JPH03117831A - Air conditioner for airplane - Google Patents

Air conditioner for airplane

Info

Publication number
JPH03117831A
JPH03117831A JP25560689A JP25560689A JPH03117831A JP H03117831 A JPH03117831 A JP H03117831A JP 25560689 A JP25560689 A JP 25560689A JP 25560689 A JP25560689 A JP 25560689A JP H03117831 A JPH03117831 A JP H03117831A
Authority
JP
Japan
Prior art keywords
air
flow rate
fresh air
pressurized chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25560689A
Other languages
Japanese (ja)
Inventor
Hisashi Mitani
三谷 寿
Toshiichi Suefuji
末藤 敏一
Minoru Yoshida
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP25560689A priority Critical patent/JPH03117831A/en
Publication of JPH03117831A publication Critical patent/JPH03117831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)

Abstract

PURPOSE:To prevent thrust force of an engine from being decreased by a method wherein an air supplying system is provided with a flow rate control mechanism of a control valve for increasing or decreasing the flow rate of fresh air, a sensing means for measuring the flow rate of fresh air and a control means for controlling a control valve to cause the measured value to be kept at a target value. CONSTITUTION:An air supplying passage L2 is provided with a flow rate control mechanism 4 comprising a pressure control valve 41 for increasing or decreasing the flow rate of fresh air passing in it, a sensing means 42 for measuring the flow rate of fresh air and a control means 43 for use in controlling a pressure control valve 41 so as to cause the measured value to be kept at a target value. In a circulation passage L1, cooling or heating is carried out by a pressure increasing or pressure decreasing mechanism 2 while air in a pre-pressurized room 1 being circulated, and the pre-pressurized chamber 1 is kept at its proper temperature. In the air supplying passage L2, a flow rate is controlled by the flow rate control mechanism 4 and the fresh air of which flow rate is controlled is fed into the pre-pressurized chamber 1. In the discharging passage L3, a pressure within the pre-pressurized chamber 1 is kept at a proper value and the polluted air is discharged out of the machine from the pre- pressurized chamber 1. According to this device, an extracting load of the engine 3 can be positively reduced and then a proper thrust can be assured.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、キャビンやコクピット等の与圧室を′j圧し
、調温し、換気するために利用される航空機用空気調(
11装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an aircraft air conditioner used to pressurize, control temperature, and ventilate pressurized rooms such as cabins and cockpits.
11 devices.

[従来の技術] 従来の航空機用空気調和装置は、第2図に示すように、
機外から与圧室101に凋温された新鮮空気を供給する
給気系路g、と、導入される新鮮空気と略同量の汚れた
空気を前記lj圧室101から機外に導出する排気系路
Ω2とから構成されている。給気系路g1には調温のた
めに加減圧機構102が組み込まれており、圧力制御弁
103を介して略一定の割合でエンジン104から抽気
を得ると、これを全て前記加減圧機構102に通して凋
温し、それを新鮮空気として前記与圧室101に導入す
るようにしている。一方、排気系路Ω2では、取り込ん
だ抽気量に見合う量の与圧室空気を圧力制御弁105を
介して機外に排気するようにしており、その際に前記圧
力制御弁105を調整することで与圧室101の圧力を
適正な値に保持し得るようにしている。
[Prior Art] As shown in FIG. 2, a conventional aircraft air conditioner has the following features:
an air supply system line g that supplies cooled fresh air from outside the machine to the pressurized chamber 101; and an air supply line g that leads out of the machine from the lj pressure chamber 101 approximately the same amount of dirty air as the introduced fresh air; It consists of an exhaust system path Ω2. A pressure regulating mechanism 102 is incorporated in the air supply system g1 for temperature control, and when air is extracted from the engine 104 at a substantially constant rate via a pressure control valve 103, all of this is transferred to the pressure regulating mechanism 102. The air is cooled down by passing through the air, and then introduced into the pressurized chamber 101 as fresh air. On the other hand, in the exhaust system path Ω2, an amount of pressurized chamber air corresponding to the amount of extracted air is exhausted to the outside of the machine via a pressure control valve 105, and at this time, the pressure control valve 105 is adjusted. The pressure in the pressurized chamber 101 can be maintained at an appropriate value.

