JPH03117142A - Phase modulation and demodulation system - Google Patents

Phase modulation and demodulation system

Info

Publication number
JPH03117142A
JPH03117142A JP1251872A JP25187289A JPH03117142A JP H03117142 A JPH03117142 A JP H03117142A JP 1251872 A JP1251872 A JP 1251872A JP 25187289 A JP25187289 A JP 25187289A JP H03117142 A JPH03117142 A JP H03117142A
Authority
JP
Japan
Prior art keywords
signal
complex baseband
baseband signal
synchronization
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1251872A
Other languages
Japanese (ja)
Inventor
Hiroki Uchiyama
博喜 内山
Masao Kasuga
正男 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1251872A priority Critical patent/JPH03117142A/en
Publication of JPH03117142A publication Critical patent/JPH03117142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To improve the accuracy of phase estimate and phase correction by obtaining an optimum complex number base band signal at a synchronizing point based on plural complex number base band signals at preceding and succeeding several sample points with respect to the sample point of a synchronizing signal in response to the sampling point. CONSTITUTION:When a complex number base band signal is sampled from a reception signal synchronously with a synchronizing signal, the reception signal is sampled at a sampling frequency of a prescribed multiple of the synchronizing signal and an optimum complex number base band signal at the synchronizing point is obtained from plural complex number base band signals at preceding and succeeding several sample points of the sample point of the synchronizing signal based on the sampling point. Thus, the validity of the value per symbol is improved and the entire accuracy of phase estimate and phase correction is improved.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は位相変調復調(PSKI方式に関し、特にその
復調方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a phase keying demodulation (PSKI system), and particularly relates to the demodulation system.

[従来の技術1 PSK方式における復調方式はたとえば次の文献に記載
されている。
[Prior Art 1 A demodulation method in the PSK method is described, for example, in the following document.

[一般交換電話網用に標準化された4800/2400
bit/sモデム電話網におけるデータ通信Vシリーズ
勧告J (:1JTT RED BOOK、日本ITU
協会村野・海上「情報・通信におけるディジクル信号処
理」昭光堂 P32〜90 並木原始[無線短パケット用蓄積−括復調方式」電子通
信学会論文誌Vo1.J67−B  No、l  pp
5461、1984 :瓶政−「線形二乗推定法を用いた陸上移動通信用QP
SK同期検波方式」電子通信学会論文誌VolJ72−
B II  No、4  pp125−132.198
9本田、小林r PSK信号の計算的復調法に関する検
討」電子通信学会技報 C5−87−109pp57−
64゜987 PSK変調信号を復調して送信データを得るためには、
搬送波を受信信号より再生し、これにより同期検波を行
なう方式が用いられる。この場合、搬送波は、受信信号
から複素ベースバンド信号をとりだすのに用いられるが
、伝送路上での受信信号の変動(フェージング等)を搬
送波が完全に吸収するものとして再生されない場合には
、受信側の複素ベースバンド信号は、送信側の複素バン
ド信号に位相変動を受けたものとして得られる。これは
、本来長い時定数で搬送波を再生することに適している
搬送波再生回路を用いて、変動が非常に速い位相変動を
推定するためである。このため、受信信号の伝送路上で
の位相変動を精度よく保証する方式が各種提案されてい
る。例えば、線形二乗推定法を用いて受信複素ベースバ
ンド信号からフェーシングによる位相変動を推定し位相
同期をとる方式、受信側で予め固定した搬送波(参照波
)を発生し、これを用いて受信信号を仮の複素ベースバ
ンド信号に変換し、これらを数シンボルレート分のバー
スト信号として切出し順次、位相推定、位相補償を行な
う方式などである。
[4800/2400 standardized for general switched telephone networks]
bit/s modem Data communication in telephone networks V series Recommendation J (:1 JTT RED BOOK, Japan ITU
Murano/Kaikai Association "Disicle signal processing in information and communications" Shokodo P32-90 Hajime Namiki [Storage-Bulk demodulation method for wireless short packets] Journal of the Institute of Electronics and Communication Engineers Vol. 1. J67-B No, l pp
5461, 1984: Binsei - "QP for land mobile communication using linear square estimation method"
SK synchronous detection method” Journal of the Institute of Electronics and Communication Engineers Vol. 72-
B II No, 4 pp125-132.198
9 Honda, R. Kobayashi "Study on computational demodulation method of PSK signal" Institute of Electronics and Communication Engineers Technical Report C5-87-109pp57-
In order to demodulate the 64°987 PSK modulated signal and obtain transmission data,
A method is used in which a carrier wave is regenerated from a received signal and synchronous detection is performed using this. In this case, the carrier wave is used to extract the complex baseband signal from the received signal, but if the carrier wave is not reproduced as one that completely absorbs fluctuations (fading, etc.) in the received signal on the transmission path, the receiving side The complex baseband signal is obtained as a complex band signal on the transmitting side subjected to phase fluctuation. This is because a carrier wave regeneration circuit that is originally suitable for regenerating a carrier wave with a long time constant is used to estimate phase fluctuations that fluctuate very quickly. For this reason, various methods have been proposed to accurately guarantee the phase fluctuation of the received signal on the transmission path. For example, a method uses the linear square estimation method to estimate phase fluctuations due to facing from the received complex baseband signal and obtains phase synchronization. These methods include converting into temporary complex baseband signals, cutting out these signals as burst signals for several symbol rates, and sequentially performing phase estimation and phase compensation.

