JPH03116906A - Magnetic field forming method using superconducting material - Google Patents

Magnetic field forming method using superconducting material

Info

Publication number
JPH03116906A
JPH03116906A JP1255014A JP25501489A JPH03116906A JP H03116906 A JPH03116906 A JP H03116906A JP 1255014 A JP1255014 A JP 1255014A JP 25501489 A JP25501489 A JP 25501489A JP H03116906 A JPH03116906 A JP H03116906A
Authority
JP
Japan
Prior art keywords
cylinder
magnetic field
outside
magnetic flux
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255014A
Other languages
Japanese (ja)
Inventor
Hironori Matsuba
松葉 博則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1255014A priority Critical patent/JPH03116906A/en
Publication of JPH03116906A publication Critical patent/JPH03116906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to obtain variable intensity of magnetic field inside a cylinder by a method wherein a solenoid coil is provided inside or outside a cylinder, and the magnetic flux generated by flowing a current on the coil is allowed to flow out from inside to outside or from outside to inside of the cylinder. CONSTITUTION:A heat-insulating layer is provided on the inner and the outer surfaces of a superconducting cylinder 1, this cylinder 1 is brought into a superconducting state by cooling it with liquid nitride, and a magnetic field is generated around the cylinder 1 by allowing to flow a current on the solenoid coil 2 provided outside the cylinder 1. In this case, as the magnetic flux of the above-mentioned magnetic field passes the outside of the coil 2 from the gap 3 between the coil 2 and the outer circumferential surface of the cylinder 1, magnetic density is formed on the surface of the cylinder 1. As a result, a uniform magnetic field gap can be realized at low cost in a relatively easy manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は円筒状の超電導体を用いた磁場空間の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming a magnetic field space using a cylindrical superconductor.

(従来の技術) 均一磁場空間は各種分野で必要とされており、例えば科
学技術の分野でのNMR(核磁気共鳴)の測定や、磁場
と物質との相互作用を測定する場合等には欠かすことの
できないものである。
(Prior art) Uniform magnetic field space is required in various fields, such as NMR (nuclear magnetic resonance) measurements in the field of science and technology, and indispensable for measuring interactions between magnetic fields and materials. It is impossible.

均一磁場空間を得るためには地球磁場等の周囲に存在す
る磁場(外部磁場)の影響による乱れを防止する必要が
ある。
In order to obtain a uniform magnetic field space, it is necessary to prevent disturbances due to the influence of magnetic fields (external magnetic fields) existing around the earth's magnetic field and the like.

そこで従来は外部磁場を4断し、その中でソレノイドコ
イルに電流を流して、均一磁場を発生させるようにして
いた。
Conventionally, the external magnetic field was cut off in four parts, and a current was passed through the solenoid coil to generate a uniform magnetic field.

(発明が解決しようとする課題) この場合、必要とする均一磁場の磁力が強い場合は外部
磁場の影響が小さいが、必要とする均一磁場の磁力が弱
いと外部磁場の影響が相対的に大きくなる。しかも、従
来は周囲磁場を完全に遮断することは困難であったため
、どうしてもその影響を受け、磁場の均一化に限度があ
った。
(Problem to be solved by the invention) In this case, if the magnetic force of the required uniform magnetic field is strong, the influence of the external magnetic field is small, but if the magnetic force of the required uniform magnetic field is weak, the influence of the external magnetic field is relatively large. Become. Furthermore, in the past, it was difficult to completely block out the surrounding magnetic field, so there was a limit to the ability to make the magnetic field uniform due to its influence.

(発明の目的) 本発明の目的は、磁力が弱い磁場の場合でも外部磁場の
影響を受けにく(、均一磁場を得ることができるように
した磁場形成方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a magnetic field forming method that is less susceptible to the influence of an external magnetic field (and can obtain a uniform magnetic field even in the case of a weak magnetic field).

