JPH0311583A - Plane-form heat generator and its manufacture - Google Patents

Plane-form heat generator and its manufacture

Info

Publication number
JPH0311583A
JPH0311583A JP14413389A JP14413389A JPH0311583A JP H0311583 A JPH0311583 A JP H0311583A JP 14413389 A JP14413389 A JP 14413389A JP 14413389 A JP14413389 A JP 14413389A JP H0311583 A JPH0311583 A JP H0311583A
Authority
JP
Japan
Prior art keywords
plane
carbon fiber
length
heating element
heat generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14413389A
Other languages
Japanese (ja)
Inventor
Yukio Kosaka
征雄 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Kogyo KK
Original Assignee
Showa Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kogyo KK filed Critical Showa Kogyo KK
Priority to JP14413389A priority Critical patent/JPH0311583A/en
Publication of JPH0311583A publication Critical patent/JPH0311583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To obtain a plane-form heat generator which can be formed easily at a job site by using a formation of a limesilicate type hydraulic substance to which carbon fiber chops are dispersed and mixed. CONSTITUTION:To a limesilicate type hydraulic substance powder, 1-4wt.% of carbon fiber chops with the length 1-12mm are added and mixed in the condition being dried up substantially. By adding the water, kneading, and giving a form to a material prepared in such a way at a job site, an adequate product is obtained. The formation is a plane-form body with the thickness less than 10mm generally, and it can be formed easily by a process such as a troweling, a spray coating, or a roller painting. Copper electrodes 2 are buried with 10cm spacing at the middle of the thickness of the heater thus obtained to form a plane-form heat generator.

Description

【発明の詳細な説明】 「発明の目的」 本発明は面状発熱体およびその製造法に係り、融雪や床
暖房などの目的において利用するに好ましい面状発熱体
およびその有利な製造法を提供しようとするものである
Detailed Description of the Invention [Object of the Invention] The present invention relates to a planar heating element and a method for manufacturing the same, and provides a planar heating element and an advantageous manufacturing method thereof that are suitable for use in snow melting, floor heating, etc. This is what I am trying to do.

(産業上の利用分野) 融雪用や床面ないし壁面を利用した暖房用面発熱体およ
びその製造技術。
(Industrial application field) Surface heating elements for snow melting and heating using floors or walls, and their manufacturing technology.

(従来の技術) 融雪用や暖房用の面状発熱体としてはカーボン粉末を樹
脂に混合成形して薄層状としたものや、床面や壁層など
にパイプを配管して熱湯あるいは高温の熱媒体を循環さ
せるようにしたもの、ニクロム線などの発熱体を壁面や
床面に埋装したものなどが知られている。
(Conventional technology) Planar heating elements for snow melting and heating are made by mixing carbon powder with resin and molding it into a thin layer, or by installing pipes on floors or walls to generate boiling water or high-temperature heat. Some of the known types include those in which the medium is circulated, and those in which a heating element such as a nichrome wire is embedded in the wall or floor.

又上記のような面発熱体に関する製造法ないし施工法も
種々に知られている。
Furthermore, various manufacturing methods and construction methods regarding the above-mentioned surface heating elements are also known.

(発明が解決しようとする課題) 上記したような従来のものにおいては、特に床面や舗道
面などに採用される場合などにおいて発熱ないし放熱体
を保護しあるいは絶縁などを得るためにコンクリートや
モルタル等が覆装し、好ましくはサンドインチ状に挟み
込むようなことが必要であって、施工やメンテナンスが
煩雑で工数が嵩み、高コストである。
(Problems to be Solved by the Invention) In the conventional products as described above, concrete or mortar is used to protect the heat radiator or provide insulation, especially when used on floors or pavement surfaces. etc., and it is necessary to sandwich it preferably in a sandwich-like manner, and the construction and maintenance are complicated, the number of man-hours is large, and the cost is high.

従って施工場所などが限定され、例えば路上の如きムこ
採用することは困難である。
Therefore, the construction location is limited, and it is difficult to use the construction site, for example, on the road.

「発明の構成」 (課題を解決するだめの手段) 本発明は」1記した目的を達成するよう鋭意研究を重ね
、創案されたものであって、発熱体として珪酸石灰系水
硬性物質による成形体中に長さが3〜121の炭素繊維
チョップ1〜4重量%を均等状に分散混合せしめたこと
を特徴とする面状発熱体を採用し、その発熱体を加液混
練してからコテ塗り、吹きつげあるいはロール押圧など
の層着手法により成形硬化せしめて製造することにより
、前記した従来のものの課題を解決することを見出した
``Structure of the Invention'' (Means for Solving the Problems) The present invention has been devised through intensive research to achieve the objects stated in 1. A planar heating element is used in which 1 to 4% by weight of chopped carbon fibers having a length of 3 to 121 mm are evenly dispersed and mixed in the body, and the heating element is kneaded with a liquid and then heated with a iron. It has been found that the above-mentioned problems of the conventional products can be solved by manufacturing by molding and curing by layering techniques such as painting, blowing, or roll pressing.