[発明が解決しようとする課題] 上記のこれらの方式では、同期信号に同期して得られる
複素ベースバンド信号の値を信頼して、その数シンボル
分の複素ベースバンド信号よりそのバースト信号中の位
相シフト(誤差)を推定し位相補償を行なうものであっ
た。しかし、伝送路上での位相変動は、例えばフェージ
ングによる位相変動などは、変動が激しい為に1シンボ
ル内でも発生し、同期信号に同期した点でサンプルされ
る複素ベースバンド信号が信頼できるものである保証は
なく、この同期信号点の複素ベースバンド信号のみを用
いての位相誤差の補正は、正確ではなかった。
[Problems to be Solved by the Invention] In the above-mentioned methods, the value of the complex baseband signal obtained in synchronization with the synchronization signal is trusted, and the value of the complex baseband signal of the burst signal is determined from the complex baseband signal of several symbols. It estimated the phase shift (error) and performed phase compensation. However, phase fluctuations on the transmission path, such as phase fluctuations due to fading, are so severe that they occur even within one symbol, and the complex baseband signal sampled at the point synchronized with the synchronization signal is reliable. There is no guarantee, and phase error correction using only the complex baseband signal at this synchronization signal point was not accurate.

本発明は上記の欠点を解消し、同期点における最適な複
素ベースバンド信号を求めた位相変調復調方式を提供す
ることを目的とする。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a phase modulation demodulation method that obtains an optimal complex baseband signal at a synchronization point.

[課題を解決するための手段] 本発明による位相変調方式は、画信号を2値データに変
換し、データを搬送波の位相情報に対応して変調し、パ
スバンド信号に変換して伝送路に送信する送信手段と、
伝送路より前記パスバンド信号を受信し、信号に搬送波
を乗算し、複素ベースバンド信号に変換し、受信信号よ
り同期信号を検出し、信号により複素ベースバンド信号
から2値データを再生する手段と、伝送路上および複素
ベースバンド信号への変換時に受ける位相シフトを補正
する手段とを有する受信手段とを有する位相変調復調方
式において、受信信号を同期信号の所定倍のサンプリン
グ周期でサンプルし、1シンボルレート内で同期信号に
同期したサンプル点およびその前後の複数のサンプル点
で複素ベースバンド信号を求め、これら複数の複素ベー
スバンド信号の値より、lシンボルレート内の同期点に
おける複素ベースバンド信号を推定する。
[Means for Solving the Problems] The phase modulation method according to the present invention converts an image signal into binary data, modulates the data in accordance with phase information of a carrier wave, converts it into a passband signal, and transmits the signal to a transmission path. a transmission means for transmitting;
means for receiving the passband signal from a transmission path, multiplying the signal by a carrier wave, converting it into a complex baseband signal, detecting a synchronization signal from the received signal, and reproducing binary data from the complex baseband signal using the signal; In a phase modulation demodulation system having a transmission path and a receiving means having a means for correcting a phase shift received during conversion to a complex baseband signal, the received signal is sampled at a sampling period that is a predetermined times the synchronization signal, and one symbol is obtained. A complex baseband signal is obtained at a sample point synchronized with the synchronization signal within the rate and multiple sample points before and after it, and from the values of these multiple complex baseband signals, the complex baseband signal at the synchronization point within the l symbol rate is calculated. presume.

[実施例] 以下、本発明をその実施例に基づき具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on examples thereof.

