JPH03116005A - Non-polarization beam splitter - Google Patents

Non-polarization beam splitter

Info

Publication number
JPH03116005A
JPH03116005A JP25431389A JP25431389A JPH03116005A JP H03116005 A JPH03116005 A JP H03116005A JP 25431389 A JP25431389 A JP 25431389A JP 25431389 A JP25431389 A JP 25431389A JP H03116005 A JPH03116005 A JP H03116005A
Authority
JP
Japan
Prior art keywords
light
plane
polarization
incident
polarizing film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25431389A
Other languages
Japanese (ja)
Inventor
Shokichi Tokumaru
徳丸 昭吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP25431389A priority Critical patent/JPH03116005A/en
Publication of JPH03116005A publication Critical patent/JPH03116005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To hold the ratio of transmission light and reflected light by constituting a polarizing film to be applied of a non-polarizing film for bringing a P polarization component and an S polarization component to transmission and reflection in an equivalent ratio, so that an incident angle in the plane of polarization becomes about 45 deg. against an incident light limited to prescribed wavelength width. CONSTITUTION:A polarizing film is constituted of a non-polarizing film for bringing a P polarization component and an S polarization component to transmission and reflection in an equivalent ratio, respectively, and also, a combination arrangement of a first - a fourth surfaces 110 - 113 and a plane of polarization 114 is set so that an incident angle in the plane of polarization 114 comes to about 45 degrees against an incident light limited to prescribed wavelength width. In such a case, a transmission light 116 and a radiated light 120 are radiated from the same point 119 on the surface 111. In such a way, even if an adhered article, etc., exist on the surface 111, or the quantity of the adhered article, etc., is varied with the lapse of time, a ratio of the transmission light 116 and the reflected light 120 can always be hold so as to be constant.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は一定波長の入射光が、内部に組込まれた膜によ
り透過光と反射光とに分離され同一面の同一部位より外
部に放射するよう構成されたl!!偏光ビームスプリッ
タに関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention separates incident light of a certain wavelength into transmitted light and reflected light by an internally incorporated film, and radiates the light to the outside from the same part on the same surface. It is configured like this! ! Related to polarizing beam splitters.

[従来の技術] 従来の偏光ビームスプリンタ(以下PBSという)には
特公昭63−40288号公報に開示されるものがあり
、その構成は第2図に示されるような断面形状を有して
いる。すなわち第1の而10と第2の面11及び第3の
而12と第4の而J3とがそれぞれ平行配置さ九ており
、それらが平行四辺形の断面形状を持つように組合わさ
れている。
[Prior Art] A conventional polarized beam splinter (hereinafter referred to as PBS) is disclosed in Japanese Patent Publication No. 63-40288, and its configuration has a cross-sectional shape as shown in FIG. . That is, the first surface 10 and the second surface 11, the third surface 12 and the fourth surface J3 are arranged in parallel, respectively, and are combined so that they have a parallelogram cross-sectional shape. .

一般にこのPBSの奥行は、平行四辺形の高さと同程度
の長さを持つように構成されてい、る、また面10と而
13との交線および面11と面12との交線の間には偏
光面14が対角線上に配置されている。これらの各面の
素材はガラス等が使用され、面12は反射面として使用
されるため、反射膜が表面に蒸着されている。
In general, the depth of this PBS is configured to have a length comparable to the height of the parallelogram, and the distance between the intersection line of plane 10 and plane 13 and the intersection line of plane 11 and plane 12 is Polarization planes 14 are arranged diagonally. Glass or the like is used as the material for each of these surfaces, and since the surface 12 is used as a reflective surface, a reflective film is deposited on the surface.

また偏光面14には偏光膜が蒸着されている。Further, a polarizing film is deposited on the polarizing surface 14.

ここで円偏光特性を持つ入射光15が、而13に平行に
面10に入射すると、所定の屈折率で屈折した後偏光面
14上の点21においてP偏光成分とS偏光成分とに分
離される1図中実線で示すP偏光成分は偏光面14を透
過して面11上の点19より放射し透過光16となる。
Here, when incident light 15 having circular polarization characteristics enters surface 10 in parallel to light 13, it is refracted by a predetermined refractive index and then separated into a P polarization component and an S polarization component at point 21 on polarization surface 14. The P-polarized light component shown by the solid line in FIG.