[発明が解決しようとする課題] ところで、与圧室101に新鮮空気を導入する本来の目
的は、搭乗者に必要なo2を供給し、また、機体からの
空気の漏れにょる与圧レベルの低下を防ぐべく相当量の
空気を補うことにある。したがって、これらの点よりす
れば、必要とされる新鮮空気はさほど大量には至らない
筈である。しかしながら、上述した如〈従来の手法は与
圧室空気を石わば左から右に吹き抜ける状態で換気して
いるため、調温した新鮮空気と、温度変化を来たした与
圧室空気とを常に大量に代謝させなければ、与圧室10
1を適温に維持することは難しい。このため、この構成
を採用するとエンジン抽気量が異常に多くなり、エンジ
ン推力が低下する問題を生じる。また、かかる構成では
、高温高圧のエンジン抽気を大量に調温するために、加
減圧機構102に掛かる負担も必要以りに増大する。
[Problems to be Solved by the Invention] By the way, the original purpose of introducing fresh air into the pressurized chamber 101 is to supply the necessary O2 to the passengers, and also to reduce the pressurization level due to air leakage from the aircraft. The purpose is to supplement a considerable amount of air to prevent the drop. Therefore, considering these points, the amount of fresh air required should not be that large. However, as mentioned above, in the conventional method, the pressurized room air is ventilated by blowing through from left to right, so the temperature-controlled fresh air and the pressurized room air whose temperature has changed are Unless it is constantly metabolized in large quantities, pressurized chamber 10
1 is difficult to maintain at an appropriate temperature. Therefore, if this configuration is adopted, the amount of engine bleed air becomes abnormally large, resulting in a problem that the engine thrust decreases. Further, in such a configuration, in order to control the temperature of a large amount of high-temperature, high-pressure engine bleed air, the load placed on the pressure reduction mechanism 102 increases more than necessary.

本発明は、このような課題に着目してなされたものであ
って、空気調和に必要なエンジン抽気量を必要最少限に
抑える手段を講じることにより、エンジンの推力低下を
抑止し、同時に加減圧機構をコンパクトなもので賄うこ
とができるようにした航空機用空気調和装置を提供する
ことを目的としている。
The present invention has been made with a focus on such problems, and by taking measures to suppress the amount of engine bleed air required for air conditioning to the minimum necessary amount, it is possible to suppress a decrease in engine thrust and at the same time increase or decrease pressure. It is an object of the present invention to provide an air conditioner for an aircraft whose mechanism can be provided with a compact one.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、次のような構
成を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明の航空機用空気調和装置は、す、圧室
の空気を加減圧機構を介して循環させ冷暖房を行う循環
系路と、エンジン抽気を新鮮空気として前記与圧室に直
接又は間接に導入する給気系路と、導入される新鮮空気
と略同量の汚れた空気を前記与圧室から機外に導出する
排気系路とを具備してなるものであって、前記給気系路
に、内部を流通する新鮮空気の流量を増減させる制御弁
と、内部を流通する新鮮空気の流量を測定するための検
出手段と、この検出手段を通じて得られる測定値がr・
め設定した目標値に保持されるように前記制御弁を制御
する制御手段とからなる流量制御機構を設けたことを特
徴とする。
That is, the aircraft air conditioner of the present invention includes: a circulation system path for circulating air in a pressure chamber via a pressurization/depressurization mechanism for cooling and heating; The air supply system includes an air supply system path for introducing air into the air supply system, and an exhaust system path for leading out of the machine from the pressurized chamber approximately the same amount of dirty air as the fresh air introduced, the air supply system A control valve for increasing/decreasing the flow rate of fresh air circulating inside, a detecting means for measuring the flow rate of fresh air circulating inside, and a measured value obtained through this detecting means r.
The present invention is characterized in that a flow control mechanism comprising a control means for controlling the control valve so that the control valve is maintained at a set target value is provided.