(作用) 長さが3〜10mmの炭素繊維を用いることにより珪酸
石灰系水硬性物質の粉末に幻する分散配合を適切に得し
め、適量の配合で炭素繊維相互の接触通電を図って発熱
を得しめる。長さが3ffi1未満であると炭素繊維相
互の接触を得るために大量の配合を必要とし、又所定の
発熱作用を的確に得ることができない。一方IQam以
−にの長さをもった炭素繊維は炭素繊維相互の纏絡傾向
が大であって珪酸石灰系物質粉末との混合が均等に得蕪
<、又発熱状態も不均一となる傾向がある。前記炭素繊
維の量が1wt%未満では均等な混合が得られたとして
も炭素繊維の配合量が少いことがら繊維相互間の接触が
適切に得られず、発熱も不充分である。
(Function) By using carbon fibers with a length of 3 to 10 mm, it is possible to appropriately obtain a dispersion mixture similar to powdered silicate-lime-based hydraulic substances, and with an appropriate amount of mixture, the carbon fibers can conduct contact with each other to generate heat. I'll get it. If the length is less than 3ffi1, a large amount of blending is required to obtain mutual contact between the carbon fibers, and the desired heat generating effect cannot be obtained accurately. On the other hand, carbon fibers with a length longer than IQam have a strong tendency to entangle each other, so that they can be evenly mixed with silicate lime powder, and the heat generation state tends to be uneven. There is. If the amount of carbon fiber is less than 1 wt%, even if uniform mixing is obtained, the amount of carbon fiber blended is so small that proper contact between the fibers cannot be obtained and heat generation is insufficient.

この炭素繊維配合量が4%を超えたものはコストアンプ
となると共に必要とする発熱も行われなくなる傾向が顕
著である。
If the carbon fiber content exceeds 4%, the cost increases and there is a remarkable tendency that the necessary heat generation will not be generated.

珪酸石灰系水硬性物質粉末に対し炭素繊維を実質的に乾
燥した状態で添加混合ず・ることによりその混合を容易
とし、均等状態の混合を適切に得しめる。このようにし
て準備されたものを施工現場で加水混練し成形すること
により適切な製品が得られる。成形は一般的に厚さが1
0mm以下のような面状体であって、コテ塗り、吹きつ
b−1、あるいはローラ塗りなどの手法で平易に形成す
ることができる。
By adding and mixing carbon fiber to the silicate lime hydraulic substance powder in a substantially dry state, the mixing is facilitated and uniform mixing is appropriately obtained. An appropriate product can be obtained by kneading and kneading the thus prepared product with water at the construction site. Molding generally has a thickness of 1
It is a planar body with a thickness of 0 mm or less, and can be easily formed by methods such as troweling, blowing b-1, or roller coating.

上記したような本発明によるものは工場製産によって目
的の製品を得ることができることは勿論であるが、好ま
しい方式としては工場において上記のような珪酸石灰系
水硬性物質粉末と炭素繊維材との混合物を乾式状態で調
整し、これを袋詰めの如きとして施工現場に搬入し、加
水混練して施工する。即ち上記のような炭素繊維材と珪
酸石灰系水硬性物質粉末とは均等状に混合することが容
易でなく、手作業の如きでは好ましい均等状混合が得ら
れないが、特殊な梳毛機構の如きを採用することによっ
て有効に分散せしめられ、この分散状態で前記粉末と混
合することで好ましい均等状混合を工場設備によって得
しめ、このようにして形成された均等状混合物は荷役、
運搬によってもその混合状態を変動することがないから
施工現場で加水混合するだけで平易に施工することがで
きる。このようにするならば工場において成形製産され
たものを施工現場で更に施工工作する2重の工程を必要
と・けず、現場での単一工程で目的の施工が完成される
Of course, the product according to the present invention as described above can obtain the desired product through factory production, but a preferred method is to combine the above-mentioned lime silicate hydraulic substance powder and carbon fiber material in a factory. The mixture is prepared in a dry state, packed in bags, and transported to the construction site where water is added and kneaded for construction. In other words, it is not easy to uniformly mix the carbon fiber material and the silicate lime hydraulic substance powder as described above, and it is not possible to achieve a preferable uniform mixing by hand, but by using a special combing mechanism, etc. The homogeneous mixture thus formed can be effectively dispersed and mixed with the powder in this dispersed state using factory equipment, and the homogeneous mixture thus formed can be used for cargo handling,
Since the mixed state does not change even during transportation, construction can be easily carried out by simply adding water and mixing at the construction site. In this way, the desired construction can be completed in a single process at the site without the need for a double process of molding and manufacturing at the factory and then working at the construction site.

