JPH03118834A - Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon - Google Patents

Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon

Info

Publication number
JPH03118834A
JPH03118834A JP1258137A JP25813789A JPH03118834A JP H03118834 A JPH03118834 A JP H03118834A JP 1258137 A JP1258137 A JP 1258137A JP 25813789 A JP25813789 A JP 25813789A JP H03118834 A JPH03118834 A JP H03118834A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbons
oxide
methane
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1258137A
Other languages
Japanese (ja)
Inventor
Ikuya Matsuura
松浦 郁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1258137A priority Critical patent/JPH03118834A/en
Publication of JPH03118834A publication Critical patent/JPH03118834A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for efficient production of 3C hydrocarbon by allowing a group IIA element to enter into a solid soln. in an oxide having a fluorite type crystal structure and using the resulting double oxide as a base. CONSTITUTION:A group IIA element such as Be, Mg or Ca is allowed to enter into a solid soln. in an oxide having a fluorite type crystal structure such as ZrO2, HfO2 or CeO2 and the resulting double oxide is used as the base of a catalyst. The catalyst structure of the double oxide is stable and has oxygen defects. The catalyst having the structure gathers three molecules of methane at the time of acid coupling of methane and 30 hydrocarbon such as propane or propylene is efficiently produced in a high yield.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、メタン含有ガスおよび酸素含有ガスを用いて
プロパンやプロピレン等のC5炭化水素を製造する方法
、及び該製造方法に用いる触媒に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing C5 hydrocarbons such as propane and propylene using a methane-containing gas and an oxygen-containing gas, and a catalyst used in the production method. It is.

[従来の技術] エチレンやプロピレン等の低級オレフィン系炭化水素は
、炭素−炭素に2重粘合を有し反応性に富む物質であり
、有機化学工業における最も重要な基礎物質として大量
に生産されている。
[Prior art] Lower olefinic hydrocarbons such as ethylene and propylene are highly reactive substances with carbon-carbon double viscosity, and are produced in large quantities as the most important basic materials in the organic chemical industry. ing.

低級オレフィン系炭化水素の製造に当たフては、従来■
エタン、プロパン、ブタン等を主成分とする湿性天然ガ
スを原料として製造する方法、■ナフサを原料とし、こ
わを熱分解する方法等が主流を占めていた。しかしなが
ら「石油ショックj以来、低級オレフィン系炭化水素製
造用原料の多様化が図られる様になり、豊富な地下資源
である乾性天然ガスが注目される様になり、乾性天然ガ
スの主成分であるメタンから低級オレフィン系炭化水素
を製造する技術が開発されつつある。
In the production of lower olefin hydrocarbons, conventional methods ■
The mainstream methods were manufacturing methods using wet natural gas containing ethane, propane, butane, etc. as a raw material, and (2) using naphtha as a raw material and thermally decomposing the stiffness. However, since the oil crisis, raw materials for producing lower olefin hydrocarbons have been diversified, and dry natural gas, which is an abundant underground resource, has attracted attention, and Techniques for producing lower olefin hydrocarbons from methane are being developed.

例えばG、に、Kellerらは、「ジャーナル・オブ
・カタリシス」 (第73巻、 1982年)において
、メタン含有ガスと酸素含有ガスを触媒の存在のもとで
接触させ、エチレンやエタン等を製造する技術を提案し
ている。そして用いる触媒としては、マンガンやカドミ
ウムの酸化物をアルミナに担持させた触媒が有効である
ことを示している。
For example, in "Journal of Catalysis" (Vol. 73, 1982), G. Keller et al. reported that methane-containing gas and oxygen-containing gas were brought into contact in the presence of a catalyst to produce ethylene, ethane, etc. We are proposing a technology to do this. As for the catalyst used, it has been shown that a catalyst in which manganese or cadmium oxides are supported on alumina is effective.

一方特開昭61−207346号には、酸化鉛、または
酸化鉛と酸化マンガンを触媒として用い、メタンからエ
チレンやエタンを製造する技術が示されている。
On the other hand, JP-A-61-207346 discloses a technique for producing ethylene and ethane from methane using lead oxide or lead oxide and manganese oxide as a catalyst.