し作用」 このような構成を通じて、循環系路では与圧室空気を循
環させながら加減圧することによって該与圧室を適温に
維持するようにし、給気系路では流量制御機構で流量を
目標値にコントロールしながら新鮮空気を与圧室に導入
するようにし、排気系路ではそれに見合う量の汚れた空
気を前記与圧室の圧力を適正に維持しつつ機外に排気す
るようにする。
Through this configuration, the pressurized chamber air is circulated and pressurized in the circulation system to maintain the pressurized chamber at an appropriate temperature, and in the air supply system, the flow rate is controlled by the flow rate control mechanism. Fresh air is introduced into the pressurized chamber while controlling the pressure, and an exhaust system exhausts a corresponding amount of dirty air to the outside of the machine while maintaining the pressure in the pressurized chamber at an appropriate level.

しかして、このように与圧室を、代謝しながら調温する
のではなく、循環という形でその空気の大半を残したま
ま調温するようにすると、給気系路では専ら搭乗者のた
めに必要な0□摂取量を基準として、或いは機体の漏れ
面積を基準として新鮮空気の流量目標値を必要最少限度
において設定することができる。このため、エンジンの
抽気負荷軽減をa効に果たし得るものとなる。また、こ
の構成によると、循環系路では温度変化を来たした与圧
室空気に対して冷暖房すればよく、高温高圧のエンジン
抽気を大量に冷却する場合に比べれば、加減圧機構に掛
かる負担は遥かに軽減されたものとすることができる。
However, if the temperature of the pressurized room is controlled while leaving most of the air in the form of circulation, rather than adjusting the temperature while it is being metabolized, the air supply system will be used exclusively for the passengers. The target flow rate of fresh air can be set at the minimum necessary limit based on the 0□ intake required for this purpose or based on the leakage area of the airframe. Therefore, the bleed air load on the engine can be reduced effectively. In addition, according to this configuration, in the circulation system, it is only necessary to cool or heat the pressurized room air that has undergone a temperature change, and compared to the case where a large amount of high-temperature, high-pressure engine bleed air is cooled, the burden on the pressurization and depressurization mechanism is reduced. can be much reduced.

[実施例コ 以下、本発明の一実施例を第1図を参照して説明する。[Example code] An embodiment of the present invention will be described below with reference to FIG.

この実施例の航空機用空気調和装置は、与圧室(キャビ
ンやコクピット等)1の空気を循環させ冷暖房を行う循
環系路り、と、エンジン3がら抽気したブリードエアを
新鮮空気として前記与圧室1に直接導入する給気系路L
2と、導入された新鮮空気と略同量の汚れた空気を前記
与圧室1がら機外に導出する排気系路L3とから構成さ
れている。
The aircraft air conditioner of this embodiment includes a circulation system path that circulates air in a pressurized room (cabin, cockpit, etc.) 1 for cooling and heating, and a circulation system that circulates air in a pressurized room (cabin, cockpit, etc.) 1, and uses bleed air extracted from an engine 3 as fresh air. Air supply line L directly introduced into room 1
2, and an exhaust system L3 which leads out of the pressurized chamber 1 approximately the same amount of dirty air as the introduced fresh air.

循環系路L1には、電動コンプレッサ21と、シャフト
22に単軸結合されてなるラジアルコンプレッサ23並
びにラジアルタービン24とからなる加減圧機構2が配
設しである。また、前記電動コンプレッサ21と前記ラ
ジアルコンプレッサ23との間、および該ラジアルコン
プレッサ23と前記ラジアルタービン24との間に、そ
れぞれラムエアとの熱交換により循環中の与圧室空気を
冷却し得る熱交換器25.26を配置している。
A pressure regulating mechanism 2 consisting of an electric compressor 21, a radial compressor 23 uniaxially connected to a shaft 22, and a radial turbine 24 is disposed in the circulation path L1. Further, heat exchange is performed between the electric compressor 21 and the radial compressor 23 and between the radial compressor 23 and the radial turbine 24, which can cool the circulating pressurized room air by heat exchange with ram air. The vessels 25 and 26 are arranged.

