7図
に示す縦方向とこれと垂直の横方向とを生成するよう構
成されている。
The light intensity at ... becomes flujl-like light intensity data exhibiting characteristics that change in an alternating current manner. Therefore, the optical sensor 4 may be placed at any position with respect to the tube surface 2 of the color CRT 1, and the measurement period may be, in principle, a period of four frames. Further, the pattern generator 15 is configured to generate bright lines in the vertical direction shown in FIG. 7 and in the horizontal direction perpendicular to this direction.

以下、上記構成の作用を第11図のフローチャートに従
って説明する。
Hereinafter, the operation of the above configuration will be explained according to the flowchart of FIG. 11.

光センサ4をカラーCRT 1の管面2の任意箇所で接
触状態とすると、マイクロスイッチSWがオンする。マ
イクロスイッチSWのオン信号によりCPU8が先ず変
調度算出プログラムを実行する。即ち、CPU8の制御
信号にて輝線間隔算出部11の輝線間隔データとホワイ
ト領域設定部I2のホワイト領域データがパターンジェ
ネレータ15に送られる。パターンジェネレータ15は
このデータを基に映像信号を作成し、管面2には例えば
第7図に示すような測定領域S1に赤色の輝線が配され
、非測定領域S、に青色と緑色の合成色の映像が映し出
される。そして、この輝線が−フレーム毎にシフトする
と共にこのシフト毎の光強度データ(第5図参照)が測
定データメモリ7に取り込まれる。赤色の光強度データ
が取り込まれると、変調度算出手段にて光強度データの
変調度が算出され、この変調度の値がほぼゼロの場合に
は非測定領域変更プログラムが割り込んで非測定領域が
変更され、又、変調度の値が0.2〜0゜6の範囲外の
場合には輝線間隔自動修正プログラムが割り込んで輝線
間隔δが修正される。
When the optical sensor 4 is brought into contact with any part of the tube surface 2 of the color CRT 1, the microswitch SW is turned on. The CPU 8 first executes a modulation degree calculation program in response to an on signal from the microswitch SW. That is, the bright line interval data from the bright line interval calculating section 11 and the white area data from the white area setting section I2 are sent to the pattern generator 15 in response to a control signal from the CPU 8. The pattern generator 15 creates a video signal based on this data, and on the tube surface 2, for example, a red bright line is arranged in the measurement area S1 as shown in FIG. A colored image is displayed. Then, this bright line shifts every - frame, and the light intensity data for each shift (see FIG. 5) is taken into the measurement data memory 7. When the red light intensity data is imported, the modulation degree of the light intensity data is calculated by the modulation degree calculation means, and if the value of this modulation degree is almost zero, the non-measurement area change program interrupts and changes the non-measurement area. If the value of the modulation factor is changed and the value of the modulation degree is outside the range of 0.2 to 0.6, the bright line interval automatic correction program interrupts and corrects the bright line interval δ.

即ち、第12図に示すように光センサ4が非測定領域上
に配置された場合には光強度データが第13図に示すよ
うに全データ値がほぼ同じ値を示し、変調度の値がほぼ
ゼロとなる。すると、変調度算出手段より非測定領域変
更指令が非測定領域設定部12に送られる。非測定領域
設定部12は今までとは異なる非測定領域データをパタ
ーンジェネレータ15に送り管面2の映像状態が第7図
に示すように切り替わる。又、光センサ4が第7図に示
すように測定領域S、にある場合に、輝線間隔δが最適
値より狭いときには光強度データが第9図に示す如くに
なり変調度の値か0.2以下となり、反対に輝線間隔δ
が最適値より広いときには光強度データが第10図に示
す如くになり変調度の値が0.6以上となる。すると、
変調度の値が輝Ia間隔算出部11に送られ、変調度の
値よりR線間隔算出部11にて適正な輝線間隔δが算出
されてパターンジェネレータ15に送出される。
That is, when the optical sensor 4 is placed on the non-measurement area as shown in FIG. 12, all the data values of the light intensity data show approximately the same value as shown in FIG. 13, and the value of the modulation degree becomes Almost zero. Then, a non-measurement area change command is sent from the modulation degree calculation means to the non-measurement area setting section 12. The non-measurement area setting section 12 sends different non-measurement area data to the pattern generator 15, and the image state of the tube surface 2 is changed as shown in FIG. Further, when the optical sensor 4 is located in the measurement region S as shown in FIG. 7, when the bright line interval δ is narrower than the optimum value, the light intensity data becomes as shown in FIG. 9, and the modulation degree value becomes 0. 2 or less, and conversely, the emission line interval δ
When is wider than the optimum value, the light intensity data becomes as shown in FIG. 10, and the modulation degree value becomes 0.6 or more. Then,
The modulation degree value is sent to the brightness Ia interval calculating section 11, and the R-line interval calculating section 11 calculates an appropriate bright line interval δ based on the modulation degree value, and sends it to the pattern generator 15.