本発明では、受信信号より同期信号に同期して複素ベー
スバンド信号をサンプルする際に、受信信号を同期信号
の所定倍のサンプリング周波数でサンプルし、このザン
ブリング点を基に1シンボルレート内で同期信号のサン
プル点の前後数サンプルの複数の複素ベースバンド信号
の値より、同期点における最適な複素ベースバンド信号
を求める。
In the present invention, when sampling a complex baseband signal from a received signal in synchronization with a synchronization signal, the received signal is sampled at a sampling frequency that is a predetermined times that of the synchronization signal, and synchronization is performed within one symbol rate based on this sambling point. The optimum complex baseband signal at the synchronization point is determined from the values of a plurality of complex baseband signals at several samples before and after the sample point of the signal.

第1図にPSK方式の全体構成を示す。送信系は2(i
−7−タを符合器lOで位相情報に変換し、その位相角
のX、Y成分を二乗余弦特性をもつ送信フィルタ(波形
整形フィルタ)12および14に通して複素ベースバン
ド信号S、に変換した後、変調器16に入力して各々直
交する搬送波cos (wctl 。
Figure 1 shows the overall configuration of the PSK system. The transmission system is 2(i
-7- data is converted into phase information by an encoder lO, and the X and Y components of the phase angle are passed through transmission filters (waveform shaping filters) 12 and 14 with raised cosine characteristics to convert them into a complex baseband signal S. After that, the respective orthogonal carrier waves cos (wctl) are input to the modulator 16.

sin (wct)を乗算し、これらを加算してバスバ
ンド信号S2に変換し、伝送路18に送出する。ところ
で一般に位相変調の基本式は送出信号をS (tlとす
る時、以下のように表される。
sin (wct) and add these to convert into a bus band signal S2, which is sent to the transmission line 18. By the way, in general, the basic equation of phase modulation is expressed as follows, when the sending signal is S (tl).

S (t) =sin (wcJ十〇(t))=cos
θ(tl ・sin (wc41 + sinθ(L)
 ・cos(wc41(1) ここで、cos e [t) 、 sinθIt)は、
各々位相角θに対応するX、Y成分であり、それらはシ
ンボルレート’r(伝送レート)で変化し伝送される。
S (t) = sin (wcJ 〇(t)) = cos
θ(tl ・sin (wc41 + sinθ(L)
・cos(wc41(1) where cos e [t), sinθIt) is
These are X and Y components each corresponding to a phase angle θ, and they are transmitted while changing at a symbol rate 'r (transmission rate).

Wcは、搬送波の角周波数である。実際には、シンボル
レートTで変化するX、Y成分は、波形整形フィルタに
入力されて伝送されるため、送信波形は 5(t)=Σh(t−1T)・caSe(TI  Si
n fwc−tl]ニー00 +Σh (t−j ・T) ・sinθ(T) ・co
s (wc  tIJニー(1) Wi=  caSe (T)+、j  Sinθ(′r
)となる。ここで、h (tlは波形成形フィルタのイ
ンパルスレスポンス、WiはX、Y成分の複素数表示で
ある。
Wc is the angular frequency of the carrier wave. In reality, the X and Y components that change at the symbol rate T are input to a waveform shaping filter and transmitted, so the transmitted waveform is 5(t)=Σh(t-1T)・caSe(TI Si
n fwc-tl] knee 00 +Σh (t-j ・T) ・sinθ(T) ・co
s (wc tIJ knee (1) Wi= caSe (T)+, j Sinθ('r
). Here, h (tl is the impulse response of the waveform shaping filter, and Wi is the complex number representation of the X and Y components.

さて、このような形として伝送された送信波形は、伝送
系での振幅変動、位相変動、伝送路の伝達関数の影響を
受けるため、以下のようになって受信系に受信される。
Now, the transmitted waveform transmitted in this manner is affected by amplitude fluctuations, phase fluctuations, and transfer functions of the transmission line in the transmission system, and is therefore received by the reception system as follows.

r(tl=a Re(ΣWi l gft−u) i+
(u−i41dul=−閃 ・exp(−jwo・t−jΔwo・t−jθ。11.
、、、   (31ここで、g (tlは伝送系の伝送
特性、△WOは周波数オフセット、θ0は位相ジッタ、
aは振幅変動である。
r(tl=a Re(ΣWi l gft-u) i+
(u-i41dul=-sen・exp(-jwo・t−jΔwo・t−jθ.11.
,,, (31, where g (tl is the transmission characteristic of the transmission system, △WO is the frequency offset, θ0 is the phase jitter,
a is the amplitude variation.