これにより、与圧室1で昇温した空気が電動コンプレッ
サ21によって循環系路L1内に圧縮状態で取り込まれ
ると、先ず熱交換器25でラムエアとの熱交換により冷
却され、次にラジアルコンプレッサ23で昇圧された後
に再び熱交換器26でラムエアとの熱交換により冷却さ
れ、最後にラジアルタービン24で断熱膨張することに
より自冷して与圧室1に送り返されることになる。この
際、ラジアルタービン24に与えられる膨張仕事はシャ
フト22を介してラジアルコンプレッサ23に入力され
、圧縮動力として利用される。
As a result, when the air whose temperature has increased in the pressurized chamber 1 is taken into the circulation path L1 in a compressed state by the electric compressor 21, it is first cooled by heat exchange with ram air in the heat exchanger 25, and then is cooled by the radial compressor 23. After being pressurized, it is cooled again by heat exchange with ram air in the heat exchanger 26, and finally is self-cooled by adiabatic expansion in the radial turbine 24 and sent back to the pressurized chamber 1. At this time, the expansion work given to the radial turbine 24 is input to the radial compressor 23 via the shaft 22 and used as compression power.

一方、給気系路L2には、内部を流通する新鮮空気の流
量を増減させる圧力制御弁(機能的には流量制御弁)4
1と、内部を流通する新鮮空気の流量を測定するための
検出手段42と、この検出手段42を通じて得られる/
1Ilj定値が予め設定した目標値に保持されるように
前記圧力制御弁41を制御するコントローラ(制御手段
)43とからなる流量制御機構4を設けている。検出手
段42は、ベンチュリ管42aと、このベンチュリ管4
2aのに流に配設された圧力センサ42b及び温度セン
サ42cと、該ベンチュリ管42aの下流に配設された
圧力センサ42dとからなり、各センサ42b、42c
、42dからの検出信号P1、T2、P2をそれぞれ前
記コントローラ43に内蔵された演算子43aに入力す
るようにしている。
On the other hand, the air supply system path L2 has a pressure control valve (functionally, a flow rate control valve) 4 that increases or decreases the flow rate of fresh air flowing therethrough.
1, a detection means 42 for measuring the flow rate of fresh air circulating inside, and / obtained through this detection means 42.
A flow rate control mechanism 4 is provided, which includes a controller (control means) 43 that controls the pressure control valve 41 so that the constant value of 1Ilj is maintained at a preset target value. The detection means 42 includes a venturi tube 42a and a venturi tube 42a.
It consists of a pressure sensor 42b and a temperature sensor 42c disposed downstream of the venturi tube 42a, and a pressure sensor 42d disposed downstream of the venturi tube 42a.
, 42d are input to an operator 43a built in the controller 43, respectively.

この演算子43aには、各検出値P1、T1、P2と、
ベンチュリ管42aのストロ−径Sとから、ベルヌーイ
の定理に基づいた一般式 %式%) により、給気系路L2内を流通する新鮮空気の流量ωを
求めるための回路が組み込まれている。そして、その測
定値ωを電圧信号(又は電流信号)として次段に配置さ
れた演算子43bに人力するようにしている。
This operator 43a includes each detected value P1, T1, P2,
A circuit is incorporated for determining the flow rate ω of fresh air flowing through the air supply system path L2 from the straw diameter S of the Venturi pipe 42a using the general formula % formula based on Bernoulli's theorem. Then, the measured value ω is manually inputted as a voltage signal (or current signal) to an operator 43b arranged at the next stage.

一方、演算子43bには、予め新鮮空気の流量目標値ω
8がデータマツプとして格納されており、前記演算子4
3aから入力される測定値ωをそのデータマツプI―の
目標値ω8と比較して、ωくω8の場合には前記圧力制
御弁41に対して0PEN信号を出力し、ω〉ω8の場
合には該圧力制御弁41に対してCLO8E信号を出力
し得るように構成されている。この際の目標値ω8とは
、例えば、必要な02を摂取できるための目標値ω18
と、必要な与圧状態を維持できるための目標値ω28と
の2種類を準備し、そのうちの大きい方が自動的に選択
されるようなものであることが望ましい。ω18は与圧
室1の乗員乗客数等から割り出される性質のものであり
、ω2*は、与圧室1の圧力をP3  (この値はPめ
飛行高度に対して設定されている)、その温度をT3、
機体の漏れ面積をA1係数をBとした場合に、 ω2 ” =A−B−P) / (T3 ) 1′”な
る一般式から割り出される性質のものである。
On the other hand, the operator 43b has a fresh air flow rate target value ω set in advance.
8 is stored as a data map, and the operator 4
The measured value ω input from 3a is compared with the target value ω8 of the data map I-, and if ω is less than ω8, a 0PEN signal is output to the pressure control valve 41, and if ω>ω8, the 0PEN signal is output. It is configured to be able to output a CLO8E signal to the pressure control valve 41. The target value ω8 at this time is, for example, the target value ω18 for ingesting the necessary 02.
It is desirable to prepare two types, ie, and a target value ω28 for maintaining the necessary pressurized state, and the larger one of them is automatically selected. ω18 is determined from the number of passengers and crew members in pressurized chamber 1, and ω2* is the pressure in pressurized chamber 1, P3 (this value is set for P flight altitude), The temperature is T3,
The leakage area of the fuselage is determined from the general formula ω2''=A-B-P)/(T3)1''', where A1 is the coefficient of B.