(問題点を解決するための手段) 本発明の超電導体を用いた磁場形成方法は、超電導体に
よる十分長い円筒lの内部の磁場が均となることに着目
し、しかもその内側或は外側にソレノイドコイル2を設
け、同コイル2に電流を流すことにより発生する磁束を
円筒lの内部から外部に、或は外部から内部に流出させ
ることにより、円筒l内の磁場の強さを可変にしたこと
を特徴とするものである。
(Means for Solving the Problems) The method for forming a magnetic field using a superconductor of the present invention focuses on the fact that the magnetic field inside a sufficiently long cylinder l formed by the superconductor is uniform, and that A solenoid coil 2 is provided, and the magnetic flux generated by passing a current through the coil 2 is made to flow from the inside of the cylinder l to the outside, or from the outside to the inside, thereby making the strength of the magnetic field inside the cylinder l variable. It is characterized by this.

第1図は本発明の磁場形成方法の一例である。FIG. 1 shows an example of the magnetic field forming method of the present invention.

第1図において1は酸化物超電導体による円筒、2は電
流を流すことにより磁場を発生するソレノイドコイルで
ある。
In FIG. 1, 1 is a cylinder made of an oxide superconductor, and 2 is a solenoid coil that generates a magnetic field by passing an electric current.

前記円筒lの長さは通常は断面差し渡しの2倍から20
倍程度であるが1本発明では必要とする均一磁場空間の
広さ′や磁場の均一性によって適宜選定できる。
The length of the cylinder l is usually from twice the cross-sectional length to 20
In the present invention, it can be selected as appropriate depending on the width of the uniform magnetic field space required and the uniformity of the magnetic field.

(作用) 第1図の超電導体による円筒lでは、超電導体が冷却さ
れて超電導になる時に存在する磁場により、F!B束Φ
。が同円筒l内にトラップされる。この時の磁束密度B
iは円筒lの断面積をSoとすると。
(Function) In the cylinder l made of superconductors in Figure 1, the magnetic field that exists when the superconductor cools and becomes superconducting causes F! B bundle Φ
. is trapped within the same cylinder l. At this time, magnetic flux density B
Let i be the cross-sectional area of the cylinder l.

B、=Φ。/So・・・ (1) で与えられる。B,=Φ. /So... (1) is given by

次に、第1図の円筒1の外部のソレノイドコイル2に電
流を流すと、同コイル2内に1ifi場が発生するにの
磁場の磁束Aは第2図aに示すようにコイル2と円筒l
の外周面との間の空間3から同コイル2の外側を通る。
Next, when a current is applied to the solenoid coil 2 outside the cylinder 1 in Fig. 1, a 1ifi field is generated within the coil 2, and the magnetic flux A of the magnetic field is as shown in Fig. 2a. l
It passes through the outside of the coil 2 from the space 3 between the outer peripheral surface of the coil 2 and the outer peripheral surface of the coil 2.

これにより円筒lの外表面にB、の磁束密度が形成され
る。
As a result, a magnetic flux density of B is formed on the outer surface of the cylinder l.

このとき1円筒1の内部の磁束密度をBe、とすると、
円筒lの内部と外部の磁束密度の差(B。
At this time, if the magnetic flux density inside one cylinder 1 is Be, then
The difference in magnetic flux density between the inside and outside of the cylinder l (B.

=B、−Bc、lにより、外部の磁束が内部にフラック
スフローとして移動する。この移動がは第3図に示すよ
うになり、Fa東密度の差B6と時間tどの間に次の関
係がある。
=B, -Bc, l causes the external magnetic flux to move internally as a flux flow. This movement becomes as shown in FIG. 3, and the following relationship exists between the difference B6 in the Fa east density and the time t.

Ba”Bo(I  aXQOg  (t、+to)・ 
・ ・ ・ (2) ここでBo、aは定数で、 I2ogt、o=  (1=B、/Bat/  a・ 
・ ・ (3) B、は1=0のときの磁束密度の差B6の値である。
Ba”Bo(I aXQOg (t, +to)・
・ ・ ・ (2) Here, Bo and a are constants, and I2ogt, o= (1=B, /Bat/a・
・ ・ (3) B is the value of the magnetic flux density difference B6 when 1=0.

従って、ソレノイドコイル2により円筒lの外部に作ら
れる磁束の一部は、第2図すのように円筒lの内部を通
り抜ける。この状態でコイル2の電流を切ると、同円筒
lの内部にそのときに同内部を通る磁束Φ1が残留する
Therefore, a part of the magnetic flux created outside the cylinder 1 by the solenoid coil 2 passes through the inside of the cylinder 1 as shown in FIG. When the current in the coil 2 is cut off in this state, the magnetic flux Φ1 that passes through the cylinder 1 remains inside the cylinder 1 at that time.