なお、この際、透過光16の光路は入射光15の光路と
平行となる。
Note that at this time, the optical path of the transmitted light 16 is parallel to the optical path of the incident light 15.

一方1図中点線で示すS偏光成分は偏光面14上の点2
1で反射し、光路17を通って反射面12で反射し、光
路18を経て偏光面14上の点22を透過し1面11上
の点19より放射し反射光20となる。
On the other hand, the S-polarized light component shown by the dotted line in Figure 1 is at point 2 on the polarization plane 14.
1, passes through an optical path 17, is reflected at a reflective surface 12, passes through an optical path 18, passes through a point 22 on a polarizing plane 14, and is emitted from a point 19 on a surface 11, becoming reflected light 20.

なお1反射光20の光路は、入射光15の光路と直角に
なる。PBSを取り囲む環境は、空気または真空等の屈
折率は1または1に極めて近い物質に限定される。
Note that the optical path of one reflected light 20 is perpendicular to the optical path of the incident light 15. The environment surrounding the PBS is limited to substances with a refractive index of 1 or very close to 1, such as air or vacuum.

[発明が解決しようとする課題] しかし上述した従来の構成では、入射光の偏光特性が規
定出来ない場合や、偏光特性が例えば楕円偏光で偏光方
向が回転している等の理由で不安定な場合、P偏光成分
とS偏光成分との比、すなわち透過光と反射光との比を
一定に保持することが出来ないという問題点があった。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional configuration, there are cases where the polarization characteristics of the incident light cannot be defined, or where the polarization characteristics are unstable due to, for example, elliptically polarized light whose polarization direction is rotated. In this case, there was a problem in that the ratio between the P-polarized light component and the S-polarized light component, that is, the ratio between the transmitted light and the reflected light, could not be kept constant.

本発明は上述した欠点を解消するためになされたもので
、入射光の偏光特性が規定出来ない場合であっても、こ
の入射光の偏光特性に影響される事無く透過光と反射光
との比率を一定に保持することの出来る無偏光ビームス
プリッタを提供することを目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks, and even when the polarization characteristics of incident light cannot be specified, transmitted light and reflected light can be combined without being affected by the polarization characteristics of incident light. An object of the present invention is to provide a non-polarizing beam splitter that can maintain a constant ratio.

[課題を解決するための手段] 本発明の無偏光ビームスプリッタは、偏光面に塗布され
る偏向膜の構成を、P偏光成分とS偏光成分とをそれぞ
れ等量の比率で透過及び反射させる無偏光膜とし、かつ
、所定の波長幅に制限された入射光に対して、偏光面に
おける入射角をほぼ45°になるよう平行四辺形を構成
する各面と偏光面とを組合わせ配置するようにしている
[Means for Solving the Problems] The non-polarizing beam splitter of the present invention has a polarizing film coated on a polarizing surface that transmits and reflects P-polarized light components and S-polarized light components in equal amounts. A polarizing film is used, and the planes constituting the parallelogram and the plane of polarization are arranged in combination so that the angle of incidence on the plane of polarization is approximately 45° for incident light limited to a predetermined wavelength width. I have to.

[作用] 本発明では入射光がほぼ45°になるような入射角で無
偏光膜に入射すると、P偏光成分とS偏光成分とがそれ
ぞれ等量の比率で透過及び反射される0反射光は反射面
で全反射され再び無偏光膜を通過するが、この時すべて
の反射光がこの無偏光膜を透過する。従って放射点にお
いて透過光と反射光とはそれぞれ直交する方向に放射さ
れ、しかも透過光と反射光との比率が入射光の偏光特性
に依存しない一定の比率となる。
[Function] In the present invention, when the incident light is incident on the non-polarizing film at an angle of incidence of approximately 45°, the zero reflected light is transmitted and reflected in equal proportions of the P-polarized light component and the S-polarized light component, respectively. The light is totally reflected by the reflective surface and passes through the non-polarizing film again, but at this time all of the reflected light passes through this non-polarizing film. Therefore, at the radiation point, the transmitted light and the reflected light are radiated in directions perpendicular to each other, and the ratio of the transmitted light to the reflected light is a constant ratio that does not depend on the polarization characteristics of the incident light.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は1本発明の一実施例を示す無偏光ビームスプリ
ッタの断面形状を示したものである。なお断面形状は第
2図に示す従来の構成とほぼ同−構成を取っているため
、同一対応部分には100番を加えた同一番号を付し、
その詳細構成は説明を省略する。
FIG. 1 shows the cross-sectional shape of a non-polarizing beam splitter showing an embodiment of the present invention. The cross-sectional shape is almost the same as the conventional structure shown in Fig. 2, so corresponding parts are given the same numbers with 100 added.
Description of its detailed configuration will be omitted.