この非測定領域変更プログラム及び輝線間隔自動修正プ
ログラムが終わると、又、変調度の値が0.2〜0.6
の範囲であればこれらのプログラムが割り込むことなく
測定プログラムに移る。この測定プログラムでは赤色、
緑色及び青色の819が順に管面2に映し出されて測定
データメモリ7には第5図に示すような光強度データが
赤色、緑色及び青色毎に記憶される。変調度算出プログ
ラムでの変調度の値が0.2〜0,6の範囲内であれば
その際の赤色の光強度データがそのまま採用され測定プ
ログラムでは緑色と青色の測定のみが行われる。
When this non-measurement area change program and bright line interval automatic correction program are finished, the modulation degree value will be 0.2 to 0.6.
If the range is within this range, these programs will proceed to the measurement program without interrupting. In this measurement program, the red
Green and blue colors 819 are sequentially projected onto the tube surface 2, and light intensity data as shown in FIG. 5 is stored in the measurement data memory 7 for each of red, green, and blue. If the value of the modulation degree in the modulation degree calculation program is within the range of 0.2 to 0.6, the red light intensity data at that time is used as is, and only green and blue measurements are performed in the measurement program.

次に、ミスコンバーゼンス量算出プログラムが実行され
てミスコンバーゼンス爪算出手段にて緑の光強度データ
のピーク値の得られる時点(位′i1)に対する赤及び
青の光強度データのピーク値の得られる時点(位置)と
の差、即ち、ミスコンバーゼンスmh<算出される。
Next, the misconvergence amount calculation program is executed, and the misconvergence nail calculation means obtains the peak values of the red and blue light intensity data for the time point (position 'i1) at which the peak value of the green light intensity data is obtained. The difference from the time point (position), that is, the misconvergence mh< is calculated.

最後に、表示プログラムが実行されて表示部I3にてミ
スコンバーゼンス量が表示される。尚、ミスコンバーゼ
ンス量の表示は測定対象であるカラーCRT lに表示
するように構成してもよい。
Finally, the display program is executed and the amount of misconvergence is displayed on the display section I3. Note that the amount of misconvergence may be displayed on the color CRT 1 that is the object of measurement.

このようにして縦と横の輝線状態を光センサ4の管面2
上の位置を変えながら測定することによって縦と横のミ
スコンバーゼンス量を測定することができる。
In this way, the state of the vertical and horizontal bright lines can be determined from the tube surface 2 of the optical sensor 4.
By measuring while changing the top position, it is possible to measure the amount of vertical and horizontal misconvergence.

上記測定に際して、輝線の合計面積と非測定領域S、の
他の2色の各画像面積とが測定区間中宮に同一であるの
で、カラーCRT lに通電される各原色の電流値が一
定となるため、高圧変動が生じない。従って、高圧変動
によるIJIの位置ずれが起きず、精度の高い測定結果
が得られる。
In the above measurement, since the total area of the bright line and the image area of each of the other two colors in the non-measurement area S are the same in the measurement section, the current value of each primary color applied to the color CRT l is constant. Therefore, high pressure fluctuations do not occur. Therefore, displacement of the IJI due to high pressure fluctuations does not occur, and highly accurate measurement results can be obtained.

尚、この実施例では非測定領域S、には測定していない
2色の合成色をベタ状に映し出したか、各原色の面積が
同じになれば各原色を別々の部分に、又は一部オーバー
ラップして映し出してもよい。又、この実施例では各原
色の画像面積を完全に同じに設定したが、高圧変動が生
じない範囲内であれば各面積を異ならせてもよい。
In this example, in the non-measurement area S, the composite color of the two colors that are not measured is projected solidly, or if the area of each primary color is the same, each primary color is projected in separate parts or partially overlaid. You can also wrap it and show it. Further, in this embodiment, the image area of each primary color is set to be completely the same, but each area may be set to be different as long as high voltage fluctuations do not occur.

[発明の効果コ 以上述べたように本発明によれば、カラーCRTの管面
に各原色の輝線を映し、各原色の光強度データを検出し
てミスコンバーゼンス量を測定するコンバーゼンス測定
装置にあって、前記管面を前記輝線を映す測定領域と測
定していない他の2色を映ず非測定領域とに区分けし、
測定領域に映る輝線の合計面積と非測定領域に映る各色
の画像面積のそれぞれとをほぼ同一に設定したので、カ
ラーCRTに通電される各原色の電流値が測定区間中は
ぼ一定であるため、各原色の電流値が異なることによる
高圧変動に起因する測定誤差を防止できるという効果を
奏する。
[Effects of the Invention] As described above, according to the present invention, a convergence measurement device that measures the amount of misconvergence by projecting the bright lines of each primary color on the screen of a color CRT and detecting the light intensity data of each primary color. dividing the tube surface into a measurement area in which the bright line is reflected and a non-measurement area in which the other two colors that are not measured are not reflected;
Since the total area of the bright lines reflected in the measurement area and the image area of each color reflected in the non-measurement area were set to be almost the same, the current value of each primary color applied to the color CRT is approximately constant during the measurement period. This has the effect of preventing measurement errors caused by high voltage fluctuations due to different current values for each primary color.