このようにソレノイドコイル2に電流を流したり電流を
切ったりすることにより、円筒lの内部の磁束、即ち、
円筒l内の磁束密度を変化させることができる。
In this way, by applying current to the solenoid coil 2 and cutting the current, the magnetic flux inside the cylinder l, that is,
The magnetic flux density within the cylinder l can be varied.

第4図のようにソレノイドコイル2を円筒lの内部に置
いて、同円筒lの内部に作成される磁束を外部に移動さ
せるようにしても、第1図の場合と同様の原理で円筒l
内の磁場強度を変えることができる。
Even if the solenoid coil 2 is placed inside the cylinder l as shown in Fig. 4, and the magnetic flux created inside the cylinder l is moved to the outside, the same principle as in Fig. 1 is applied to the cylinder l.
The magnetic field strength within can be changed.

次に、超電導体による円筒lの場合、その内部を通る磁
束の数が一定の場合、磁束分布は同円筒lの長さ方向両
端部(開口部)側よりも長さ方向中央部側の方が均一で
あり、均一磁場が形成され易い。また外部磁場による乱
れは円筒lの長さ方向中央部に近づ(程減少する。従っ
て、円筒lの中央部には外部磁場に乱さOない均一磁場
空間が形成される。
Next, in the case of a cylinder l made of a superconductor, if the number of magnetic fluxes passing through the inside is constant, the magnetic flux distribution will be closer to the center in the length direction than to the both ends (openings) in the length direction of the cylinder l. is uniform, and a uniform magnetic field is easily formed. Further, the disturbance caused by the external magnetic field decreases as it approaches the center in the length direction of the cylinder l. Therefore, a uniform magnetic field space is formed in the center of the cylinder l, which is not disturbed by the external magnetic field.

(実施例1) 第1図に示す断面形状で、内径30cm、厚さ4mm、
長さ1.5mの超電導体製の円筒lの内、外画面に熱絶
縁層を設け、この円筒1を液体窒素により冷却して超電
導にし、同円筒lの外部に設だソレノイドコイル2に電
流を流して、同円筒lの周囲に磁場を発生させた。
(Example 1) With the cross-sectional shape shown in Fig. 1, the inner diameter is 30 cm, the thickness is 4 mm,
A heat insulating layer is provided on the inner and outer surfaces of a 1.5 m long superconducting cylinder 1, and this cylinder 1 is cooled with liquid nitrogen to become superconducting, and a current is applied to a solenoid coil 2 installed outside the cylinder 1. was applied to generate a magnetic field around the cylinder.

円筒!内の長さ方向中央部に磁束密度を測定するSQU
 I Dセンサーを置き、初期の磁束密度を測定したと
ころ、同中央部の磁束密度は04ガウスであり、同中央
部から長さ方向に±l0cm離れた点までの空間の磁束
密度の変化はlo−6ガウスであった。
Cylindrical! SQU to measure the magnetic flux density in the longitudinal center of the
When the ID sensor was placed and the initial magnetic flux density was measured, the magnetic flux density at the central part was 04 Gauss, and the change in magnetic flux density in space from the central part to a point ±10 cm in the length direction was lo -6 Gauss.

この状態でソレノイドコイル2に電流を100A、1分
間流し、前記センサーにより同中央部の磁束密度を測定
したところlOガウスとなった。
In this state, a current of 100 A was applied to the solenoid coil 2 for 1 minute, and the magnetic flux density at the center was measured by the sensor and found to be lO Gauss.

また同中央部から長さ方向に±10cm離れた点までの
空間の磁束密度の変化は以前と変わらずlo−6ガウス
であり、磁場の均一性が保たれており、相対的均一性は
向上していることが判明した。
In addition, the change in magnetic flux density in space from the center to a point ±10 cm away in the length direction is lo-6 Gauss as before, maintaining the uniformity of the magnetic field and improving relative uniformity. It turned out that it was.