なお、ω2″の計算のために、図示装置では与圧室1に
センサ11を設け、このセンサ11から検出信号T3を
取り出して前記演算子43aに人力するようにしている
(演算子43bに人力するようにしてもよい)。
In order to calculate ω2'', in the illustrated device, a sensor 11 is provided in the pressurized chamber 1, and a detection signal T3 is extracted from this sensor 11 and manually inputted to the operator 43a (operator 43b is manually inputted). ).

さらに、排気系路L3には、アウトフローバルブ51と
、このアウトフローバルブ51の下流に配設した圧力セ
ンサ52と、前記与圧室1に設置した圧力センサ12と
、両正カセンサ12.52からの検出信号P3、P4を
入力し、これらの検出値に基づいて前記アウトフローバ
ルブ51に制御信号を出力する演算子53とから構成さ
れるキャビンプレッシャコントローラ5を設けている。
Furthermore, the exhaust system L3 includes an outflow valve 51, a pressure sensor 52 disposed downstream of the outflow valve 51, a pressure sensor 12 disposed in the pressurized chamber 1, and both positive force sensors 12.52. A cabin pressure controller 5 is provided, which includes an operator 53 which inputs detection signals P3 and P4 from the engine and outputs a control signal to the outflow valve 51 based on these detection values.

すなわち、演算子53には P =P 3P a に従って圧力差Pを求めるための回路が組み込まれてお
り、また、測定値Pに対してこれを補正すべき目標値P
8が予め設定されている。そして、該演算子53から、
P>P”の場合にアウトフロバルブ51に対して0PE
N信号を出力し、PくPゞの場合に該アウトフローバル
ブ51に対してCLO8E信すを出力し得るようになっ
ている。
That is, the operator 53 has a built-in circuit for determining the pressure difference P according to P = P 3P a , and also calculates the target value P to which the measured value P should be corrected.
8 is preset. Then, from the operator 53,
0PE for outflow valve 51 when P>P”
It outputs an N signal, and in the case of P and P, it can output a CLO8E signal to the outflow valve 51.

目標値P”は、主として客室環境の快適性の観点から、
与圧室1を機外よりも若干高い圧力に維持しておくよう
に設定される。
The target value P'' is determined mainly from the viewpoint of comfort of the cabin environment.
The pressure in the pressurized chamber 1 is maintained at a pressure slightly higher than that outside the aircraft.

このような構成を通じて、循環系路L1では与圧室1の
空気を循環させながら加減圧機構2による冷暖房を行な
うことで該与圧室1を適温に維持し、給気系路L2では
流量制御機構4で流量をコントロールしながら最適に流
量制御された新鮮空気を与圧室1に導入し、排気系路L
3では前記与圧室1の圧力を適正に維持しつつ汚れた空
気を該与圧室1から一機外に排気するという作用が営ま
れることになる。
Through this configuration, the pressurized chamber 1 is maintained at an appropriate temperature by circulating the air in the pressurized chamber 1 while being heated and cooled by the pressurization mechanism 2 in the circulation system path L1, and the air supply system L2 maintains the pressurized chamber 1 at an appropriate temperature. While the flow rate is controlled by the mechanism 4, fresh air whose flow rate is optimally controlled is introduced into the pressurized chamber 1, and the exhaust system L
3, the function is to exhaust dirty air from the pressurized chamber 1 to the outside of the machine while maintaining the pressure in the pressurized chamber 1 appropriately.