なお第2図に示す従来の構成と異なる点は、偏光面11
4に無偏光膜が蒸着しである点である。
The difference from the conventional configuration shown in FIG. 2 is that the polarization plane 11
4, a non-polarizing film is deposited.

この無偏光膜のために、例えば、楕円偏光の偏光特性を
持ちかつ偏光方向が時間と共に回転している入射光11
5が面113に平行に面110に入射し、所定の屈折の
後偏光面114に入射した場合1点121においてこの
入射光115はP偏光成分とS偏光成分とがそれぞれ等
しい光量の透過光と反射光とに分離される。そして透過
光は面111上の点119より放射し、透過光116と
なる。従ってこの透過光116にはP偏光成分とS偏光
成分とが含まれている。また透過光116の光路は入射
光115の光路と平行になる。
Because of this non-polarizing film, for example, the incident light 11 has polarization characteristics of elliptical polarization and whose polarization direction rotates with time.
5 is incident on the surface 110 parallel to the surface 113, and after a predetermined refraction, it is incident on the polarization surface 114. At one point 121, this incident light 115 becomes transmitted light with equal amounts of P-polarized light component and S-polarized light component, respectively. It is separated into reflected light. The transmitted light is then radiated from a point 119 on the surface 111 and becomes transmitted light 116. Therefore, this transmitted light 116 includes a P polarized light component and an S polarized light component. Further, the optical path of the transmitted light 116 is parallel to the optical path of the incident light 115.

一方、偏光面114上の点121で反射した反射光は、
光路117を通って反射面112で全反射し、光路11
8を経て偏光面114上の点122を透過し面111上
の点119から放射して反射光120となる。なおこの
反射光120にもP偏光成分とS偏光成分とが含まれる
。さらに反射光120の光路は入射光115の光路と直
角になる。
On the other hand, the reflected light reflected at the point 121 on the polarization plane 114 is
It passes through the optical path 117 and is totally reflected by the reflective surface 112, and the optical path 11
8, passes through a point 122 on the polarization plane 114, is emitted from a point 119 on the plane 111, and becomes reflected light 120. Note that this reflected light 120 also includes a P-polarized light component and an S-polarized light component. Furthermore, the optical path of the reflected light 120 is perpendicular to the optical path of the incident light 115.

第3図は入射角をパラメータとした本発明にかかる無偏
光ビームスプリッタの偏光面の波長対透過率特性を示し
た図で、縦軸に透過率を横軸に波長(λ)を示しである
。透過率100%は全透過を、透過率O%は全反射を意
味する。また透過率50%は透過光と反射光とが等しく
なる透過特性を意味する。したがって1図中に示す波長
λ、は透過率が50%となる入射光の波長を示す。さら
に実線はP偏光成分の透過特性を1点線はS偏光成分の
透過特性をそれぞれ示す。
Figure 3 is a diagram showing the wavelength versus transmittance characteristics of the polarization plane of the non-polarizing beam splitter according to the present invention using the incident angle as a parameter, where the vertical axis shows the transmittance and the horizontal axis shows the wavelength (λ). . A transmittance of 100% means total transmission, and a transmittance of 0% means total reflection. Further, the transmittance of 50% means a transmission characteristic in which transmitted light and reflected light are equal. Therefore, the wavelength λ shown in FIG. 1 indicates the wavelength of incident light at which the transmittance is 50%. Furthermore, the solid line shows the transmission characteristic of the P-polarized light component, and the one-dot line shows the transmission characteristic of the S-polarized light component.