前記した炭素繊維としては径が5〜20μmで長さが上
記したような範囲のものであって、ピッチ系、パン系の
如きの何れでもよいが、繊維相互間の接点における電気
的負荷からすれば黒鉛化炭化水素が好ましい。
The above-mentioned carbon fibers have a diameter of 5 to 20 μm and a length within the above-mentioned range, and may be either pitch-type or bread-type, but should be resistant to electrical loads at the points of contact between the fibers. Graphitized hydrocarbons are preferred.

(実施例) 本発明によるものの具体的な実施例について説明すると
以下の如くである。
(Example) Specific examples of the present invention will be described below.

実施例1゜ 代表的に長さ6璽顧の炭素繊維材を′$備し、この炭素
繊維材の普通ポルトランドセメントによるセメントモル
タルへの配合量を1wt%、2wt%および4wt%の
3種として細突起を配設したドラム間に供給し、一方の
ドラムを1200 cm/minの低周速、他方のドラ
ムを50000 cm/minの高周速で回転せしめた
条件下で前記細突起による梳毛的作用で炭素繊維の纏絡
集合体を解繊分数せしめながら砂セメント比が1:1と
され乾式状態の粉状物に順次添加混合せしめ、このよう
にして略均等状に炭素繊維の分布混入されたものに加水
混練して第1図に示すように縦、横が各30cmで厚さ
51I+1のモルタル成形板1として発熱体を得た。
Example 1 A carbon fiber material having a typical length of 6 mm was provided, and the amount of this carbon fiber material added to cement mortar made of ordinary Portland cement was set to three types: 1 wt%, 2 wt%, and 4 wt%. The thin protrusions provided the material between the drums, and one drum was rotated at a low circumferential speed of 1200 cm/min and the other drum was rotated at a high circumferential speed of 50000 cm/min. While the tangled aggregate of carbon fibers is defibrated by the action, the sand-cement ratio is made 1:1, and it is sequentially added and mixed into the dry powder, and in this way, the carbon fibers are mixed in an approximately even distribution. The mixture was kneaded with water to obtain a heating element as a mortar molded plate 1 with length and width of 30 cm and thickness of 51I+1 as shown in FIG.

上記のようにして得られた発熱体lには間隔10cmと
なるように銅線電極2を厚さ方向中間に設定し、このも
のについて制令7日後に電極2.2間の抵抗値および発
熱状況を調査した。用いた測定機は横河電機製作販売に
係る電池式絶縁抵抗計であって、測定結果は次の第1表
の如くであった。
Copper wire electrodes 2 were set in the middle of the heating element 1 in the thickness direction so that the interval was 10 cm, and the resistance value between the electrodes 2 and 2 and the heat generation We investigated the situation. The measuring device used was a battery-powered insulation resistance meter manufactured and sold by Yokogawa Electric, and the measurement results were as shown in Table 1 below.

第  1  表 なお発熱状況のチエツクは5■および10■の双方で行
ったが、何れの場合も、1d%および1wt%では発熱
が実質的に認められず、これは4ivt%では導電性が
良好にすぎて発熱しないことにより、又1wt%の場合
には導電性が悪すぎて発熱がないことによるものと認め
られ、この炭素繊維長6111の場合には2tvt%前
後において最大状態の発熱が得られ、添加量がこれより
増加した場合および低下した場合の何れにおいても発熱
が低減するものであることを確認した。
Table 1 Note that the heat generation status was checked for both 5■ and 10■, but in both cases, heat generation was not substantially observed at 1d% and 1wt%, which indicates that conductivity was good at 4ivt%. It is recognized that this is due to the fact that the carbon fiber length is too low and does not generate heat, and in the case of 1wt%, the conductivity is so poor that no heat is generated.In the case of this carbon fiber length of 6111, the maximum heat generation was obtained at around 2tvt%. It was confirmed that heat generation was reduced both when the amount added was increased and when it was decreased.