次に、前記ソレノイドコイル2に電流を200A、1分
間流したところ1円筒l内の中央部の磁束密度は20ガ
ウスとなった。このときも同中央部から長さ方向に±l
ocmfiれた点までの空間の磁束密度の変化は以前と
変わらずio−’ガウスであり、やはり磁場の均一性が
保持されており相対的均一性は川に向上していることが
判明した。
Next, when a current of 200 A was applied to the solenoid coil 2 for 1 minute, the magnetic flux density at the center of the cylinder 1 became 20 Gauss. At this time, ±l in the length direction from the center
It was found that the change in the magnetic flux density in the space up to the point where the ocmfi was applied was io-' Gaussian as before, and that the uniformity of the magnetic field was still maintained and the relative uniformity was significantly improved.

(実施例2) 第3図に示す超電導体による円筒lと同じ形状、寸法の
超電導体による円筒lの内・外画面に熱絶縁層を設け、
同円筒lを液体窒素により冷却して超電導にした。この
円筒lの内部に第4図のように設けたソレノイドコイル
2に電流源4から電流を流して、円筒l内に磁場を発生
させた。
(Example 2) A thermal insulation layer was provided on the inner and outer surfaces of a cylinder l made of superconductors having the same shape and dimensions as the cylinder l made of superconductors shown in FIG.
The cylinder 1 was cooled with liquid nitrogen to become superconducting. A current was applied from a current source 4 to a solenoid coil 2 provided inside the cylinder l as shown in FIG. 4 to generate a magnetic field inside the cylinder l.

このとき、円筒l内の長さ方向中央部に磁束密度を測定
する5QUIDセンサーを置いて初期の磁束密度を測定
したところ、同中央部の磁束密度は04ガウスであった
。また同中央部から長さ方向に±10cm離れた点まで
の空間の磁束密度の変化は10−’ガウスであった。
At this time, a 5QUID sensor for measuring magnetic flux density was placed at the center in the longitudinal direction of the cylinder l to measure the initial magnetic flux density, and the magnetic flux density at the center was 0.4 Gauss. Further, the change in magnetic flux density in the space from the center to a point located ±10 cm apart in the length direction was 10-' Gauss.

この状態で前記コイル2に電流を90A、1分間流して
、センサーにより前記中央部の磁束密度を測定したとこ
ろlOガウスとなった。また中央部から長さ方向に±l
ocmiilれた点までの空間の磁束密度の変化は以前
と変わらず10−’ガウスであり磁場の均一性が保たれ
ており、相対的均一性は向上していることが’I’l+
明した。
In this state, a current of 90 A was passed through the coil 2 for 1 minute, and the magnetic flux density at the center was measured by a sensor and found to be lO Gauss. Also, ±l in the length direction from the center.
The change in the magnetic flux density in the space up to the point where the ocmiil occurred is still 10-' Gauss, and the uniformity of the magnetic field is maintained, indicating that the relative uniformity has improved.
I made it clear.

次に前記ソレノイドコイル2に電流を180A、1分間
流したところ、前記中央部の磁束密度は20ガウスとな
った。このときも同中央部から長さ方向に±locm離
れた点までの空間の磁束密度の変化は以前と変わらずl
o−6ガウスであり、磁場の均一性が保たれており、相
対的均一性は更に向上していることが判明した。
Next, when a current of 180 A was applied to the solenoid coil 2 for 1 minute, the magnetic flux density at the center became 20 Gauss. At this time, the change in the magnetic flux density in the space from the center to a point located ±locm away in the length direction remains the same as before.
o-6 Gauss, the uniformity of the magnetic field was maintained, and the relative uniformity was found to be further improved.

(発明の効果) 本発明の磁場形成方法によれば、超電導体による円筒が
用いられるので、比較的容易に低コストで均一磁場空間
を実現することができる。このため、この磁場空間にお
いて種々の磁気現象を観測することができ、科学技術上
極めて有用であると共に用途が多く工業的価値が大であ
る。
(Effects of the Invention) According to the magnetic field forming method of the present invention, since a cylinder made of a superconductor is used, a uniform magnetic field space can be realized relatively easily and at low cost. Therefore, various magnetic phenomena can be observed in this magnetic field space, which is extremely useful from a scientific and technological perspective, and has many uses and is of great industrial value.