[発明が解決しようとする課題] 上記各技術は、メタンの酸化カップリングによって低級
炭化水素を得るものであるが、いずれもエタンやエチレ
ン等の02炭化水素を製造の主目的とする為のものであ
る。
[Problem to be solved by the invention] Each of the above-mentioned technologies obtains lower hydrocarbons by oxidative coupling of methane, but all of them are aimed at producing 02 hydrocarbons such as ethane and ethylene as the main purpose. It is.

これに対しプロパンやプロピレン等の03炭化水素をメ
タンの酸化カップリングによって製造するという技術は
これまで報告されておらず、この様なC3炭化水素が高
効率で得られる技術の開発が望まれている。特にプロピ
レンは、イソプロピルアルコール、アセトン、プロピレ
ンオキシド等の製造用出発物質として有用であり、この
様なプロピレンを酸化カップリング法によって好収率に
得る方法の開発が強く望まれている。
On the other hand, no technology has been reported to date to produce 03 hydrocarbons such as propane and propylene by oxidative coupling of methane, and the development of a technology that can produce such C3 hydrocarbons with high efficiency is desired. There is. In particular, propylene is useful as a starting material for the production of isopropyl alcohol, acetone, propylene oxide, etc., and there is a strong desire to develop a method for obtaining such propylene in good yield by oxidative coupling.

本発明はこうした技術的課題を解決する為になされたも
のであって、プロパンやプロピレン等のC5炭化水素を
メタンの酸化カップリングによって製造する為の技術を
提供するものであり、特にC8炭化水素製造に最適な触
媒および該触媒を用いてC3炭化水素を効率良く製造す
る方法を実現するものである。
The present invention was made to solve these technical problems, and provides a technology for producing C5 hydrocarbons such as propane and propylene by oxidative coupling of methane. The present invention aims to realize a catalyst optimal for production and a method for efficiently producing C3 hydrocarbons using the catalyst.

[課題を解決する為の手段] 本発明に係る触媒は、蛍石型結晶構造を有する酸化物に
II A族元素が固溶化された複合酸化物を主成分とす
る点に要旨を有するものである。また上記触媒中にアル
カリ金属を含有させることも有効であり、こうした触媒
構成を採用することによって、本発明の効果がより一層
達成される。尚蛍石型結晶構造を有する酸化物に対し、
II A族以外の2価をとり得る元素及びIII族元素
よりなる群から選ばれる元素を上記触媒中に含有させる
ことも有効であり、この場合はアルカリ金属を必ず含有
させる必要がある。
[Means for Solving the Problems] The main feature of the catalyst of the present invention is that the main component is a composite oxide in which a Group II A element is dissolved in an oxide having a fluorite crystal structure. be. It is also effective to include an alkali metal in the catalyst, and by adopting such a catalyst configuration, the effects of the present invention can be further achieved. Furthermore, for oxides with a fluorite crystal structure,
It is also effective to include in the above catalyst an element selected from the group consisting of divalent elements other than group IIA elements and group III elements, and in this case, it is necessary to necessarily include an alkali metal.

上記触媒を用いて、C3炭化水素を製造するに当たフて
は、通常の「メタンの酸化カップリング法」に従えばよ
く、上記触媒の存在下でメタン含有ガスおよび酸素含有
ガスを接触させればよいが、その反応温度は500〜7
00℃と比較的低温とするのが好ましく、こうした触媒
および温度条件下によってC5炭化水素が効率よく製造
される。
To produce C3 hydrocarbons using the above catalyst, it is sufficient to follow the usual "methane oxidative coupling method", in which methane-containing gas and oxygen-containing gas are brought into contact in the presence of the above catalyst. However, the reaction temperature is 500-7
A relatively low temperature of 00° C. is preferable, and C5 hydrocarbons can be efficiently produced under such catalyst and temperature conditions.