また、赤、緑、青の各電流値が測定中はぼ一定であるの
で、カラーCRTの赤、緑、青のドライブ回路等の周波
数特性及びカラーCRTのカソードの立ち上がり特性(
低域のf特)の悪影響を排除できるという効果を奏する
In addition, since the red, green, and blue current values are approximately constant during measurement, the frequency characteristics of the color CRT's red, green, and blue drive circuits, and the rise characteristics of the color CRT's cathode (
This has the effect of eliminating the negative effects of low-frequency f-characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第13図は本発明の実施例を示し、第1図は
コンバーゼンス測定装置の回路ブロック図、第2図は測
定状態を示す斜視図、第3図は管面と光センサの位置関
係を示す断面図、第4図は光センサの指向感度特性線図
、第5図は光強度データを示す図、第6図は変調度が適
正である光強度データを示す図、第7図は輝線発生状態
を示す図、第8図は輝線の配置を示す図、第9図は変調
度の値が小さい場合の光強度データを示す図、第1O図
は変調度の値が大きい場合の光強度データを示す図、第
11図はフローチャート図、第12図はテレビシロン受
像機の正面図、第13図は光センサが非測定領域上に配
された場合の光強度データを示す図である。 A・・・コンバーゼンス測定装置、I・・・カラーCR
T、2・・・管面、4・・・光センサ、8・・・CPU
(ミスコンバーゼンス量算出手段)、15・・・パター
ンジェネレータ。 階1之杖框ど示1徐手視図 第2図 A8CDabcdα 九強皮丁′−りε示1」呂 尤5上度テータF示す図 第6図 替面と化セン4fの住! 第3図 −15−10−5051015 角度− 丸でンτのf1向惑皮1ト殴j袈図 第4図 第8 図 変1凰度の植カV、+l\凱u巻合の 光強度テ゛−タE示す図 変言用度r値力(°大きい地合の 尤弓g!度テ゛−りどホす図 第10図 ケ北”レヨン受イ象禰の正面図 ABCDabcda 水センサケlホワイト傾p曳 よに西こされた鳩舎の 尤強贋テ゛−タ27f、す図 第13図
1 to 13 show embodiments of the present invention, FIG. 1 is a circuit block diagram of the convergence measuring device, FIG. 2 is a perspective view showing the measurement state, and FIG. 3 is the position of the tube surface and the optical sensor. Figure 4 is a directional sensitivity characteristic diagram of the optical sensor; Figure 5 is a diagram showing light intensity data; Figure 6 is a diagram showing light intensity data with appropriate modulation degree; Figure 7 is a diagram showing the relationship. Figure 8 shows the bright line generation state, Figure 8 shows the arrangement of the bright lines, Figure 9 shows the light intensity data when the modulation value is small, and Figure 1O shows the light intensity data when the modulation value is large. FIG. 11 is a flowchart diagram, FIG. 12 is a front view of the television receiver, and FIG. 13 is a diagram showing light intensity data when the optical sensor is placed on a non-measurement area. be. A...Convergence measuring device, I...Color CR
T, 2...tube surface, 4...light sensor, 8...CPU
(Misconvergence amount calculation means), 15... pattern generator. Floor 1, cane frame, 1 x hand view, 2nd figure, A8CDabcdα, 9th grade, 9th grade, upper level, 5th floor, 5th floor, 6th drawing, 4th floor house! Fig. 3-15-10-5051015 Angle - Maruden τ's f1 direction skin 1 to punching figure Fig. 4 Fig. 8 Light intensity of Fig. Figure 10 shows the front view of Rayon Ukei Elephant ABCDabcda Water Sensor Scale White Figure 13: Strongly forged data 27f of the pigeon coop that was blown away by a tilter.