受信側での処理は、これらΔWQ+ θ。、aの各個を
補正して、r(t)よりWiを求めることである。実際
には、伝送系の伝送特性g it)は受信1p1)の自
動等化器24により、またaはAGC20(Aul;o
GajnControl)により補正される。そこで、
ここでは、伝送路の変動による受信信号の位相変動の補
正のみ考える。簡単のため、振幅特性、伝送系の伝送特
性は補正されているものとして、受信系復調器22はA
G(: 20の出力信号に搬送波sin (wctlc
os (wctlを乗算して受信フィルタ22a、 2
2bを通して複素ベースバンド信号に復調する。複素ベ
ースバンド信号を以下のように表わす。
The processing on the receiving side is ΔWQ+θ. , a to find Wi from r(t). In reality, the transmission characteristics of the transmission system g it) are determined by the automatic equalizer 24 of the reception 1p1), and a is determined by the AGC 20 (Aul;
GajnControl). Therefore,
Here, only correction of phase fluctuations in the received signal due to fluctuations in the transmission path will be considered. For simplicity, it is assumed that the amplitude characteristics and the transmission characteristics of the transmission system have been corrected, and the receiving system demodulator 22 is
G(: 20 output signal with carrier wave sin (wctlc
os (multiply by wctl and receive filters 22a, 2
2b to demodulate into a complex baseband signal. The complex baseband signal is expressed as follows.

Z (t) =S (tl ・exp f−j△wo−
t−jOo)、(4)=Sft)・exp(−、i  
tΔ wo・し十 〇 。))ここで、211;lは、
受信信号から直接得られる複素ベースバンド信号、S 
(tlは、送信時の複素ベーバンド信号である。従って
、ΔWo=周波数オフセット、θ。・位相ジッタが推定
されれば、Ht)・exp 1.JΔWot+Jθ。)
を計算することで、S ftlを求めることができる。
Z (t) = S (tl ・exp f−j△wo−
t-jOo), (4)=Sft)・exp(-,i
tΔ wo・shiten 〇. )) Here, 211;l is
The complex baseband signal obtained directly from the received signal, S
(tl is the complex baseband signal at the time of transmission. Therefore, ΔWo=frequency offset, θ.・If the phase jitter is estimated, Ht)・exp 1. JΔWot+Jθ. )
By calculating S ftl can be obtained.

また、同期信号が正確であればh (tlは、t=n丁
の時のみl、それ以外は、0という符号量干渉を防ぐ形
のフィルターのレスポンスであるため、S (tlの値
からCOSθ(Tlsjnθ(T)を求めることができ
、送信信号を再生することができる。ここで、△Wo=
周波数オフセットおよびθ。:位相ジッタを推定し補正
する方式としては、例えば、線形二乗推定法を用いて受
信複素ベースバンド信号からフェージングによる位相変
動を推定し補正する方式や、受信側で予め固定した搬送
波(参照波)を発生し、これを用 0 いて受信信号を仮の複素ベースバンド信号に変換し、こ
れらを数シンボルレート分のバースト信号として切出し
順時、位相推定、位相補償を行なう方式を用いれば良い
In addition, if the synchronization signal is accurate, h (Tlsjnθ(T) can be obtained and the transmitted signal can be regenerated. Here, △Wo=
Frequency offset and θ. : Methods for estimating and correcting phase jitter include, for example, a method that uses a linear square estimation method to estimate and correct phase fluctuations due to fading from a received complex baseband signal, and a method that uses a carrier wave (reference wave) fixed in advance on the receiving side. A method may be used in which the received signal is converted into a provisional complex baseband signal using this signal, and these signals are extracted as burst signals of several symbol rates and subjected to sequential timing, phase estimation, and phase compensation.

ところで、これらの方式は、同期信号に同期して得られ
る複素ベースバンド信号の値を信頼して、その数シンボ
ル分の複素ベースバンド信号よりそのバースト信号中の
位相シフト(誤差)を位相誤差推定部28で推定し、位
相補正部26で位相補償を行なうものである。しかし、
伝送路上での位相変動は、例えばフェージングによる位
相変動などは、変動が激しいために1シンボル内でも発
生し、同期信号に同期した点でサンプルされる複素ベー
スバンド信号が信頼できるものである保証はなく、この
同期信号点の複素ベースバンド信号のみを用いての位相
誤差の補正は、正確ではない。
By the way, these methods rely on the value of the complex baseband signal obtained in synchronization with the synchronization signal, and estimate the phase shift (error) in the burst signal from the complex baseband signal for the number of symbols. The phase correction section 28 performs estimation, and the phase correction section 26 performs phase compensation. but,
Phase fluctuations on the transmission path, such as phase fluctuations due to fading, are so severe that they occur even within one symbol, and there is no guarantee that the complex baseband signal sampled at the point synchronized with the synchronization signal is reliable. Therefore, correction of the phase error using only the complex baseband signal at the synchronization signal point is not accurate.