[作用] 本発明者らは、メタンの酸化カップリングによってプロ
パンやプロピレン等のC5炭化水素を得るという観点か
ら、使用する触媒や温度条件等について様々な検討を加
えた。その結果、まず反応温度を比較的低温側に制御す
れば、C5炭化水素が生成し易くなるとの知見が得られ
た。即ち、これまでの酸化カップリング法では、750
℃以上の比較的高い温度条件下によって反応を行なうの
が常識化されており、低温側での実施はなされていなか
ったのであるが、本発明者らが実験によって確認したと
ころによると、500〜700℃の比較的低温側の温度
条件下でメタンの酸化カップリングを行なえば、これま
での常識を覆えしてC3炭化水素が相当の選択率をもっ
て生成する様になるということが分かった。またこのと
き用いる触媒として、下記■〜■の触媒が最適であるこ
とを見出し、本発明を完成した。
[Function] From the viewpoint of obtaining C5 hydrocarbons such as propane and propylene by oxidative coupling of methane, the present inventors have made various studies regarding the catalyst to be used, temperature conditions, etc. As a result, it was found that C5 hydrocarbons can be easily produced by first controlling the reaction temperature to a relatively low temperature side. That is, in the conventional oxidative coupling method, 750
It is common knowledge that the reaction should be carried out under relatively high temperature conditions of 500°C or above, and it has not been carried out at low temperatures. It has been found that if oxidative coupling of methane is carried out under relatively low temperature conditions of 700°C, C3 hydrocarbons can be produced with considerable selectivity, contrary to conventional wisdom. Furthermore, the inventors have found that the following catalysts (1) to (4) are most suitable as catalysts to be used at this time, and have completed the present invention.

■:蛍石型結晶構造を有する酸化物にII A族元素が
固溶化された複合酸化物を主成分とする触媒。
(2): A catalyst whose main component is a composite oxide in which a Group II A element is dissolved in an oxide having a fluorite crystal structure.

■:■の触媒にアルカリ金属を含有させた複合酸化物を
主成分とする触媒。
■: A catalyst whose main component is a composite oxide containing an alkali metal in the catalyst of ■.

■:蛍石型結晶構造を有する酸化物に、II A族に属
さない2価または3価を取り得る元素の1種または2種
以上及びアルカリ金属が固溶化された複合酸化物を主成
分とする触媒。
■: The main component is a composite oxide in which one or more divalent or trivalent elements that do not belong to Group II A and an alkali metal are dissolved in an oxide having a fluorite crystal structure. catalyst.

上記■の触媒がC5炭化水素製造に最適である理由につ
いては全てを解明し得た訳ではないが、おそらく蛍石型
結晶構造を有する酸化物にII A族元素が固溶化され
た複合酸化物は、酸素欠陥をもつ安定した結晶構造をと
り、この構造の触媒がメタンの酸化カップリングに際し
てメタンを3分子集合させC5炭化水素製造を生成し得
る様になフたものと考えられる。
Although we have not yet fully elucidated the reason why the catalyst described in (1) above is optimal for producing C5 hydrocarbons, it is probably a composite oxide in which Group II A elements are dissolved in an oxide with a fluorite crystal structure. It is thought that the catalyst has a stable crystal structure with oxygen vacancies, and that the catalyst with this structure is able to assemble three molecules of methane during oxidative coupling of methane to produce C5 hydrocarbons.

また本発明者らの実験によると、本発明に係る触媒は塩
基性であることが必要であり、II A族元素を含有し
た触媒は元来塩基性を示すことから、上記■の触媒では
II A族の元素(Be、Mg。
Furthermore, according to experiments conducted by the present inventors, the catalyst according to the present invention needs to be basic, and catalysts containing Group II A elements are inherently basic. Group A elements (Be, Mg.

Ca、Sr、Ba、Ra)は上記結晶構造を有すると共
に、塩基性を示す。従って塩基性を高めるという観点か
ら、上記の触媒に対してLi。
Ca, Sr, Ba, Ra) have the above crystal structure and exhibit basicity. Therefore, from the viewpoint of increasing basicity, Li is added to the above catalyst.