しかして、この装置によると、従来に比べて遥かに少な
いエンジン抽気量で、与圧室1の調温、02の供給、与
圧の維持を全て賄い得ることになる。このため、エンジ
ン3の抽気負荷を確実に軽減して適正な推力を確保する
ことができる。しかも、この構成によると、加減圧機構
2はある程度の調温機能を備えたものであればよく、従
来はど苛酷な使用を強いられることがないので、コンパ
クト化を図ることも容易となる。
According to this device, the temperature control of the pressurized chamber 1, the supply of 02, and the maintenance of pressurization can all be accomplished with a much smaller amount of engine bleed air than in the past. Therefore, the bleed load on the engine 3 can be reliably reduced and appropriate thrust can be ensured. Moreover, according to this configuration, the pressurizing/decreasing mechanism 2 only needs to have a certain degree of temperature control function, and is not forced to use harshly as in the past, making it easy to make it compact.

以上、本発明の一実施例について説明したが、各部の構
成は図示例に限定されず、本発明の趣旨を逸脱しない範
囲で種々変形が可能である。例えば、給気系路L2をI
−)圧室1に直接接続する代わりに、図中想像線に示す
ラインL4を通じて間接的に該Ii−圧室1に接続する
ようにしてもよい。特に、図示のように循環系路3の電
動コンプレッサ21下流に新鮮空気を導入するようにし
た場合には、!−記実施例で述べた作用効果に加えて、
該電動コンプレッサ21の負担を軽減することによる小
型化の効果も同時に期することが可能となる。
Although one embodiment of the present invention has been described above, the configuration of each part is not limited to the illustrated example, and various modifications can be made without departing from the spirit of the present invention. For example, if the air supply system path L2 is
-) Instead of being directly connected to the pressure chamber 1, it may be indirectly connected to the Ii-pressure chamber 1 through a line L4 shown as an imaginary line in the figure. Especially when fresh air is introduced downstream of the electric compressor 21 in the circulation path 3 as shown in the figure! - In addition to the effects described in the examples above,
By reducing the burden on the electric compressor 21, it is also possible to achieve the effect of downsizing.

また、演算子の代わりに汎用マイクロコンピュータを用
いるようにしてもよい。この場合は、等価な機能が発揮
されるようなプログラムを書き込むだけでよく、ハード
設計を省いて製作を簡略化するメリットが得られる。
Furthermore, a general-purpose microcomputer may be used instead of the operator. In this case, all you need to do is write a program that provides equivalent functionality, which has the advantage of omitting hardware design and simplifying production.

[発明の効果] 本発明の航空機用空気調和装置は、以上のような構成で
あるから、空気調和に必要なエンジン抽気量を低減し、
その結果、エンジン推力の低下を白゛効に抑止すること
が可能になる。また、加減圧機構に掛かる負担も軽減さ
れるため、系のコンパクト化も容易に図り得るものとな
る。
[Effects of the Invention] Since the aircraft air conditioner of the present invention has the above configuration, the amount of engine bleed air required for air conditioning is reduced,
As a result, it becomes possible to effectively suppress a decrease in engine thrust. Furthermore, since the load placed on the pressure adjustment mechanism is reduced, the system can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成概念図である。第
2図は従来例を示す第1図相当の構成概念図である。 1・・・与圧室(キャビン)2・・・加減圧機構4・・
・流量制御機構  41・・・圧力制御弁42・・・検
出手段 43・・・制御手段(コントローラ) Ll・・・循環系路    L2・・・給気系路L3・
・・排気系路
FIG. 1 is a conceptual diagram showing an embodiment of the present invention. FIG. 2 is a conceptual diagram corresponding to FIG. 1 showing a conventional example. 1... Pressurized room (cabin) 2... Pressurization/depressurization mechanism 4...
・Flow rate control mechanism 41...Pressure control valve 42...Detection means 43...Control means (controller) Ll...Circulation system path L2...Air supply system path L3・
・Exhaust system path

Claims (1)