そこで本実施例では、lシンボル内で複素ベスバンド信
号を求める際に同期信号に同期した複素バンド信号のみ
を用いずに1シンボルレート内1 で複数の複素ベースバンド信号をもとめ、これらの値よ
り同期点における最適な複素ベースバンド信号を求める
ものである。このため、受信信号を同期信号の所定倍の
サンプリング周波数でサンプルしている。以上の処理を
行うのが複素ベースバンド補正部32(第4図)である
Therefore, in this embodiment, when obtaining a complex baseband signal within 1 symbol, multiple complex baseband signals are obtained at 1 within 1 symbol rate, rather than using only the complex band signal synchronized with the synchronization signal, and the synchronization is determined from these values. This is to find the optimal complex baseband signal at a point. For this reason, the received signal is sampled at a sampling frequency that is a predetermined times higher than the synchronization signal. The complex baseband correction section 32 (FIG. 4) performs the above processing.

第2図に、位相補正部26の後述する複素ベースバンド
補正部32で使用するサンプルとシンボルレトとの関係
を示す。同期点nTにおける複素ベスバンド信号をZn
T 、前後のデータをZnT−i。
FIG. 2 shows the relationship between the samples used in the complex baseband correction section 32 (to be described later) of the phase correction section 26 and symbol reto. The complex Besband signal at the synchronization point nT is Zn
T, data before and after ZnT-i.

ZnT+iで表す。iは、シンボルレート内のサンプル
数Nよりは小さい数である。1例として、lシンボル内
の複素ベースバンド信号の平均値を求めてこれをそのシ
ンボル点の複素ベースバンドにする時には、同期信号に
同期した点の前後m(m < N )サンプルずつを用
いて第3図にしめず演算を行って加算平均を計算し、こ
れを補正した複素ベースバンド信号ZnTとしている。
It is expressed as ZnT+i. i is a number smaller than the number of samples N within the symbol rate. As an example, when calculating the average value of a complex baseband signal within l symbols and making it the complex baseband of that symbol point, m (m < N) samples before and after the point synchronized with the synchronization signal are used. The arithmetic operation shown in FIG. 3 is performed to calculate an arithmetic average, and this is used as a corrected complex baseband signal ZnT.

なお、ここでは、複素ベースバンド信号として加算平均
値を用いたが、この他荷重平均、モーメント、メジ2 アン等を計算して用いても良い。
Note that here, an arithmetic average value is used as the complex baseband signal, but other weighted averages, moments, medians, etc. may also be calculated and used.

第4図に本実施例の複素ベースバンド補正部32を実施
する回路構成の一実施例を示す。ここで、受信フィルタ
から出力された第2図の2m個の複素ベースバンド信号
は、2m個のバッファB、〜B2つに順次蓄えられる。
FIG. 4 shows an example of a circuit configuration for implementing the complex baseband correction section 32 of this example. Here, the 2m complex baseband signals of FIG. 2 output from the reception filter are sequentially stored in two 2m buffers B, .about.B.

同期信号SSが検出されると、複素バンド信号補正処理
部32に2m個のバッファ内のデータDが読み込まれ、
第3図に示された処理が行われる。
When the synchronization signal SS is detected, the data D in the 2m buffers is read into the complex band signal correction processing section 32, and
The processing shown in FIG. 3 is performed.

すなわち、位相補正部26は、Zntを人力しく100
1 、平均化処理の演算Atを行ないf1021Pn 
tを判断部30へ出力する。
That is, the phase correction unit 26 manually adjusts Znt to 100
1. Perform the calculation At of the averaging process and obtain f1021Pn
t is output to the determination section 30.