【図面の簡単な説明】 第1図は本発明の磁場形成方法を実施化する装置の正面
図、第2図A、Bは同装置における磁束経路の説明図、
第3図は円筒の外部から内部に移動する磁束の説明図、
第4図は本発明の磁場形成方法を実施化する他の装置の
説明図である。 lは円筒 2はソレノイドコイル
[Brief Description of the Drawings] Fig. 1 is a front view of an apparatus implementing the magnetic field forming method of the present invention, Figs. 2 A and B are explanatory diagrams of magnetic flux paths in the same apparatus,
Figure 3 is an explanatory diagram of magnetic flux moving from the outside to the inside of the cylinder.
FIG. 4 is an explanatory diagram of another apparatus that implements the magnetic field forming method of the present invention. l is cylinder 2 is solenoid coil

Claims (1)

【特許請求の範囲】[Claims]  超電導体による円筒1の内側或は外側にソレノイドコ
イル2を設け、同コイル2に電流を流すことにより発生
する磁束を円筒1の内部から外部に、或は外部から内部
に流出させることにより、円筒1内の磁場の強さを可変
に保持するようにしたことを特徴とする超電導体を用い
た磁場形成方法。
A solenoid coil 2 is provided inside or outside a cylinder 1 made of a superconductor, and the magnetic flux generated by passing a current through the coil 2 is caused to flow from the inside of the cylinder 1 to the outside or from the outside to the inside. 1. A method for forming a magnetic field using a superconductor, characterized in that the strength of the magnetic field within the magnetic field is kept variable.
JP1255014A 1989-09-29 1989-09-29 Magnetic field forming method using superconducting material Pending JPH03116906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255014A JPH03116906A (en) 1989-09-29 1989-09-29 Magnetic field forming method using superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255014A JPH03116906A (en) 1989-09-29 1989-09-29 Magnetic field forming method using superconducting material

Publications (1)

Publication Number Publication Date
JPH03116906A true JPH03116906A (en) 1991-05-17

Family

ID=17272999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255014A Pending JPH03116906A (en) 1989-09-29 1989-09-29 Magnetic field forming method using superconducting material

Country Status (1)

Country Link
JP (1) JPH03116906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306701A (en) * 1991-02-28 1994-04-26 California Institute Of Technology Superconducting magnet and fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306701A (en) * 1991-02-28 1994-04-26 California Institute Of Technology Superconducting magnet and fabrication method

Similar Documents

Publication Publication Date Title
Ramirez et al. Thermodynamic and electron diffraction signatures of charge and spin ordering in La 1− x Ca x MnO 3
Xing et al. Magnetic flux mapping, magnetization, and current distributions of YBa2Cu3O7 thin films by scanning Hall probe measurements
JPH03245504A (en) Magnet for critical magnetic field measuring device
CA1146219A (en) Spin imaging in solids using synchronously rotating field gradients and samples
Xing et al. Determination of critical current densities of YBa2Cu3O7− δ thin films from ac susceptibility measurements
JPH03116906A (en) Magnetic field forming method using superconducting material
Sasaki et al. Measurement of rotational power losses in silicon-iron sheets using wattmeter method
Linhart et al. A microwave resonant cavity method for measuring the resistivity of semi-conducting materials
US4100492A (en) Harmonic magnetic field probe with novel core construction
US5108191A (en) Method and apparatus for determining Curie temperatures of ferromagnetic materials
Magni et al. Fluxmetric-magnetooptical approach to broadband energy losses in amorphous ribbons
Sabolek et al. Reduction of loss in composite magnetic material
Zou et al. Continuous critical current measurement of high-temperature superconductor tapes with magnetic substrates using magnetic-circuit method
Itoh Influence of wall thickness on magnetic shielding effects of BPSCCO cylinders
Bates et al. The adiabatic temperature changes accompanying the magnetization of ferromagnetic materials in low and moderate fields
WO2018025786A1 (en) Charged particle beam current measurement apparatus
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
Reisin et al. Intermediate-state structures of type-I superconductors
Chen Hysteresis loops of annealed MuMetal thick wire resulting from ring and cylinder specimens
JPH0460477A (en) Measurement of magnetic characteristic for superconductor
US3971038A (en) Coercivity control and detection signal generating pattern for uniaxially anisotropic ferromagnetic crystal platelets
Bozorth Barkhausen effect: Orientation of magnetization in elementary domains
RU2156980C1 (en) Method for measuring of critical current of superconductor
Miranda et al. Ac susceptibility and domain-wall dynamics in iron-based amorphous ribbons
MacNeal et al. Wall oscillation and overdamped motion in magnetic bubble domains