ここで、偏光膜114への入射角がほぼ45゜となる図
中に■で示す状態では、波長λ、の近傍(±Δ)におい
てP偏光成分及びS偏光成分のそれぞれの透過光および
反射光は等斌に分離されるよう無偏光膜の光学特性が選
択されてし)る。
Here, in the state shown by ■ in the figure where the incident angle to the polarizing film 114 is approximately 45 degrees, the transmitted light and reflected light of the P-polarized light component and the S-polarized light component, respectively, in the vicinity (±Δ) of the wavelength λ. The optical properties of the non-polarizing film are selected so that the light is evenly separated.

−力無偏光膜への入射角が十分に小さく、すなわち瓜直
に近い状態で入射される場合5図中に■で示すように入
射光の波長λが所定の値を越えない範囲ではP偏光成分
及びS偏光成分ともに透過率100%を示す、しかし入
射光の波長λの値が所定の値を越えて大きくなると、P
偏光成分及びS偏光成分ともに透過率100%から透過
率O%へと急峻に遷移する0図中に示すように、この遷
移する波長λは波長λ、よりもはるかに長波長側に位置
している。従って波長λ、±Δの範囲ではP偏光成分お
よびS偏光成分ともに100%の透過率を持つ。
- When the incident angle to the forceless polarizing film is sufficiently small, that is, when the incident light is almost vertical, as shown by ■ in Figure 5, the wavelength λ of the incident light does not exceed a predetermined value. The transmittance of both the S-polarized component and the S-polarized component is 100%, but when the wavelength λ of the incident light increases beyond a predetermined value, P
Both the polarized light component and the S-polarized light component make a sharp transition from transmittance 100% to transmittance 0%.As shown in the figure, the wavelength λ at which this transition occurs is located on the much longer wavelength side than There is. Therefore, in the range of wavelength λ and ±Δ, both the P-polarized light component and the S-polarized light component have a transmittance of 100%.

前述したように第1図に示す無偏光ビームスプリッタに
おいては、偏光特性が特定されてされていない入射光1
15が偏光面114に入射する点121においては、P
偏光成分およびS偏光成分のそれぞれの透過光および反
射光が等−1に分離されるよう入射角と入射光の波長λ
、を選定して1する。
As mentioned above, in the non-polarizing beam splitter shown in FIG.
At the point 121 where P 15 is incident on the polarization plane 114, P
The incident angle and the wavelength λ of the incident light are set so that the transmitted light and reflected light of the polarized light component and the S-polarized light component are separated equally by −1.
, and set it to 1.

一=一方偏光面114上の点122においては1反射面
112により全反射された反射光は偏光面114に対す
る入射角が小さくなるため、第3図から明らかなように
、波長λ、においではP偏光成分およびS偏光成分とも
に100%透過する。
1 = One side At point 122 on the polarization plane 114, the reflected light totally reflected by the 1 reflection surface 112 has a small incident angle with respect to the polarization plane 114, so as is clear from FIG. 3, the wavelength λ and the odor are P Both the polarized light component and the S-polarized light component are transmitted 100%.

なお前述した実施例における諸元は次の通りである。す
なわち、無偏光ビームスプリッタの母体となるガラスの
屈折率は1.684.而113と偏光面114および面
112と偏光面114とのなす角はそれぞれ24°48
′、而110と偏光面114および而111と偏光面1
14とのなす角はそれぞれ22°12′である。
Note that the specifications in the above-mentioned embodiment are as follows. That is, the refractive index of the glass that forms the base of the non-polarizing beam splitter is 1.684. The angles between the plane 113 and the plane of polarization 114 and between the plane 112 and the plane of polarization 114 are 24°48, respectively.
', 110 and polarization plane 114, and 111 and polarization plane 1
The angles formed with 14 are 22° 12', respectively.