第5図に本発明による複素ベースバンド補正部の第2の
実施例の回路構成を示す。ここでは、ちょうどサンプル
周期ずつ位相の異なる2m個の受信フィルタ(F、−F
2イ)を設け、これら複数のフィルタから出力される複
素ベースバンド信号21を、同期信号(SS1が検出さ
れるごとに、複素バンド信号補正処理部34で取り出し
、第3図の処理 3 を行う。なお、位相の異なる受信フィルタ群には、周波
数特性が二乗余弦特性をもち、各フィルタ出力がちょう
どlサンプルずつおくれでくる位相遅延をもったフィル
タを用いる。これは、第4図の回路と動作的にはまった
く同じである。
FIG. 5 shows the circuit configuration of a second embodiment of the complex baseband correction section according to the present invention. Here, 2m reception filters (F, -F
2b) is provided, and each time the synchronization signal (SS1) is detected, the complex baseband signal 21 output from these plurality of filters is extracted by the complex band signal correction processing section 34, and the processing 3 in FIG. 3 is performed. For the receiving filter group with different phases, use filters whose frequency characteristics have a raised cosine characteristic and a phase delay in which each filter output is delayed by exactly l samples.This is similar to the circuit shown in Fig. 4. Operationally they are exactly the same.

前述のようにPSK変調信号を復調して送信データを得
るためには、搬送波を受信信号に乗算し、受信フィルタ
を用いることで、複素ベースバンド信号をとりだす必要
がある。この場合、伝送路上での受信信号の変動(フェ
ージング等)を搬送波が完全に吸収しない場合には、受
信側の複素ベースバンド信号は、送信側の複素バンド信
号に位相変動を受けたものとして得られる。このため、
受信信号の伝送路上での位相変動を精度よく補償する方
式が各種提案されている。しかし、これらの方式は、同
期信号に同期して得られる複素ベースバンド信号の値を
信頼して、その前後数シンボル分の複素ベースバンド信
号より位相変動を推定し位相補償を行なうものであった
。しか−し、伝送路上での位相変動においては、例えば
フェージング 4 による位相変動などは、変動が1シンボル内でも発生し
、同期信号に同期した点でサンプルされた複素ベースバ
ンド信号のみを用いた補正は、正確ではなかった。
In order to demodulate the PSK modulated signal and obtain transmission data as described above, it is necessary to multiply the received signal by a carrier wave and extract a complex baseband signal by using a reception filter. In this case, if the carrier wave does not completely absorb fluctuations (fading, etc.) in the received signal on the transmission path, the complex baseband signal on the receiving side can be obtained as the complex band signal on the transmitting side that has undergone phase fluctuations. It will be done. For this reason,
Various methods have been proposed for accurately compensating for phase fluctuations on the transmission path of received signals. However, these methods rely on the value of the complex baseband signal obtained in synchronization with the synchronization signal, and perform phase compensation by estimating the phase fluctuation from the complex baseband signal for several symbols before and after it. . However, in phase fluctuations on a transmission path, such as phase fluctuations due to fading, fluctuations occur even within one symbol, and correction using only the complex baseband signal sampled at the point synchronized with the synchronization signal is difficult. was not accurate.

」1記実施例によれば、受信信号より同期信号に同期し
て複素ベースバンド信号をサンプルする際に、パ、2信
信号を同期信号の所定倍のサンプリング周波数でサンプ
ルしておき、このサンプリング点を基に同期信号のサン
プル点の前後数サンプル点の複数の複素ベースバンド信
号の値より、同期点における最適な複素ベースバンド信
号を求めるものであり、1シンボル当りの値の有効性が
向上し、全体としての位相推定、位相補正の精度も向上
する。
According to the first embodiment, when sampling a complex baseband signal from a received signal in synchronization with a synchronization signal, the first and second signals are sampled at a sampling frequency that is a predetermined times that of the synchronization signal, and this sampling This method calculates the optimal complex baseband signal at the synchronization point from the values of multiple complex baseband signals at several sample points before and after the sample point of the synchronization signal based on the point, improving the effectiveness of the value per symbol. However, the accuracy of phase estimation and phase correction as a whole is also improved.