なおこの炭素繊維長さ61より長い繊維を用いた場合に
おいては発熱の最大ポイントが上記より低い添加混合量
で得られることとなり、反対に6龍より短かい炭素繊維
の場合には、より多い添加混合量でなければ発熱の最大
ポイントが得られないことも確認されており、−船釣に
入手し得る3〜1.0 *xの炭素繊維の場合において
はその添加混合量を1〜4prt%として略好ましい発
熱体が得られることを知った。
In addition, when carbon fiber length longer than 61 is used, the maximum point of heat generation can be obtained at a lower addition amount than the above, and on the other hand, when carbon fiber is shorter than 61, it is necessary to add more. It has also been confirmed that the maximum point of heat generation cannot be obtained unless the mixing amount is - In the case of carbon fiber of 3 to 1.0 I learned that a substantially preferable heating element can be obtained as follows.

実施例2 上記のように標準的な長さ61鬼の炭素繊維2wt%を
混合することにより好ましい発熱性が得られることから
その発熱状態の仔細を検討すべく第2図に示すような縦
横がそれぞれ20cmで厚さが5鶴の発熱体を611の
炭素繊維2wt%で製造し、その中央部に間隔10cm
で2本の電極2.2を配設した。然してこのような発熱
体1に関して第2図に示すように、一方の電極2上にお
ける縦方向の長さを4分して得られた5 cm間隔の3
つの測定点をぬ1〜No、 3とし、又画電極2.2間
の中間位置において上記同様に得られた3つの測定点を
1Ik14〜No、6となし表面温度を測定した。即ち
各発熱体1を20°Cの恒温室に収容せしめ、画電極2
.2間に15Vおよび20Vの加電をなしてから1時間
を経て発熱体1が恒温化した時点において上記のような
No、 1〜No、 6の測定点で測温したところ15
■の加電の場合においてはその陽3測定点が30°Cを
示したのに対して、陽5の測定点は40.5°Cであり
、その他の測定点南1.2.4および隘6のはそれらの
間の中間的測定値を示した。即ち測定結果の発熱分布範
囲は約10°Cであった。
Example 2 As mentioned above, preferable heat generation properties can be obtained by mixing 2wt% of standard length 61 mm carbon fibers.In order to study the details of the heat generation state, a vertical and horizontal structure as shown in Fig. 2 was used. Heating elements each 20 cm in thickness and 5 cranes in thickness were manufactured from 2 wt% of 611 carbon fiber, with 10 cm intervals in the center.
Two electrodes 2.2 were arranged. However, regarding such a heating element 1, as shown in FIG.
The surface temperature was measured using three measurement points, designated as No. 1 to No. 3, and three measurement points obtained in the same manner as above at the intermediate position between the picture electrodes 2 and 2, as No. 1Ik14 to No. 6. That is, each heating element 1 is housed in a constant temperature room at 20°C, and the picture electrode 2
.. When the temperature of the heating element 1 became constant after 1 hour had passed since 15V and 20V were applied between the two, the temperature was measured at the measurement points No. 1 to No. 6 as described above, and the temperature was 15.
In the case of electrification (2), the positive 3 measuring point showed 30°C, while the positive 5 measuring point showed 40.5°C, and the other measuring points south 1, 2, 4 and Number 6 showed intermediate measurements between them. That is, the heat generation distribution range of the measurement results was about 10°C.

これに対し、上記と同し試験体に対し、その加電が20
VのときはM3測定点が59.5°Cで、階4測定点ば
69°Cであり、その他はそれらの間の温度値であって
、この場合においても10℃程度の範囲内に分布してい
ることが知られ、実用的に略好ましい発熱面状体である
ことが知られた。
On the other hand, for the same test specimen as above, the applied voltage was 20
In the case of V, the M3 measurement point is 59.5°C, the floor 4 measurement point is 69°C, and the other temperature values are between them, and even in this case, the temperature is distributed within a range of about 10°C. It is known that the heat-generating sheet body is practically preferable.

実施例3 長さが4〜10mm(平均6龍)の炭素繊維を2wt%
配合した実施例1.2におけると同じ組成のモルタルに
より屋外に施工し、最低気温がO℃〜8.8℃の条件下
で融雪の試験をなした結果は次の第2表の如くであった
Example 3 2wt% carbon fiber with a length of 4 to 10mm (average 6mm)
The snow melting test was carried out outdoors using a mortar with the same composition as in Example 1.2, and the lowest temperature was 0°C to 8.8°C. The results are shown in Table 2 below. Ta.