Na、に、Rh、Cs、Fr等のアルカリ金属を含有さ
せることも有効であり(上記触媒■)、これによってC
1収率を更に高めることができる。
It is also effective to incorporate alkali metals such as Rh, Cs, and Fr into Na (catalyst ① above);
1 yield can be further increased.

尚酸素欠陥をもつ安定した結晶構造は、蛍石型結晶構造
を有する酸化物に対しHA族に属さない2価を取り得る
元素例えばII B族(Zn、Cd等)、または3価を
取り得る元素例えばIII B族(Ga、In、TI等
)等を固溶化することによっても得られるが、この場合
は複合酸化物が塩基性を示さないので、アルカリ金属を
含有させて塩基性にする必要がある(上記触媒■)。ち
なみに本発明者らが実験によって確認したところによる
と、Ca0−ZrO,複合酸化物は正方晶型であったが
、これを触媒として用いてもC5炭化水素は生成しなか
った。
In addition, a stable crystal structure with oxygen defects is an element that does not belong to the HA group and can be divalent, such as II B group (Zn, Cd, etc.), or can be trivalent, for an oxide having a fluorite crystal structure. It can also be obtained by making a solid solution of elements such as group III B (Ga, In, TI, etc.), but in this case, since the composite oxide does not show basicity, it is necessary to contain an alkali metal to make it basic. (catalyst ■ above). Incidentally, the present inventors confirmed through experiments that the Ca0-ZrO composite oxide was a tetragonal crystal type, but no C5 hydrocarbons were produced even when this was used as a catalyst.

尚本発明で用いる「蛍石型結晶構造を有する酸化物」と
しては、ZrO2が代表例として挙げられるが、その他
HfO2、CeO2、Pr02 。
A representative example of the "oxide having a fluorite crystal structure" used in the present invention is ZrO2, but other examples include HfO2, CeO2, and Pr02.

TbO,等がある。There are TbO, etc.

本発明においては、500〜700℃の温度範囲でメタ
ンを酸化カップリングすることによってC3炭化水素が
得られるのは上述した通りであるが、これは温度条件が
5oo℃未満ではメタンの酸化(社務)反応が進行せず
、また700tを超えるとエタンやエチレン等の02炭
化水素が生成してくるからである。
As mentioned above, in the present invention, C3 hydrocarbons are obtained by oxidative coupling of methane in the temperature range of 500 to 700°C. ) This is because the reaction does not proceed and if the amount exceeds 700 tons, 02 hydrocarbons such as ethane and ethylene are produced.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後期の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
Any design changes that reflect the purpose of the latter part are included within the technical scope of the present invention.

[実施例] 実施例1 日本触媒化学工業製のジルコニアゾルに硝酸カルシウム
を様々な割合で加えて加熱攪拌した後乾燥し、400℃
で2時間焼成した夜更にaOO℃で4時間焼成し、4.
8,20mo1%Ca0−ZrO,触媒を製造した。尚
得られた触媒は、XRD測定によると正方晶型か立法晶
型のいずれかを示していた。
[Example] Example 1 Calcium nitrate was added in various proportions to zirconia sol manufactured by Nippon Shokubai Chemical Industry Co., Ltd., heated and stirred, and then dried at 400°C.
4. After baking for 2 hours at 4.
A catalyst containing 8.20 mo1% Ca0-ZrO was produced. According to XRD measurement, the obtained catalyst exhibited either a tetragonal crystal type or a cubic crystal type.

次に上記触媒を用い、様々な温度条件下でメタンの酸化
カップリングを行ない、C3炭化水素の生成状況を調査
した。このとき上記触媒は0.05g用い、CH4:0
2  :Heの混合ガスを流速50m1/分の割合で流
した。その結果は、第1表および第2表に示す通りであ
り、500〜7oo℃の温度範囲で03炭化水素が得ら
れていた。
Next, using the above catalyst, oxidative coupling of methane was carried out under various temperature conditions, and the production status of C3 hydrocarbons was investigated. At this time, 0.05 g of the above catalyst was used, and CH4:0
2: A mixed gas of He was flowed at a flow rate of 50 ml/min. The results are shown in Tables 1 and 2, and 03 hydrocarbons were obtained in the temperature range of 500 to 70°C.