[発明の効果] 本発明によれば、受信信号より同期信号に同期して複素
ベースバンド信号をサンプルする際に、受信信号を同期
信号の所定倍のサンプリング周波数でサンプルしておき
、このサンプリング点を基に同期信号のサンプル点の前
後数サンプル点の複 5 数の複素ベースバンド信号の値より、同期点における最
適な複素ベースバンド信号を求めるものであり、lシン
ボル当りの値の有効性が向上し、全体としての位相推定
、位相補正の精度も向上する。
[Effects of the Invention] According to the present invention, when sampling a complex baseband signal from a received signal in synchronization with a synchronization signal, the received signal is sampled at a sampling frequency that is a predetermined times that of the synchronization signal, and this sampling point is Based on this, the optimal complex baseband signal at the synchronization point is determined from the complex baseband signal values of several sample points before and after the sample point of the synchronization signal, and the effectiveness of the value per l symbol is This also improves the accuracy of phase estimation and phase correction as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による位相変調復調方式の一実施例を示
すブロック図、 第2図は本発明による1シンボルレート内における複数
の複素ベースバンド信号を求める平均化処理の説明図、 第3図は本発明による平均化処理のフロー図、第4図は
本発明による平均化処理の第1の実施例を示す回路図、 第5図は本発明による平均化処理の第2の実施例を示す
回路図である。 主要部 の、畳の説明図 B、〜B 2ffi−遅延器 F1〜F2+++−1受信フィルタ  6 AGC回路 復調器 自動等化器 、位相補正部 、位相誤差推定部 判断部 、複素ベースバンド補正処理部
FIG. 1 is a block diagram showing an embodiment of the phase modulation demodulation method according to the present invention; FIG. 2 is an explanatory diagram of averaging processing for obtaining multiple complex baseband signals within one symbol rate according to the present invention; FIG. is a flowchart of the averaging process according to the present invention, FIG. 4 is a circuit diagram showing a first embodiment of the averaging process according to the present invention, and FIG. 5 is a circuit diagram showing a second embodiment of the averaging process according to the present invention. It is a circuit diagram. Main parts, tatami explanatory diagram B, ~B 2ffi-delay device F1 ~ F2 +++-1 reception filter 6 AGC circuit demodulator automatic equalizer, phase correction section, phase error estimation section judgment section, complex baseband correction processing section

Claims (1)

【特許請求の範囲】 1、画信号を2値データに変換し、該2値データを搬送
波の位相情報に対応して変調し、パスバンド信号に変換
して伝送路に送信する送信手段と、  前記伝送路より前記パスバンド信号を受信し、該パス
バンド信号に搬送波を乗算し、複素ベースバンド信号に
変換し、受信信号より同期信号を検出し、該同期信号に
より前記複素ベースバンド信号から前記2値データを再
生する手段と、伝送路上および複素ベースバンド信号へ
の変換時に受ける位相シフトを補正する手段とを有する
受信手段とを有する位相変調復調方式において、 前記受信信号を前記同期信号の所定倍のサンプリング周
期でサンプルし、1シンボルレート内で同期信号に同期
したサンプル点およびその前後の複数のサンプル点で複
素ベースバンド信号を求め、これら複数の複素ベースバ
ンド信号の値より、1シンボルレート内の同期点におけ
る複素ベースバンド信号を推定することを特徴とする位
相変調復調方式。 2、請求項1に記載の方式において、前記複数の複素ベ
ースバンド信号から同期点における適切な複素ベースバ
ンド信号を推定する際に、それら複数の値の平均、荷重
平均、メジアン、モーメント、最大値、最小値、等を求
めてこれらのうち最適なものを前記複素ベースバンド信
号の値とすることを特徴とする位相変調復調方式。 3、請求項1に記載の方式において、前記同期信号に同
期して受信信号から前記複数の複素ベースバンド信号点
を抽出するために、受信フィルタの出力を保持するバッ
ファを複数設け、前記同期信号に同期したタイミングで
それらバッファの中身を比較して、複素ベースバンド信
号の最適値を求めることを特徴とする位相変調復調方式
[Claims] 1. Transmitting means for converting an image signal into binary data, modulating the binary data in accordance with phase information of a carrier wave, converting it into a passband signal, and transmitting the same to a transmission path; The passband signal is received from the transmission path, the passband signal is multiplied by a carrier wave, converted to a complex baseband signal, a synchronization signal is detected from the received signal, and the synchronization signal is used to convert the complex baseband signal to the complex baseband signal. In a phase modulation demodulation method having a means for reproducing binary data and a receiving means having a means for correcting a phase shift received on a transmission line and during conversion to a complex baseband signal, Sample at twice the sampling period, calculate the complex baseband signal at the sample point synchronized with the synchronization signal within 1 symbol rate, and multiple sample points before and after it, and from the values of these multiple complex baseband signals, calculate the 1 symbol rate. A phase modulation demodulation method characterized by estimating a complex baseband signal at a synchronization point within 2. In the method according to claim 1, when estimating an appropriate complex baseband signal at a synchronization point from the plurality of complex baseband signals, the average, weighted average, median, moment, and maximum value of the plurality of values are estimated. , minimum value, etc., and the optimum value among them is set as the value of the complex baseband signal. 3. In the system according to claim 1, in order to extract the plurality of complex baseband signal points from the received signal in synchronization with the synchronization signal, a plurality of buffers for holding the output of the reception filter are provided, and the synchronization signal A phase modulation demodulation method that is characterized by comparing the contents of these buffers at timings synchronized with , and determining the optimal value of a complex baseband signal.
JP1251872A 1989-09-29 1989-09-29 Phase modulation and demodulation system Pending JPH03117142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251872A JPH03117142A (en) 1989-09-29 1989-09-29 Phase modulation and demodulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251872A JPH03117142A (en) 1989-09-29 1989-09-29 Phase modulation and demodulation system