【特許請求の範囲】[Claims] 与圧室の空気を加減圧機構を介して循環させ冷暖房を行
う循環系路と、エンジン抽気を新鮮空気として前記与圧
室に直接又は間接に導入する給気系路と、導入される新
鮮空気と略同量の汚れた空気を前記与圧室から機外に導
出する排気系路とを具備してなるものであって、前記給
気系路に、内部を流通する新鮮空気の流量を増減させる
制御弁と、内部を流通する新鮮空気の流量を測定するた
めの検出手段と、この検出手段を通じて得られる測定値
が予め設定した目標値に保持されるように前記制御弁を
制御する制御手段とからなる流量制御機構を設けたこと
を特徴とする航空機用空気調和装置。
A circulation system path that circulates air in the pressurized chamber via a pressurization/depressurization mechanism for cooling and heating, an air supply system path that directly or indirectly introduces engine bleed air as fresh air into the pressurized chamber, and fresh air to be introduced. and an exhaust system path that leads approximately the same amount of dirty air from the pressurized chamber to the outside of the machine, and the air supply system path is configured to increase or decrease the flow rate of fresh air circulating inside the air supply system. a control valve for controlling the control valve, a detection means for measuring the flow rate of fresh air flowing therethrough, and a control means for controlling the control valve so that the measured value obtained through the detection means is maintained at a preset target value. An air conditioner for an aircraft, characterized by being provided with a flow rate control mechanism consisting of.
JP25560689A 1989-09-30 1989-09-30 Air conditioner for airplane Pending JPH03117831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25560689A JPH03117831A (en) 1989-09-30 1989-09-30 Air conditioner for airplane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25560689A JPH03117831A (en) 1989-09-30 1989-09-30 Air conditioner for airplane

Publications (1)

Publication Number Publication Date
JPH03117831A true JPH03117831A (en) 1991-05-20

Family

ID=17281070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25560689A Pending JPH03117831A (en) 1989-09-30 1989-09-30 Air conditioner for airplane

Country Status (1)

Country Link
JP (1) JPH03117831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335792A (en) * 1995-06-08 1996-12-17 Blue Medical Sci:Kk Motor protective device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120296A (en) * 1985-11-19 1987-06-01 富士重工業株式会社 Air conditioner in aircraft
JPS6441743A (en) * 1987-07-20 1989-02-14 Boeing Co Ventilation controller and method of pressed closed space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120296A (en) * 1985-11-19 1987-06-01 富士重工業株式会社 Air conditioner in aircraft
JPS6441743A (en) * 1987-07-20 1989-02-14 Boeing Co Ventilation controller and method of pressed closed space

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335792A (en) * 1995-06-08 1996-12-17 Blue Medical Sci:Kk Motor protective device

Similar Documents

Publication Publication Date Title
CN107792377B (en) Air flow adjustment for an aircraft air conditioning system
US9809314B2 (en) Aircraft air conditioning system and method of operating an aircraft air conditioning system
US5145124A (en) Fluid conditioning system and apparatus
US10752365B2 (en) Method and device for thermal control of a plurality of cabins of a vehicle
EP2651763B1 (en) Method and device for controlling an aircraft air conditioning system
US4445342A (en) Multi-zone temperature control in air cycle refrigeration systems
US9592916B2 (en) Aircraft air conditioning system and method for controlling an aircraft air conditioning system using a bypass valve
US20080019842A1 (en) System and method for controlling compressor flow
JPH03117831A (en) Air conditioner for airplane
EP2886461A1 (en) Air-conditioning system for an aircraft, method for air-conditioning an aircraft and aircraft having such an air-conditioning system
US2870698A (en) Recirculating flow aircraft air conditioning system
US10906653B2 (en) Aircraft air conditioning system with a reduced process air demand
GB2166542A (en) Air conditioning systems for aircraft cabins
JP4023018B2 (en) Aircraft environmental control equipment
JP2587875B2 (en) Air conditioner for aircraft
EP3808658A1 (en) Environmental control system
RU2392196C2 (en) Device and method of air feed for inert gas generation and their application at aircraft
CN110471475B (en) Temperature regulation system and application method implemented by same
JP4170492B2 (en) Aircraft environmental control equipment
JP2001294028A (en) Air-conditioning system
CN112977834A (en) Cockpit constant external airflow for all flight conditions
JPH0391630A (en) Air conditioner
JP2586648B2 (en) Air conditioner for aircraft
JPH0391629A (en) Air conditioner
JPS6020205B2 (en) Aircraft air conditioner