実施例2 硝酸カルシウムの代わりに硝酸マグルシウムを用いる以
外は実施例1と同様として8mo1%MgO−ZrO2
触媒を調製し、この触媒を用いて実施例1と同様にして
メタンの酸化カップリングを行ない、C3炭化水素の生
成状況を調査した。その結果は、第3表に示す通りであ
り、低温側でC5炭化水素の生成が肥められた。
Example 2 Same as Example 1 except that maglucium nitrate was used instead of calcium nitrate, but 8 mo1% MgO-ZrO2
A catalyst was prepared, and using this catalyst, oxidative coupling of methane was carried out in the same manner as in Example 1, and the production status of C3 hydrocarbons was investigated. The results are shown in Table 3, and the production of C5 hydrocarbons was enhanced on the low temperature side.

実施例3 日本触媒化学工業製のジルコニアゾルに硝酸カルシウム
および硝酸リチウムを加えて加熱攪拌した後乾燥し、4
00℃で2時間焼成した夜更にaOO℃で4時間焼成し
、5mo1%Li−8mo1%Ca0−ZrOz触媒を
製造した。得られた触媒は、XRD測定によると正方晶
型を示していた。
Example 3 Calcium nitrate and lithium nitrate were added to zirconia sol manufactured by Nippon Shokubai Chemical Industry Co., Ltd., heated and stirred, and then dried.
At night after firing at 00°C for 2 hours, the mixture was further fired at aOO°C for 4 hours to produce a 5mol%Li-8mo1%Ca0-ZrOz catalyst. The obtained catalyst exhibited a tetragonal crystal type according to XRD measurement.

次に上記触媒を用い、様々な温度条件下でメタンの酸化
カップリングを行ない、C5炭化水素の生成状況を調査
した。尚このときの酸化カップリング条件は実施例1と
同様である。その結果は第4表に示す通りであり、50
0〜700℃の温度範囲でC5炭化水素が得られていた
Next, using the above catalyst, oxidative coupling of methane was carried out under various temperature conditions, and the production status of C5 hydrocarbons was investigated. The oxidative coupling conditions at this time are the same as in Example 1. The results are shown in Table 4, and 50
C5 hydrocarbons were obtained in the temperature range from 0 to 700°C.

実施例4 硝酸カルシウムの代わりに硝酸マグルシウムまたは硝酸
カドニウムを用いる以外は、実施例3と同様にして5m
o1%LL−ano1%MgO−ZrO2触媒と5mo
1%Li−8mo1%Cad−ZrO2触媒を調製し、
これらの触媒を用いて実施例1〜3と同様にしてメタン
の酸化カップリングを行ない、C5炭化水素の生成状況
を調査した。その結果は、第5表に示す通りであり、低
温側で03炭化水素の生成が認められた。
Example 4 A 5 m
o1%LL-ano1%MgO-ZrO2 catalyst and 5mo
Prepare 1% Li-8mo1%Cad-ZrO2 catalyst,
Oxidative coupling of methane was carried out using these catalysts in the same manner as in Examples 1 to 3, and the production status of C5 hydrocarbons was investigated. The results are shown in Table 5, and the formation of 03 hydrocarbons was observed on the low temperature side.

実施例5 日本触媒化学工業製のジルコニアゾルに硝酸イツトリウ
ムを加えると共に、各種割合の硝酸リチウムを加えて加
熱攪拌した後乾燥し、400℃で2時間焼成した夜更に
800℃で4時間焼成し、Liを様々な割合で含有させ
た4 mo1%’(202−ZrO2触媒を製造した。
Example 5 Yttrium nitrate was added to zirconia sol manufactured by Nippon Shokubai Chemical Industry Co., Ltd., as well as lithium nitrate in various proportions, heated and stirred, dried, fired at 400°C for 2 hours, and further fired at 800°C for 4 hours at night. 4 mol%' (202-ZrO2 catalysts) containing Li in various proportions were prepared.