Publications (1)

Publication Number Publication Date
JPH03117142A true JPH03117142A (en) 1991-05-17

Family

ID=17229191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251872A Pending JPH03117142A (en) 1989-09-29 1989-09-29 Phase modulation and demodulation system

Country Status (1)

Country Link
JP (1) JPH03117142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096024A1 (en) * 2010-02-04 2011-08-11 パナソニック電工株式会社 Delay detector circuit and receiver apparatus
WO2011096025A1 (en) * 2010-02-04 2011-08-11 パナソニック電工株式会社 Delay detector circuit and receiver apparatus
WO2011101925A1 (en) * 2010-02-16 2011-08-25 パナソニック電工株式会社 Receiver circuit and receiver apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096024A1 (en) * 2010-02-04 2011-08-11 パナソニック電工株式会社 Delay detector circuit and receiver apparatus
WO2011096025A1 (en) * 2010-02-04 2011-08-11 パナソニック電工株式会社 Delay detector circuit and receiver apparatus
CN102754404A (en) * 2010-02-04 2012-10-24 松下电器产业株式会社 Delay detector circuit and receiver apparatus
JP5461589B2 (en) * 2010-02-04 2014-04-02 パナソニック株式会社 Delay detection circuit and receiver
JP5480302B2 (en) * 2010-02-04 2014-04-23 パナソニック株式会社 Delay detection circuit and receiver
US8744019B2 (en) 2010-02-04 2014-06-03 Panasonic Corporation Delay detector circuit and receiver apparatus
US8831152B2 (en) 2010-02-04 2014-09-09 Panasonic Corporation Delay detector circuit and receiver apparatus
CN102754404B (en) * 2010-02-04 2014-12-24 松下电器产业株式会社 Delay detector circuit and receiver apparatus
WO2011101925A1 (en) * 2010-02-16 2011-08-25 パナソニック電工株式会社 Receiver circuit and receiver apparatus
JP2011171817A (en) * 2010-02-16 2011-09-01 Panasonic Electric Works Co Ltd Reception circuit and receiver apparatus
US8891688B2 (en) 2010-02-16 2014-11-18 Panasonic Corporation Receiver circuit and receiver apparatus

Similar Documents

Publication Publication Date Title
JP2526931B2 (en) PSK signal demodulator
JP2904493B2 (en) Apparatus and method for rapid reference capture and phase error compensation in wireless transmission of data
JPH10257013A (en) Receiver
US4899367A (en) Multi-level quadrature amplitude modulator system with fading compensation means
CA2025232C (en) Carrier recovery system
EP1453261B1 (en) Channel estimation method for a mobile communication system
JP3237827B2 (en) Wireless data communication terminal
US9722845B2 (en) Bluetooth low energy frequency offset and modulation index estimation
CN106603217B (en) Sampling frequency offset suppression method for Bluetooth signal of wireless comprehensive tester
TW201038028A (en) Carrier recovery device and related method
JPH06244879A (en) Modulating/demodulating system using special training pattern
US5930267A (en) Frame synchronization for asynchronous transmission
JPH03245628A (en) Terminal equipment for time division multiplex accessing device
US6373903B1 (en) Apparatus and method for increasing the effective data rate in communication systems utilizing phase modulation
JPH03117142A (en) Phase modulation and demodulation system
US6874096B1 (en) Apparatus and method for detecting packet arrival time
KR100788012B1 (en) Offset correction in a spread spectrum communication system
AU2005251078B2 (en) Receiver and method for wireless communications terminal
JP3018840B2 (en) Fading compensator
KR100594269B1 (en) A frequency phase locked loop circuit and a Advanced Television Systems Committee Digital Television demodulator using the same.
EP4055788B1 (en) Digital receiver with phase offset compensation
JPH03117143A (en) Phase modulation and demodulation system
JP3479036B2 (en) Clock recovery device
EP0134860B1 (en) Improved modem signal acquisition technique
KR100330236B1 (en) Timing recovery circuit of receiver in wireless communication system