なお上述した諸元はこれに限定されるものではなく、各
々の面および偏光面のなす角度は、入射光が偏光面に入
射する点における入射角が、はぼ45°となるように選
定することが出来る。
Note that the above-mentioned specifications are not limited to these, and the angle formed by each plane and the polarization plane is selected so that the angle of incidence at the point where the incident light enters the polarization plane is approximately 45°. I can do it.

[発明の効果] 以」二説明したように、本発明によれば5透過光116
と反射光120とが而111」二の同一点119より放
射しているため、面111上に付着物等が存在し、また
は付着物等の壕が経時的に変化することがあっても透過
光116と反射光〕20との比を常に一定に保つことが
出来る。また付着物等の光学的減衰特性が経時的に変化
するような物性変化が生じても同様である。 さらに入
射面110 、にに付着物が存在した場合においても、
この付着物等は透過光116および反射光120に共通
に作用するため、結局スプリッタの表面状態の光学的変
化に影響される事無く常に透過光116と反射光120
との比が一定に維持される。さらに入射光115の偏光
特性が直線偏光あるいは円偏光のように偏光方向の状態
を安定に保持している場合は勿論、楕円偏光でかつ偏光
方向が時間と共に回転しているような場合、すなわち偏
光方向の状態が経時的に特定出来ない場合であっても、
偏光面114上の点121においてP偏光成分およびS
偏光成分のそれぞれの透過光および反射光を等喰に分離
するため、透過光116と反射光120との比を常に一
定に保持する・I【が出来る。
[Effects of the Invention] As explained below, according to the present invention, 5 transmitted lights 116
Since both the reflected light 120 and the reflected light 120 are emitted from the same point 119 on the surface 111, even if there are deposits on the surface 111 or the grooves of the deposits change over time, they will not pass through. The ratio between the light 116 and the reflected light 20 can always be kept constant. The same applies even if physical property changes such as deposits or the like change the optical attenuation characteristics over time. Furthermore, even if there is a deposit on the entrance surface 110,
Since these deposits act on the transmitted light 116 and the reflected light 120 in common, the transmitted light 116 and the reflected light 120 are not affected by optical changes in the surface condition of the splitter.
The ratio is maintained constant. Furthermore, the polarization characteristic of the incident light 115 is not only linearly polarized light or circularly polarized light in which the polarization direction is stably maintained, but also elliptically polarized light whose polarization direction rotates over time, that is, polarized light. Even if the state of direction cannot be determined over time,
At point 121 on polarization plane 114, P polarization component and S
Since the transmitted light and reflected light of each polarized light component are equally separated, it is possible to maintain the ratio of transmitted light 116 and reflected light 120 constant at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる無偏光ビームスプリ
ッタの断面構造を示す図、第2図は従来の偏光ビームス
プリッタの断面構造を示す図、第3図は本発明にかかる
無偏光ビームスプリッタの偏光面における波長対透過率
特性を示す図である110・・・・・第1の面、111
・・・・・・第2の面、112・・・・・・第3の面、
113・・・・・・第4の面、114・・・・・・偏光
面、115・・・・・・入射光、116・・・・・・透
過光、120・・・・・・反射光。
FIG. 1 is a diagram showing a cross-sectional structure of a non-polarizing beam splitter according to an embodiment of the present invention, FIG. 2 is a diagram showing a cross-sectional structure of a conventional polarizing beam splitter, and FIG. 3 is a diagram showing a cross-sectional structure of a non-polarizing beam splitter according to an embodiment of the present invention. 110 is a diagram showing the wavelength versus transmittance characteristics in the polarization plane of the splitter. First surface, 111
...Second surface, 112...Third surface,
113... Fourth surface, 114... Polarization plane, 115... Incident light, 116... Transmitted light, 120... Reflection light.

Claims (1)

【特許請求の範囲】 平行に配置された第1(110)及び第2(111)の
面と、第3(112)及び第4(113)の面とを断面
形状が平行四辺形となるよう組合わせ、第2(111)
と第3(112)の面の交線と、第1(110)と第4
(113)の面の交線との間に偏光面(114)を配置
し、第3(112)の面には全反射膜を、前記偏光面(
114)には偏光膜を塗布し、第4(113)の面に平
行な偏光特性を有する入射光を第1(110)の面に入
射させ、第2(111)の面の特定部位(119)より
それぞれ直交する透過光(116)と反射光(120)
とに分離して放射させる無偏光ビームスプラッタにおい
て、 前記偏光膜の構成をP偏光成分とS偏光成分とをそれぞ
れ等量の比率で透過及び反射させる無偏光膜とし、かつ
、所定の波長幅に制限された入射光に対して前記偏光面
における入射角をほぼ45度になるよう前記第1〜第4
の面及び前記偏光面の組合わせ配置を設定する事を特徴
とする無偏光ビームスプリッタ。
[Claims] The first (110) and second (111) planes and the third (112) and fourth (113) planes arranged in parallel have a cross-sectional shape of a parallelogram. Combination, 2nd (111)
and the intersection line of the third (112) plane, the first (110) and the fourth plane
A polarizing plane (114) is arranged between the intersection line of the (113) plane, and a total reflection film is placed on the third (112) plane.
114) is coated with a polarizing film, incident light having polarization characteristics parallel to the fourth (113) surface is incident on the first (110) surface, and a specific portion (119) of the second (111) surface is applied. ), the transmitted light (116) and reflected light (120) are perpendicular to each other.
In the non-polarized beam splatter that separates and radiates the polarized light, the polarizing film is configured to transmit and reflect the P-polarized light component and the S-polarized light component in equal proportions, and has a predetermined wavelength width. The first to fourth beams are arranged so that the angle of incidence on the plane of polarization is approximately 45 degrees for the limited incident light.
A non-polarizing beam splitter characterized in that a combination arrangement of the plane of the plane and the plane of polarization is set.
JP25431389A 1989-09-29 1989-09-29 Non-polarization beam splitter Pending JPH03116005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25431389A JPH03116005A (en) 1989-09-29 1989-09-29 Non-polarization beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25431389A JPH03116005A (en) 1989-09-29 1989-09-29 Non-polarization beam splitter

Publications (1)

Publication Number Publication Date
JPH03116005A true JPH03116005A (en) 1991-05-17

Family

ID=17263262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25431389A Pending JPH03116005A (en) 1989-09-29 1989-09-29 Non-polarization beam splitter

Country Status (1)

Country Link
JP (1) JPH03116005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508678A (en) * 1994-04-05 1996-04-16 Hokuriku Electric Industry Co., Ltd. High-voltage variable resistor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508678A (en) * 1994-04-05 1996-04-16 Hokuriku Electric Industry Co., Ltd. High-voltage variable resistor unit

Similar Documents

Publication Publication Date Title
JPH03126910A (en) Polarization light source device and polarization beam splitter
GB2428305A (en) Compact self-compensating beam splitter
US4904083A (en) Partially transparent mirror for a ring laser
JP2006038844A (en) Heterodyne laser interferometer equipped with porro prism for measuring displacement of stage
JP2786247B2 (en) Optical feedback isolator
US4863246A (en) Optical system and components for optical disk reader
JPH0547060A (en) Optical system for magneto-optical disk
US20130063819A1 (en) Methods and apparatus for polarizing laser light
US3563633A (en) Phase-compensated trihedral reflectors for interferometer systems
JPH03116005A (en) Non-polarization beam splitter
EP1390796B1 (en) Wide-angle rugate polarizing beamsplitter
JPH01241502A (en) Polarizing element for optical isolator
EP0484626A1 (en) Polarizing beam splitter
US6229645B1 (en) Polarization selecting optical element using a porro prism incorporating a thin film polarizer in a single element
US6717678B2 (en) Monolithic corrector plate
JPH03157621A (en) Polarization light source
CN212009179U (en) Turn-back type laser polarization-maintaining total reflection prism
JPS6340288B2 (en)
JPH0339712A (en) Light beam coupler
JP2764440B2 (en) Anamorphic prism
JP3000030B2 (en) Measuring method of reflection amount of optical fiber component and apparatus therefor
JPS61102621A (en) Optical isolator
CN111308591A (en) Polarization maintaining film, laser total reflection polarization maintaining prism and method for realizing total reflection polarization maintaining
JP2004212518A (en) System for converging laser beam fluxes
JPH0199004A (en) Beam splitter