尚得られた触媒は、XRD測定によると正方晶型を示し
ていた。
The obtained catalyst had a tetragonal crystal structure according to XRD measurement.

次に上記各触媒を用い、高温側と低温後の温度条件下で
メタンの酸化カップリングを行ない、C5炭化水素の生
成状況を調査した。尚酸化カップリング条件は実施例1
〜4と同様である。その結果は第6表に示す通りであり
、低温側で03炭化水素の生成が認められた。
Next, using each of the above catalysts, oxidative coupling of methane was performed under high temperature and low temperature conditions, and the production status of C5 hydrocarbons was investigated. The oxidative coupling conditions are as in Example 1.
- Same as 4. The results are shown in Table 6, and the formation of 03 hydrocarbons was observed on the low temperature side.

実施例6 硝酸イツトリウムの代わりにLa、In、TIの各硝酸
塩を用いる以外は、実施例5と同様にして5 mo1%
;Li −4mo14La20s −Zr0z触媒、5
molXl、i−4mol零In2O5−ZrO2触媒
、および5molkLi4mol零TIJ3− ZrO
2触媒を調製し、これらの触媒を用いて実施例5と同様
にしてメタンの酸化カップリングを行ない、C3炭化水
素の生成状況を調査した。その結果は第7表に示す通り
であり、低温側でC5炭化水素の生成が認められた。
Example 6 5 mo1% was prepared in the same manner as in Example 5 except that La, In, and TI nitrates were used instead of yttrium nitrate.
;Li-4mo14La20s-Zr0z catalyst, 5
molXl, i-4mol zero In2O5-ZrO2 catalyst, and 5molkLi4mol zeroTIJ3-ZrO
Two catalysts were prepared, and using these catalysts, oxidative coupling of methane was carried out in the same manner as in Example 5, and the production status of C3 hydrocarbons was investigated. The results are shown in Table 7, and the formation of C5 hydrocarbons was observed on the low temperature side.

[発明の効果] 以上述べた如く本発明によれば、プロパンやプロピレン
等のC5炭化水素をメタンの酸化カップリングによって
効率よく製造することができる様になった。
[Effects of the Invention] As described above, according to the present invention, C5 hydrocarbons such as propane and propylene can be efficiently produced by oxidative coupling of methane.

手続補正書 (自発) 平成元年10月 6日Procedural amendment (spontaneous) October 1989 6th day

Claims (4)

【特許請求の範囲】[Claims] (1)蛍石型結晶構造を有する酸化物にIIA族元素が固
溶化された複合酸化物を主成分とすることを特徴とする
C_3炭化水素製造用触媒。
(1) A catalyst for producing C_3 hydrocarbons, characterized in that the main component is a composite oxide in which a Group IIA element is dissolved in an oxide having a fluorite crystal structure.
(2)蛍石型結晶構造を有する酸化物にIIA族元素及び
アルカリ金属元素が固溶化された複合酸化物を主成分と
することを特徴とするC_3炭化水素製造用触媒。
(2) A catalyst for producing C_3 hydrocarbons, characterized in that the main component is a composite oxide in which a group IIA element and an alkali metal element are dissolved in an oxide having a fluorite crystal structure.
(3)蛍石型結晶構造を有する酸化物に、IIA族に属さ
ない2価を取り得る元素及びIII族元素よりなる群から
選ばれる1種または2種以上の元素並びにアルカリ金属
元素が固溶化された複合酸化物を主成分とすることを特
徴とするC_3炭化水素製造用触媒。
(3) One or more elements selected from the group consisting of divalent elements that do not belong to Group IIA and Group III elements and an alkali metal element are dissolved in an oxide having a fluorite crystal structure. A catalyst for producing C_3 hydrocarbons, characterized in that the main component is a composite oxide produced by
(4)メタン含有ガスおよび酸素含有ガスを、反応温度
500〜700℃の範囲で、請求項(1)〜(3)のい
ずれかの触媒に接触させてC_3炭化水素を得ることを
特徴とするC_3炭化水素の製造方法。
(4) C_3 hydrocarbons are obtained by contacting a methane-containing gas and an oxygen-containing gas with the catalyst according to any one of claims (1) to (3) at a reaction temperature of 500 to 700°C. Method for producing C_3 hydrocarbons.
JP1258137A 1989-10-02 1989-10-02 Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon Pending JPH03118834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258137A JPH03118834A (en) 1989-10-02 1989-10-02 Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258137A JPH03118834A (en) 1989-10-02 1989-10-02 Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon

Publications (1)

Publication Number Publication Date
JPH03118834A true JPH03118834A (en) 1991-05-21

Family

ID=17316032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258137A Pending JPH03118834A (en) 1989-10-02 1989-10-02 Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon

Country Status (1)

Country Link
JP (1) JPH03118834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209977A (en) * 2006-01-20 2007-08-23 Petrochina Co Ltd Heterogeneous solid base catalyst, and production process and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209977A (en) * 2006-01-20 2007-08-23 Petrochina Co Ltd Heterogeneous solid base catalyst, and production process and use thereof

Similar Documents

Publication Publication Date Title
US4939311A (en) Catalysts for the oxidative conversion of methane to higher hydrocarbons
US4748143A (en) Perovskite-type oxidation catalysts and method for preparing the catalysts
JPS635035A (en) Boron-promoting reductive metal oxide and use
NZ236632A (en) Mixed metal oxide membrane having perovskite structure, electrochemical reactor
KR850002041A (en) Heat-resistant catalyst and its use
FR2721837A1 (en) OXIDATION CATALYST RESISTANT TO HIGH TEMPERATURES, PROCESS FOR PREPARING THE SAME, AND COMBUSTION METHOD USING SUCH A CATALYST
US8927455B2 (en) Single-step precipitation method of producing magnesia-zirconia complex carrier for catalyst for oxidative dehydrogenation of n-butane, magnesium orthovanadate catalyst supported on magnesia-zirconia complex carrier, and method of producing n-butene and 1,3-butadiene using said catalyst
JPS62223132A (en) Manufacture of higher hydrocarbon from methane
US4026823A (en) Hydrocarbon reforming catalyst and method for preparing same
US3533963A (en) Catalytic compositions used in steam reforming and methods for their production
CN113908840A (en) Fe-based multifunctional catalyst and preparation method and application thereof
WO2020253712A1 (en) Catalyst for directly converting syngas to prepare low-carbon olefin and preparation method therefor
CN102600852B (en) Catalyst for preparing dimethyl ether as well as preparation method and application thereof
US4997802A (en) Catalyst for preparation of hydrocarbons
Ko et al. Synthesis of metal–organic frameworks (MOFs) and their application in the selective catalytic reduction of NO x with NH 3
CN102164879A (en) Semi-supported dehydrogenation catalyst
US8809226B2 (en) Method of producing carrier for catalyst for oxidative dehydrogenation of n-butane, method of producing carrier-supported magnesium orthovanadate catalyst, and method of producing n-butene and 1, 3-butadiene using said catalyst
JPH03262535A (en) Catalyst for producing 2c hydrocarbon and preparation thereof
JPH03118834A (en) Catalyst for production of 3c hydrocarbon and production of 3c hydrocarbon
KR20200082080A (en) A catalyst for manufacturing olefin, including oxygen carrier material and dehydrogenation catalyst
Yan et al. Oxidative coupling of methane over Mo–Sn catalysts
CN112642418A (en) CO2Catalyst for preparing ethylene by selective oxidation ethane dehydrogenation and preparation method thereof
JP3790142B2 (en) Catalyst for producing carbon monoxide and ethylene from carbon dioxide and ethane and preparation method thereof
JPS6150640A (en) Catalyst for preparing methane-containing gas
CN112958066B (en) Catalyst for preparing low-carbon olefin by catalyzing bioethanol and application thereof