Claims (1)

【特許請求の範囲】[Claims] (1)カラーCRTの管面の対向位置に配し、単峰特性
の指向感度特性を有する光センサと、この光センサの検
出出力より各原色毎の光強度データを比較演算してミス
コンバーゼンス量を算出するミスコンバーゼンス量算出
手段と、 前記管面を測定領域と非測定領域に区分けし、測定領域
には各原色の輝線を一定間隔毎に配しかつその垂直方向
に移動させるパターンを映し、非測定領域には測定して
いない他の2色を映すと共に、測定領域に映る輝線の合
計面積と非測定領域に映る各色の画像面積のそれぞれと
をほぼ同一に設定する映像信号を前記カラーCRTに出
力するパターンジェネレータとを備えたことを特徴とす
るコンバーゼンス測定装置。
(1) Optical sensors are placed opposite to each other on the screen surface of a color CRT and have a single-peak directional sensitivity characteristic, and the light intensity data for each primary color is compared and computed from the detection output of this optical sensor to determine the amount of misconvergence. a misconvergence amount calculation means for calculating the amount of misconvergence, dividing the tube surface into a measurement area and a non-measurement area, projecting a pattern in which emission lines of each primary color are arranged at regular intervals and moved in the vertical direction in the measurement area, The color CRT displays a video signal that projects the other two colors that are not measured in the non-measurement area, and sets the total area of the bright lines reflected in the measurement area to be approximately the same as the image area of each color reflected in the non-measurement area. A convergence measurement device characterized by comprising: a pattern generator that outputs a pattern generator.
JP1258283A 1989-10-03 1989-10-03 Convergence measurement device Expired - Fee Related JP2765102B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1258283A JP2765102B2 (en) 1989-10-03 1989-10-03 Convergence measurement device
US07/591,048 US5077600A (en) 1989-10-03 1990-10-01 Self-inspecting convergence measuring apparatus
MYPI90001709A MY106962A (en) 1989-10-03 1990-10-02 Convergence measurement apparatus for colour cathode ray tubes.
EP90310808A EP0421750B1 (en) 1989-10-03 1990-10-03 Convergence measurement apparatus for colour cathode ray tubes
ES90310808T ES2095863T3 (en) 1989-10-03 1990-10-03 CONVERGENCE MEASURING DEVICE FOR COLOR CATHODIC RAY TUBES.
DE69029500T DE69029500T2 (en) 1989-10-03 1990-10-03 Convergence measuring device for a color cathode ray tube
KR1019900015826A KR0167772B1 (en) 1989-10-03 1990-10-05 The convergence measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258283A JP2765102B2 (en) 1989-10-03 1989-10-03 Convergence measurement device

Publications (2)

Publication Number Publication Date
JPH03119891A true JPH03119891A (en) 1991-05-22
JP2765102B2 JP2765102B2 (en) 1998-06-11

Family

ID=17318100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258283A Expired - Fee Related JP2765102B2 (en) 1989-10-03 1989-10-03 Convergence measurement device

Country Status (2)

Country Link
JP (1) JP2765102B2 (en)
KR (1) KR0167772B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488884B2 (en) 2003-04-28 2009-02-10 Yamaha Corporation Keyboard musical instrument having sloped top surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488884B2 (en) 2003-04-28 2009-02-10 Yamaha Corporation Keyboard musical instrument having sloped top surface

Also Published As

Publication number Publication date
KR0167772B1 (en) 1999-03-20
KR910009110A (en) 1991-05-31
JP2765102B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
KR100644211B1 (en) Image processing system, projector, information storage medium and image processing method
US6558006B2 (en) Image projection display apparatus using plural projectors and projected image compensation apparatus
EP1519575B1 (en) Image processing system, projector, information storage medium, and image processing method
JP3871061B2 (en) Image processing system, projector, program, information storage medium, and image processing method
US8011789B2 (en) Rear projection display
US7034852B2 (en) Projection system, projector, program, information storage medium and image processing method
US6061102A (en) Automatic shading in an LCLV projector
US6333768B1 (en) Convergence calibration in video displays with signal level control
KR100593112B1 (en) Image processing system, projector and image processing method
KR100778100B1 (en) Convergence control apparatus and method for compensating angular error of reference patterns
JPH03119891A (en) Convergence measuring device
JP2943146B2 (en) Convergence measurement device
JP2943169B2 (en) Convergence measurement device
JP2811809B2 (en) Convergence measurement device
JP2805793B2 (en) Convergence measurement device
JP2811712B2 (en) Convergence measurement device
JP6992560B2 (en) Projector and projector control method
KR100545391B1 (en) Convergence control apparatus for projection television having multi mode and a method controlling thereof
USRE38574E1 (en) Method and apparatus for reducing visibility of damping wires in aperture grill display tubes
JPH07143506A (en) Projection display device
JPH02156792A (en) Convergence measuring device
KR0183736B1 (en) Method of judging photo sensor arrangement of cathode ray tube picture
JPH02207695A (en) Convergence measuring instrument
JPH07107521A (en) Convergence measuring instrument
JP3106540B2 (en) Convergence measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees