JPH03117182A - Video camera - Google Patents

Video camera

Info

Publication number
JPH03117182A
JPH03117182A JP1254089A JP25408989A JPH03117182A JP H03117182 A JPH03117182 A JP H03117182A JP 1254089 A JP1254089 A JP 1254089A JP 25408989 A JP25408989 A JP 25408989A JP H03117182 A JPH03117182 A JP H03117182A
Authority
JP
Japan
Prior art keywords
high frequency
solid
output
circuit
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254089A
Other languages
Japanese (ja)
Inventor
Kenzo Akagiri
健三 赤桐
Seiichiro Iwase
岩瀬 清一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1254089A priority Critical patent/JPH03117182A/en
Publication of JPH03117182A publication Critical patent/JPH03117182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To eliminate need for any mechanical part, to reduce power consumption and to improve reliability by tilting a solid-state image pickup means by a prescribed angle and comparing high frequency components of image pickup outputs of the solid-state image pickup means focused in the forward and in the backward direction of an object so as to apply focus control. CONSTITUTION:A video output signal from a CCD 3 is fed to a high pass filter HPF 17 through a gate circuit 16 to obtain an automatic focus control signal. Then a high frequency component power for each line is fed to a register 20 registered for 1H period and fed directly to a comparator circuit 21. The comparator circuit 21 compares high frequency power between adjacent lines and gives the result of comparison to a judging circuit 22. The output of the judging circuit 22 is fed to a motor 2e as a focus control signal via an output terminal 23 to move a focus lens 2a in the direction of the arrow thereby making focusing state.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はオートフォーカス機能を有するビデオカメラに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a video camera having an autofocus function.

〔発明の概要〕[Summary of the invention]

本発明はオートフォーカス機能を有するビデオカメラに
関し、撮像光をフォーカスレンズを介して電荷結合素子
の様な固体撮像手段に照射し、この固体撮像手段よりの
高周波成分を検出し、この検出出力に基づいて、フォー
カスレンズを駆動して、フォーカスレンズと固体撮像手
段間の光路長を自動的に可変するオートフォーカス機能
を有するビデオカメラに於いて、固体撮像手段をフォー
カスレンズの光軸に対して所定角度傾斜させると共に固
体撮像手段のフォーカスレンズに対し遠い領域の撮像出
力と、近い領域の撮像出力との高周波成分の大小を比較
する比較手段を有し、比較手段の出力に応じてフォーカ
スレンズの駆動方向を決定するようにさせることで簡単
な構成で消費電力の少ない信頼性の高いオートフォーカ
ス制御ができるビデオカメラを得る用にしたものである
The present invention relates to a video camera having an autofocus function, in which imaging light is irradiated onto a solid-state imaging means such as a charge-coupled device through a focus lens, high-frequency components from the solid-state imaging means are detected, and based on this detection output, the present invention relates to a video camera having an autofocus function. In a video camera having an autofocus function that automatically changes the optical path length between the focus lens and the solid-state imaging means by driving the focus lens, the solid-state imaging means is set at a predetermined angle with respect to the optical axis of the focus lens. The focusing lens of the solid-state imaging means is tilted and has a comparing means for comparing the magnitude of high frequency components between an imaging output in a far region and an imaging output in a near region with respect to the focusing lens of the solid-state imaging means, and the driving direction of the focusing lens is determined according to the output of the comparing means. This is intended to provide a video camera that has a simple configuration, consumes little power, and can perform highly reliable autofocus control.

〔従来の技術〕[Conventional technology]

従来からビデオカメラのオートフォーカス方法には種々
の方法が提案されている。オートフォーカス方法は大き
く分けると撮像レンズに入ってくる光の情報を焦点合わ
せに利用するパッシブ方式とカメラ側から信号を発射し
、被写体で反射して来た信号情報を焦点合わせに用いる
アクティブ方式に大別される。このうちのアクティブ方
式は撮像レンズを通して撮像素子に入射する被写体情報
以外に赤外線等の発光素子や受光素子を必要とし、撮像
情報と異なる目標値を持つ等多くの問題を含んでいる。
Conventionally, various methods have been proposed as autofocus methods for video cameras. Autofocus methods can be broadly divided into passive methods, which use information from the light entering the imaging lens for focusing, and active methods, which emit a signal from the camera and use the signal information reflected by the subject to determine focus. Broadly classified. Among these, the active method requires a light-emitting element and a light-receiving element such as infrared rays in addition to the subject information that enters the image sensor through the imaging lens, and has many problems such as having a target value different from the imaging information.

パッシブ方式の中にも種々のオートフォーカス方法が提
案されているが、その代表的なものはイメージセンシン
グ方式とコントラスト方式と呼ばれるものである。イメ
ージセンシング方式はフライアレンズ等と電荷結合素子
(以下CCDと記す)ヲ24対程度−列に並べたイメー
ジセンサをビデオカメラ内に設けて、焦点の合わせ具合
で光が中央の一対のCCDに入るか中央から離れた位置
に入るか等で合焦点を判断するもので、この場合も、被
写体情報以外のイメージセンサ等を必要とすることと位
相のずれを検出するために同じ様な模様の繰り返しのあ
る被写体では判断が出来ない等の問題がある。
Among the passive methods, various autofocus methods have been proposed, the representative ones being the image sensing method and the contrast method. The image sensing method uses about 24 pairs of Friar lenses and charge-coupled devices (hereinafter referred to as CCDs) - image sensors lined up in a row are installed inside a video camera, and light enters a pair of CCDs in the center depending on how the focus is adjusted. The in-focus point is determined based on whether the image is in focus or at a position away from the center, and in this case as well, an image sensor other than the subject information is required, and a similar pattern is repeated to detect the phase shift. There are problems such as inability to make judgments about certain subjects.

コントラスト方式(周波数分離方式)は焦点が被写体像
に合っているときはCCD上に投影された被写体像はコ
ントラスト比が大きく、周波数成分が大きいという性質
を用いて焦点合ねせを行うようにしたもので、フォーカ
スレンズ又はCCD等をレンズの光軸方向に小さく前後
に振って、その時のコントラスト比又は周波数成分が高
くなる様にフォーカスレンズを連続的に動かしてコント
ラスト比又は周波数成分が最も大きい点で焦点が合った
と判断するようにしたもので、この構成は本出願人が先
に擢案した特開昭55−76309号公報に開示されて
いる。このオートフォーカスの原理を第5図及び第6図
で簡単に説明する。第5図A、B、Cで(1)は被写体
、(2)はズーミングレンズ、フォーカスレンズ、主レ
ンズ等を含むレンズ光学系を示すもので、(3)はCC
D或いは撮像管等の撮像素子(以下CC11(3)と記
す)である。又、第5図Aだけに示されている(4)は
オートフォーカス用のモータでレンズ光学系(2)をレ
ンズ光学系(2)の光軸方向にオートフォーカスの為に
矢印A−Aで示す様に移動させると共にレンズ光学系(
2)とCCD (31間の距離を所定の例えば、101
12程度のウォーブリング周波数で振動させてレンズ光
学系(2)を破線と実線で示す位置間に前後にΔlだけ
振動させる。
The contrast method (frequency separation method) uses the property that when the object image is in focus, the object image projected on the CCD has a large contrast ratio and a large frequency component to perform focusing. By shaking the focus lens or CCD etc. slightly back and forth in the direction of the optical axis of the lens, move the focus lens continuously so that the contrast ratio or frequency component at that time increases, and find the point where the contrast ratio or frequency component is the highest. This configuration is disclosed in Japanese Patent Application Laid-Open No. 55-76309, which was originally proposed by the applicant of the present invention. The principle of this autofocus will be briefly explained with reference to FIGS. 5 and 6. In Figures A, B, and C, (1) shows the subject, (2) shows the lens optical system including the zooming lens, focus lens, main lens, etc., and (3) shows the CC.
D or an imaging device such as an image pickup tube (hereinafter referred to as CC11(3)). Also, (4) shown only in Figure 5A is an autofocus motor that moves the lens optical system (2) in the direction of the optical axis of the lens optical system (2) in the direction of the arrow A-A for autofocus. Move the lens optical system (
2) and CCD (31), for example, 101
By vibrating at a wobbling frequency of about 12, the lens optical system (2) is vibrated back and forth by Δl between the positions indicated by the broken line and the solid line.

(5)は後述する高周波レベル検出回路を含むオートフ
ォーカス制御回路でオートフォーカス用モータ(4)を
駆動制御し、このオートフォーカス制御回路(以下AF
回路と記す)(5)にはCCD (3)からの撮像出力
が供給されている。
(5) is an autofocus control circuit including a high-frequency level detection circuit, which will be described later, to drive and control the autofocus motor (4).
The imaging output from the CCD (3) is supplied to the circuit (5).

第5図Bは被写体(1)に焦点が合った場合の光学系の
模式図であり、第5図A及びCは夫々焦点が被写体0)
の前に合った状態及び被写体(+)の後に合った状態を
示している。第6図の曲線(6)はレンズ光学系(2)
とCCD (3)の撮像画面との光路長りと映像信号の
コントラスト又は高周波成分の関係を示すもので、dは
第5図Bに示したオートフォーカス時に被写体(1)に
焦点が合った場合のレンズ光学系(2)とCCD (3
)間の距離り。を示し、同様にe。
Figure 5B is a schematic diagram of the optical system when the subject (1) is in focus, and Figures 5A and C are respectively focused on the subject (0).
The figure shows the state in front of the subject (+) and the state in the rear of the subject (+). Curve (6) in Figure 6 is the lens optical system (2)
This shows the relationship between the optical path length of the CCD (3) and the imaging screen, and the contrast or high frequency component of the video signal. d is the relationship between the optical path length and the contrast or high frequency component of the video signal when the subject (1) is in focus during autofocus as shown in Figure 5B. lens optical system (2) and CCD (3)
). and similarly e.

「は第5図A及びBに示したオートフォーカス時に夫々
被写体(1)の前に焦点が合った状態及び後に焦点が合
った状態のレンズ光学系(2)とCCD (3)間の距
離り、とLIIを示している。CCD (3)の被写体
(+)からの映像出力は焦点が合っている程、C0D(
3)の撮像面のコントラスト 6図の曲線(6)に示す様にこの出力から取り出した高
周波レベル検出出力は大きくなり、焦点が外れる程、C
 C D (3)の映像出力の撮像面のコントラストは
低下し、高周波レベル検出出力は小さくなる。
" is the distance between the lens optical system (2) and the CCD (3) when the subject (1) is focused in front and behind the subject (1) during autofocus shown in Figure 5 A and B, respectively. , and LII.The more the image output from the subject (+) of CCD (3) is in focus, the more C0D(
Contrast of the imaging surface in 3) As shown in curve (6) in Figure 6, the high frequency level detection output extracted from this output increases, and the further out of focus the C becomes.
The contrast of the imaging surface of the video output of C D (3) decreases, and the high frequency level detection output decreases.

今、レンズ光学系(2)をウォーブリング信号によって
Δ!だけ光軸A−A方向に振動させる(実際にはC O
 D (3)を圧電素子等で振動させている)と第5図
Bに示す合焦点の場合には第6図のd点に示す様にレベ
ル変化のない一定の直流電圧(7)が得られる様に高周
波レベル検出回路を含むAF回路(5)が構成されてい
る。又、第5図Aに示すように被写体(1)の手前に焦
点を結ぶ場合の様に1.。< 1. l=の時には高周
波レベル検出回路を含むAF開回路5)からは正弦波形
(8)の正の部分が負の部分に比べて凹んだ電圧が得ら
れる様になされ、第5図Cに示す様に被写体(])の後
方に焦点を結ぶ場合の様にり。
Now, the lens optical system (2) is changed to Δ! by the wobbling signal. (Actually, C O
D (3) is vibrated with a piezoelectric element, etc.) and the focused point shown in Figure 5B, a constant DC voltage (7) with no level change is obtained as shown at point d in Figure 6. An AF circuit (5) including a high frequency level detection circuit is configured so as to be able to detect a high frequency level. Also, as shown in FIG. 5A, when focusing on the front of the subject (1), 1. . <1. When l=, a voltage is obtained from the AF open circuit 5) including the high frequency level detection circuit so that the positive part of the sine waveform (8) is depressed compared to the negative part, as shown in Figure 5C. Like when you focus behind the subject ( ).

が■、。とOと間にある時には高周波レベル検出回路を
含むAF開回路5)からは正弦波形(9)の負の部分に
比べて正の部分のレベルの大きい電圧を得る様に構成さ
・Uて、焦点状態或いは非焦点状態の検出を行っている
But... and O, the AF open circuit 5) including the high frequency level detection circuit is configured to obtain a voltage with a higher level in the positive part of the sine waveform (9) than in the negative part. A focused state or a non-focused state is detected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来構成で示したパッシブ方式中のコントラスト
検出法はビデオカメラのレンズに入射する光を利用して
いるので他に余分なイメージセンサ等を用いる必要がな
く、人間の目に近い利点を有するが、焦点を合わせるた
めにウォーブリングを行ってレンズ光学系を振っている
ために合焦点状態でも焦点が動い°(いることと、ウォ
ーブリングを行なうためにレンズ光学系を振動させる為
の電力消費が大きくなる問題があった。特に小型のビデ
オカメラでは小型バッテリ等を用いるため電力消費は極
力少なくする必要がある。更にこのコントラスト検出法
では焦点が大きくずれるとフォーカスレンズ等をどちら
に動かしてよいかわからな(なり、焦点を合わせるのに
時間が掛かる弊害を有していた。
The contrast detection method in the passive method shown in the conventional configuration above uses light incident on the lens of a video camera, so there is no need to use an extra image sensor, and it has the advantage of being similar to the human eye. However, because wobbling is performed to adjust the focus and the lens optical system is shaken, the focus moves even when the focus is on. In particular, small video cameras use small batteries, so it is necessary to reduce power consumption as much as possible.Furthermore, with this contrast detection method, if the focus shifts significantly, the focus lens etc. cannot be moved in any direction. I don't know (I don't know), but it had the disadvantage of taking a long time to focus.

本発明は叙上の問題点を解決するために成されたもので
、その目的とするところは簡単な構成で消費電力の少な
い、信頼性の高いオートフォーカス制御ができるビデオ
カメラを得る様にしたものである。
The present invention was made to solve the above-mentioned problems, and its purpose is to provide a video camera with a simple configuration, low power consumption, and highly reliable autofocus control. It is something.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明のビデオカメラはその例が第1図に示されている
ように、撮像光をフォーカスレンズ(2a)を介して電
荷結合素子の様な固体撮像手段(3)に照射し、固体撮
像手段(3)よりの高周波成分を検出し、この検出出力
に基づいてフォーカスレンズ(2a)を駆動してフォー
カスレンズ(2a)と固体撮像手段(3)間の光路長を
自動的に可変するオーI・フォーカス機能を有するビデ
オカメラに於いて、固体撮像手段(3)をフォーカスレ
ンズの光軸に対して所定角度θ傾斜させると共に固体撮
像手段(3)のフォーカスレンズ(2a)に対し遠い領
域の撮像出力と、近い領域の撮像出力中の高周波成分の
大小を比較する比較手段(21)を有し、この比較手段
(21)の出力に応じてフォーカスレンズ(2a)の移
動方向を決定して成るものである。
As an example of the video camera of the present invention is shown in FIG. (3) Detects the high frequency component of - In a video camera having a focus function, the solid-state imaging means (3) is tilted at a predetermined angle θ with respect to the optical axis of the focus lens, and the solid-state imaging means (3) images an area far from the focus lens (2a). It has a comparison means (21) for comparing the output with the magnitude of the high frequency component in the imaging output of a nearby area, and determines the moving direction of the focus lens (2a) according to the output of the comparison means (21). It is something.

〔作用〕[Effect]

本発明のビデオカメラではCCD等の固体撮像手段(3
)を所定角度θ傾斜させ、被写体(1)に対して前方と
後方で焦点の合わされた固体撮像手段(3)の撮像出力
の高周波成分を比較してフォーカス制御信号を得ている
のでウォーブリングを行うためのメカニカル部を必要と
せず電力消費が少なく、信頼性の高いオートフォーカス
制御ができるものが得られる。
In the video camera of the present invention, solid-state imaging means (3
) is tilted at a predetermined angle θ and a focus control signal is obtained by comparing the high-frequency components of the imaging output of the solid-state imaging means (3) that are focused in front and behind the subject (1), thereby eliminating wobbling. It is possible to obtain highly reliable autofocus control that does not require a mechanical part, consumes little power, and performs autofocus control.

(実施例〕 以下、本発明の一実施例を第1図について説明する。(Example〕 An embodiment of the present invention will be described below with reference to FIG.

第1図に於いて、(1)はビデオカメラで撮像する被写
体、(2)はビデオカメラのレンズ光学系であり、この
レンズ光学系(2)はフォーカスレンズ(2a)、ズー
ミングレンズ(2b)、主レンズ(2c)等で構成され
ている。フォーカスレンズ(2a)、ズーミングレンズ
(2b)等はモータ(2e)で矢印方向に移動され、フ
ォーカシングやズーミングを行う。(3)はCCD(電
荷結合素子)、CID(電荷注入素子)等の固体撮像素
子(以下CCDと記す)であり、その光電面には、例え
ば市松模様のR(赤)、G(緑)r3 (青)等のカラ
ーフィルタが配設されていて、例えば、中板型のCCD
構成とされている。このCCD (3)はレンズ光学系
(2)の光軸(2d)を通る面と直交する直交面(24
)に対し、所定角度θだけコニ方が後方に傾いて配置さ
れる。この角度θは極めて小さな値でよい。フォーカシ
ングやズーミング時にはレンズ光学系(2)とCCU 
(31間の距離が変えられる。CCD (3)にレンズ
光学系(2)を介し”ζ撮像した被写体(1)の撮像像
は電気信号に変換され、CCD(3)の映像出力信号は
R,G、B信号に分離されプロセスアンプでガンマ補正
やホワイトクリシブ等を行った後にマトリックス回路(
11)に供給され、マトリックス回路(11)では4本
のI H遅延線を用いた遅延回路(12)でライン相関
を使って輝度信号と2つの色差信号に変換し、低域通過
濾波器(13)に夫々の輝度信号と2つの色差信号を通
した後にエンコーダ(14)に供給してNTSC用の映
像出力信号を出力端子(15)に導出している。
In Figure 1, (1) is the subject to be imaged by the video camera, (2) is the lens optical system of the video camera, and this lens optical system (2) includes a focus lens (2a) and a zooming lens (2b). , a main lens (2c), etc. A focus lens (2a), a zooming lens (2b), etc. are moved in the direction of the arrow by a motor (2e) to perform focusing and zooming. (3) is a solid-state imaging device (hereinafter referred to as CCD) such as a CCD (charge-coupled device) or CID (charge injection device), and its photocathode has, for example, a checkered pattern of R (red) and G (green). A color filter such as r3 (blue) is arranged, and for example, a medium plate type CCD
It is said to be composed of This CCD (3) has an orthogonal surface (24
), the conical direction is tilted backward by a predetermined angle θ. This angle θ may have an extremely small value. During focusing and zooming, the lens optical system (2) and CCU
(The distance between 31 can be changed. The image of the subject (1) captured by the CCD (3) through the lens optical system (2) is converted into an electrical signal, and the video output signal of the CCD (3) is R , G, and B signals, and after performing gamma correction, white correction, etc. in a process amplifier, the matrix circuit (
11), and in the matrix circuit (11), a delay circuit (12) using four IH delay lines converts it into a luminance signal and two color difference signals using line correlation, and a low-pass filter ( 13), the respective luminance signals and two color difference signals are supplied to an encoder (14), and an NTSC video output signal is led out to an output terminal (15).

COD (3)からの映像出力信号はオートフォーカス
制御信号を得るためにゲート回路(16)を通して高域
通過濾波器(以下HP Fと記す) (17)に供給さ
れる。このゲート回路(16)はCCD (3)に撮像
した画面の中央の被写体(1)に焦点を合わせるために
ウィンド信号発生回路(25)からのウィンド信号(2
5a)で撮像画面の中央短形部分を抜き取る様に成され
ている。HP F (17)で映像出力信号中の高域成
分のの透過ざ・l、その電圧成分を自乗回路(18)に
供給して自乗し、次に積分回路(19)で積分すること
でウィンド内の各ライン毎の高周波成分電力が積分回路
(19)の出力端より得られる。このライン毎の高周波
成分電力をI H区間をレジストするレジスタ(20)
に供給すると共に直接比較回路(21)に供給する。比
較回路(21)ではライン毎の隣接するライン間の高周
波成分電力がどちらが多いかを比較し、多くのラインに
ついてこの操作をし、その比較結果を判断回路(22)
に供給する。判断回路(22)にはCCD (3)の上
の方の隣接するライン間と下の方の隣接するライン間の
高周波電力がどちらが多いかを判断する。例えば、この
判断方法としては上下のラインiσの多数決などをとっ
て高周波電力の大小をCCD (3)のウィンド内で上
側又は下側等と判断する。この判断回路(22)の出力
は出力端子(23)を介しフォーカス制御信号としてモ
ータ(2e)に供給されフォーカスレンズ(2+i)を
矢印力量に移動させることで合焦点状態とする。判断回
路(22)での判断結果は第1図のようにCCD (3
)の上部が後方に傾斜していれば、フォーカスレンズ2 (2a)を前に出して、合焦点となる様な場合ではCC
D (3)の画面の下の方はど高周波成分の電力が大き
くなり、画面の上の方が高周波成分の電力が大きいと判
断したときはフォーカスレンズ(2a)を後の方に移動
させる様に制御して合焦点状態にすればよいことになる
。依って制御すべき方向が決定できる。
The video output signal from the COD (3) is supplied to a high pass filter (hereinafter referred to as HPF) (17) through a gate circuit (16) to obtain an autofocus control signal. This gate circuit (16) generates a wind signal (2) from a wind signal generating circuit (25) in order to focus on the subject (1) at the center of the screen imaged by the CCD (3).
In step 5a), the central rectangular portion of the imaging screen is extracted. The HPF (17) calculates the transmission ratio of the high-frequency component in the video output signal, supplies the voltage component to the squaring circuit (18), squares it, and then integrates it in the integration circuit (19) to obtain the window. The high frequency component power for each line in the line is obtained from the output end of the integrating circuit (19). A register (20) that registers the high frequency component power for each line in the IH section.
and directly to the comparison circuit (21). The comparison circuit (21) compares each line to see which has more high-frequency component power between adjacent lines, performs this operation for many lines, and uses the comparison result to determine the power of each line (22).
supply to. The determination circuit (22) determines whether the high frequency power is greater between the upper adjacent lines of the CCD (3) or between the lower adjacent lines. For example, this determination method uses a majority vote on the upper and lower lines iσ to determine whether the high frequency power is on the upper or lower side within the window of the CCD (3). The output of this judgment circuit (22) is supplied to the motor (2e) as a focus control signal via an output terminal (23), and the focus lens (2+i) is moved in the direction of the arrow to bring it into focus. The judgment result in the judgment circuit (22) is displayed on the CCD (3
) is tilted backwards, move the focus lens 2 (2a) forward and move
D (3) The lower part of the screen has a higher power of high frequency components, and when it is determined that the higher part of the screen has a higher power of high frequency components, the focus lens (2a) is moved to the rear. All you have to do is control it to bring it into focus. Therefore, the direction to be controlled can be determined.

本例の場合は隣接するラインの相関性を利用してフォー
カス制御信号を抽出したが被写体(1)の両面にライン
相関性のないものでは判断ができないので例えば、ビデ
オカメラにライン相関のある画面か否かを判断させる検
出部を設け、この検出部の検出出力に基づいてフォーカ
ス制御回路を動作させる様にしてもよい。又上述の構成
に限定されず例えば2ライン毎の電力差を連続的に積分
する等して高周波電力の大小を判断することも出来る。
In this example, the focus control signal was extracted using the correlation between adjacent lines, but it cannot be determined if there is no line correlation on both sides of the subject (1). It is also possible to provide a detection section that determines whether or not this is the case, and to operate the focus control circuit based on the detection output of this detection section. Furthermore, the present invention is not limited to the above-mentioned configuration, and the magnitude of high-frequency power can also be determined by, for example, continuously integrating the power difference between two lines.

第2図は本発明の他の実施例を示すもので第1図ではア
ナログ的に高周波電力を検出したが、第2図の場合はデ
ジタル的に高周波電力を検出判断するもので第1図との
対応部分には同一符号を付して重複説明を省略する。第
2図でCCD (3)は上側が直交面(24)に対し角
度θだけ傾斜している。
FIG. 2 shows another embodiment of the present invention. In FIG. 1, high frequency power was detected in an analog manner, but in the case of FIG. Corresponding parts are given the same reference numerals and redundant explanation will be omitted. In FIG. 2, the upper side of the CCD (3) is inclined at an angle θ with respect to the orthogonal plane (24).

この構成は第1図と同じでもよい。CCD (3)で得
られた映像信号をデジタル的に処理するビデオカメラで
あればデジタル映像データをデジタル的なHP F (
17d)に直接供給すればよいが、第2図の場合はアナ
ログ的に取り出した映像出力信号をゲート回路(16)
を介して画面の略中央部分の映像信号を取り出し、アナ
ログ−デジタル変換回路(26)でデジタル信号に変換
し、デジタル構成のHPF(17a)で高域周波数のみ
を通過させる。次にスクエア回路(18a)で乗算が行
われる。スクエア回路(18a)内にはメモリ内に乗算
する値などが記録されていて、デジタル的な電圧値に乗
算を行い、アキュムレータ(19a)でアキュムレート
し、ライン毎の高周波電力を取出しレジスタ(20)を
介してレジストされた1つ前のラインの高周波電力と、
現在のラインの高周波電力がコンパレータ(21a)で
比較され、その比較出力はマイクロコンピュータ(22
a)等でCCD0上の方のラインと下の方のうインてど
ちらが高周波成分を多く含んごいるかを判断し、その判
断結果に応した3埴の出力データを出力端子(2r、 
” ”恰する。この3埴の出力データに応してフォーカ
スレンズ(2a)を前方或は後方に移動させるとノ(に
合焦点位置で停止さセる様にしJいる。
This configuration may be the same as that in FIG. If the video camera digitally processes the video signal obtained by the CCD (3), the digital video data will be converted into a digital HP F (
17d), but in the case of Fig. 2, the video output signal extracted in analog form is sent to the gate circuit (16).
A video signal from approximately the center of the screen is taken out via the analog-to-digital conversion circuit (26), converted into a digital signal, and a digitally configured HPF (17a) passes only high frequencies. Multiplication is then performed in the square circuit (18a). In the square circuit (18a), values to be multiplied are recorded in the memory, and the digital voltage values are multiplied, accumulated in the accumulator (19a), and the high frequency power for each line is taken out and sent to the register (20). ) and the high frequency power of the previous line resisted through
The high frequency power of the current line is compared by the comparator (21a), and the comparison output is sent to the microcomputer (22).
a) etc., determine which line contains more high frequency components, the upper line or the lower line of CCD0, and output the output data of the three lines according to the judgment result to the output terminals (2r,
” ”I’m dressed up. When the focus lens (2a) is moved forward or backward in accordance with the output data of these three sensors, it is made to stop at the in-focus position.

第3図は本発明のビデオカメラのCCL)の傾斜方法を
示す他の実施例である。第1図及び第2図ではCCD 
(3)をレンズ光学系の光軸面(2d)と直交する直交
面(24)に対し上下方向に傾斜させたが、第3図の場
合は直交面(24)に対し左側を角度o、。
FIG. 3 is another embodiment showing a method of tilting the CCL of the video camera according to the present invention. In Figures 1 and 2, CCD
(3) is tilted vertically with respect to the orthogonal plane (24) perpendicular to the optical axis plane (2d) of the lens optical system, but in the case of Fig. 3, the left side with respect to the orthogonal plane (24) is at an angle o, .

だり手前に傾げたC CD (3a)或いは右側を角度
θ8たけ手前に傾けたC CD (3b)を示すもので
ある。
This shows C CD (3a) with the right side tilted forward by an angle θ8 (3b).

この構成によっても第1図或いは第2図で説明したと同
様のフォーカス制御回路によってCCD等を圧電素子等
で振動さ・已る等のメカニカル部分だ不要で信頼性の高
いビデオカメラが得られる。
With this configuration as well, a highly reliable video camera can be obtained which does not require a mechanical part such as vibrating/swiping a CCD or the like with a piezoelectric element or the like using a focus control circuit similar to that explained in FIG. 1 or 2.

第4図はCCDを傾斜させることにょっζ住するCCD
画曲上の画像歪を補正する方法を説明するものである。
Figure 4 shows a CCD that depends on tilting the CCD.
This explains a method for correcting image distortion on a musical composition.

本例ではCCl) (3)を−L下或いは左右に傾斜さ
せる角度θは極めて小さな値(例えば垂直面(24)か
らCCD (3)の受光面迄の距離が50μm程度)で
あるためにレンズ光学系で生ずる糸巻歪或いは樽型歪と
同程度であれば45に歪補正を行う必要はないが、この
許容値を超えた場合には第4図の様にCCD (3) 
L、の画像が例えば、台形(27)状に歪んだとすれば
CCDの感光部の光電変換面形成時の露光を傾げるか、
或いはレイアウト設計時に逆台形(28)状に並べて補
正する様にすればよく、更にはレンズ光学系等で逆補正
を行う様にしてもよい。
In this example, the angle θ for tilting the CCD (3) below -L or to the left and right is an extremely small value (for example, the distance from the vertical surface (24) to the light receiving surface of the CCD (3) is about 50 μm), so the lens If the distortion is the same as the pincushion distortion or barrel distortion that occurs in the optical system, there is no need to perform distortion correction on 45, but if this tolerance is exceeded, the CCD (3)
For example, if the image of L is distorted into a trapezoid (27) shape, the exposure when forming the photoelectric conversion surface of the CCD photosensitive section should be tilted, or
Alternatively, the correction may be performed by arranging them in an inverted trapezoid (28) when designing the layout, or furthermore, the reverse correction may be performed using a lens optical system or the like.

尚、本発明は叙上の実施例に限定されることな(本発明
の要旨を逸脱しない範囲で種々変更し得ること明らかで
ある。
It should be noted that the present invention is not limited to the embodiments described above (it is clear that various changes can be made without departing from the gist of the present invention).

(発明の効果〕 本発明のビデオカメラによれば圧電素子等を用いてCC
D等を原動さ一已る必要がないのでメカニカル部分が不
要となり、信頼性が高く、消費電力の小さなものが得ら
れる。
(Effects of the Invention) According to the video camera of the present invention, CC
Since there is no need to drive D, etc., there is no need for mechanical parts, resulting in high reliability and low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のビデオカメラの一実施例を示す系統図
、第2図は本発明のビデオカメラの他の実施例を示す系
統図、第3図は本発明のヒデメカメラのCCl)の傾は
方を示す他の実施例を示す配置図、第4図は本発明のビ
デオカメラのCCI)の歪補正説明図、第5図は従来の
焦点合わせ方法を説明する光学系の模式図、第6図は従
来のオー1−フA−カスの原理を説明するり、1性曲線
図である。 (1)は被写体、(2)はレンズ光学系、(2a)はフ
ォーカスレンズ、(3)はCCI)、(17)はII 
P F、(18)は自乗回路、(19)は積分回路、(
20)はレジスタ、(21)は比較回路、(22)は判
断回路である。 代 理 人 松 隈 秀 +1に 特開平3 117182(6) く 羊 一
FIG. 1 is a system diagram showing one embodiment of the video camera of the invention, FIG. 2 is a system diagram showing another embodiment of the video camera of the invention, and FIG. 4 is an explanatory diagram of distortion correction of the video camera (CCI) of the present invention; FIG. 5 is a schematic diagram of an optical system illustrating a conventional focusing method; FIG. 6 is a monomorphic curve diagram explaining the principle of the conventional O1-focus. (1) is the subject, (2) is the lens optical system, (2a) is the focus lens, (3) is the CCI), (17) is the II
P F, (18) is a square circuit, (19) is an integral circuit, (
20) is a register, (21) is a comparison circuit, and (22) is a judgment circuit. Agent Hide Matsukuma +1 JP-A-3 117182 (6) Kuyoichi

Claims (1)

【特許請求の範囲】  撮像光をフォーカスレンズを介して電荷結合素子の様
な固体撮像手段に照射し、該固体撮像手段よりの高周波
成分を検出し、該検出出力に基づいて、上記フォーカス
レンズを駆動して、上記フォーカスレンズと上記固体撮
像手段間の光路長を自動的に可変するオートフォーカス
機能を有するビデオカメラに於いて、 上記固体撮像手段を上記フォーカスレンズの光軸に対し
て所定角度傾斜させると共に上記固体撮像手段の上記フ
ォーカスレンズに対し遠い領域の撮像出力と、近い領域
の撮像出力との高周波成分の大小を比較する比較手段を
有し、該比較手段の出力に応じて上記フォーカスレンズ
の駆動方向を決定するようにしたことを特徴とするビデ
オカメラ。
[Claims] Imaging light is irradiated onto a solid-state imaging means such as a charge-coupled device through a focus lens, a high frequency component from the solid-state imaging means is detected, and the focus lens is adjusted based on the detection output. In a video camera having an autofocus function that automatically changes the optical path length between the focus lens and the solid-state imaging means by driving, the solid-state imaging means is tilted at a predetermined angle with respect to the optical axis of the focus lens. and comparing means for comparing the magnitude of high frequency components between an imaging output in a far region and an imaging output in a near region relative to the focus lens of the solid-state imaging means, and according to the output of the comparison means, the focus lens A video camera characterized in that the driving direction of the video camera is determined.
JP1254089A 1989-09-29 1989-09-29 Video camera Pending JPH03117182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254089A JPH03117182A (en) 1989-09-29 1989-09-29 Video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254089A JPH03117182A (en) 1989-09-29 1989-09-29 Video camera

Publications (1)

Publication Number Publication Date
JPH03117182A true JPH03117182A (en) 1991-05-17

Family

ID=17260073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254089A Pending JPH03117182A (en) 1989-09-29 1989-09-29 Video camera

Country Status (1)

Country Link
JP (1) JPH03117182A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114287A1 (en) * 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. Microscope
JP2006030619A (en) * 2004-07-16 2006-02-02 Nippon Hoso Kyokai <Nhk> Imaging device and color slurring correcting program
JP2010060939A (en) * 2008-09-04 2010-03-18 Fujitsu Ltd Focus adjustment device, focus adjustment method and focus adjustment program
GB2482290A (en) * 2010-07-26 2012-02-01 St Microelectronics Res & Dev Autofocus method using tilted focal plane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114287A1 (en) * 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. Microscope
US7813579B2 (en) 2004-05-24 2010-10-12 Hamamatsu Photonics K.K. Microscope system
US8027548B2 (en) 2004-05-24 2011-09-27 Hamamatsu Photonics K.K. Microscope system
US8184920B2 (en) 2004-05-24 2012-05-22 Hamamatsu Photonics K.K. Microscope system
JP2006030619A (en) * 2004-07-16 2006-02-02 Nippon Hoso Kyokai <Nhk> Imaging device and color slurring correcting program
JP4546781B2 (en) * 2004-07-16 2010-09-15 日本放送協会 Imaging apparatus and color misregistration correction program
JP2010060939A (en) * 2008-09-04 2010-03-18 Fujitsu Ltd Focus adjustment device, focus adjustment method and focus adjustment program
GB2482290A (en) * 2010-07-26 2012-02-01 St Microelectronics Res & Dev Autofocus method using tilted focal plane
US8698945B2 (en) 2010-07-26 2014-04-15 Stmicroelectronics (Research & Development) Limited Autofocus apparatus and method

Similar Documents

Publication Publication Date Title
JP3975395B2 (en) Camera system
JP4007713B2 (en) Imaging device
US6819360B1 (en) Image pickup element and apparatus for focusing
JP2002287017A (en) Focusing state detecting device for photographic lens
JP2959142B2 (en) Solid-state imaging device
JP5089154B2 (en) Auto focus system
CN103843318A (en) Image capturing apparatus and control method thereof
WO2002099496A1 (en) Focused state sensor
JP2002365517A (en) Device for detecting state of focusing of photographic lens
JP2005092085A (en) Focus detecting method and focusing method, and focus detecting device and focusing device
JP4045483B2 (en) Focus status detection device
JP2013050691A (en) Imaging apparatus
JP4334784B2 (en) Autofocus device and imaging device using the same
JP2002365518A (en) Device for detecting focusing state of photographic lens
JP2010014788A (en) Imaging element and imaging device
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JP2007293370A (en) Imaging apparatus
JP2003279846A (en) Focus state detector for photographing lens
JPH03117182A (en) Video camera
JP2003270517A (en) Focus state detector
JP2004038114A (en) Auto-focus camera
JP3943610B2 (en) Camera and lens unit
JP2013015806A (en) Focus detector and imaging apparatus
JP2868834B2 (en) Auto focus device
JP3943608B2 (en) Camera and lens unit