0 即ぢ−8,8℃にも達し、降雪量が2〜l1cmに達す
る条件下において、常に的確な融雪を得しめることが確
認された。なお上記第2表のように加電圧を1.0. 
I Vに設定して断続試験を実施した場合において発熱
体表面が濡れているときの電流値は0.6 Aであり、
一方乾燥状態のときには0.57Aと少許の差が認めら
れた。
It has been confirmed that accurate snow melting can always be achieved under conditions where temperatures reach as low as -8.8°C and snowfall amounts reach 2 to 11 cm. Note that as shown in Table 2 above, the applied voltage is 1.0.
When conducting an intermittent test with the setting set to IV, the current value when the heating element surface is wet is 0.6 A,
On the other hand, in a dry state, a small difference of 0.57A was observed.

「発明の効果」 以上説明したような本発明によるときは炭素繊維を効率
的に利用した発熱材を簡易且つ低コストに提供せしめ室
内暖房のみならず、融雪目的の如きに関しても有利な施
工が行わしめ得るものであって、工業的にその効果の大
きい発明である。
"Effects of the Invention" According to the present invention as explained above, a heat generating material that efficiently utilizes carbon fiber can be provided easily and at low cost, and it can be advantageously used not only for indoor heating but also for snow melting purposes. This is an invention that has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の具体的実施態様を示すものであって、第
1図と第2図はそれぞれ本発明の実施例についての成形
体斜面図を示すものである。 然してこの図面において、1は発熱体、2は電極を示す
ものである。 ■
The drawings show specific embodiments of the present invention, and FIGS. 1 and 2 each show an oblique view of a molded body in accordance with an embodiment of the present invention. However, in this drawing, 1 represents a heating element and 2 represents an electrode. ■

Claims (1)

【特許請求の範囲】 1、珪酸石灰系水硬性物質による成形体中に長さが3〜
12mmの炭素繊維チョップ1〜4重量%を均等状に分
散混合せしめたことを特徴とする面状発熱体。 2、珪酸石灰系水硬性物質粉末に長さが3〜12mmの
炭素繊維チョップ1〜4重量%を均等状態に分散添加し
たものに対し加液混練してからコテ塗り、吹きつけある
いはロール押圧などの層着手法により成形硬化すること
を特徴とする面状発熱体の製造法。
[Scope of Claims] 1. A molded body made of lime silicate hydraulic material has a length of 3 to 3.
A planar heating element characterized in that 1 to 4% by weight of chopped 12 mm carbon fibers are evenly dispersed and mixed. 2. 1 to 4% by weight of chopped carbon fibers with a length of 3 to 12 mm are added to silicate lime hydraulic material powder evenly dispersed therein, then liquid is added and kneaded, and then applied with a trowel, sprayed, or rolled. A method for manufacturing a planar heating element characterized by molding and curing using a layering method.
JP14413389A 1989-06-08 1989-06-08 Plane-form heat generator and its manufacture Pending JPH0311583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14413389A JPH0311583A (en) 1989-06-08 1989-06-08 Plane-form heat generator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14413389A JPH0311583A (en) 1989-06-08 1989-06-08 Plane-form heat generator and its manufacture

Publications (1)

Publication Number Publication Date
JPH0311583A true JPH0311583A (en) 1991-01-18

Family

ID=15354986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14413389A Pending JPH0311583A (en) 1989-06-08 1989-06-08 Plane-form heat generator and its manufacture

Country Status (1)

Country Link
JP (1) JPH0311583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508780A (en) * 1999-09-10 2003-03-04 エムケイエス・インストゥルメンツ・インコーポレーテッド Baffle for capacitive pressure sensor
JP2007132696A (en) * 2005-11-08 2007-05-31 Denso Corp Pressure sensor and structure for mounting same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508780A (en) * 1999-09-10 2003-03-04 エムケイエス・インストゥルメンツ・インコーポレーテッド Baffle for capacitive pressure sensor
JP2007132696A (en) * 2005-11-08 2007-05-31 Denso Corp Pressure sensor and structure for mounting same
JP4706444B2 (en) * 2005-11-08 2011-06-22 株式会社デンソー Pressure sensor and pressure sensor mounting structure

Similar Documents

Publication Publication Date Title
Wen et al. The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement
Wang et al. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete
Wu et al. Three-phase composite conductive concrete for pavement deicing
Arabzadeh et al. Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency
US4035265A (en) Paint compositions
US3696054A (en) Paint compositions
EP2430878B1 (en) Electrical panel heating device and method and material for the production thereof
Arabzadeh et al. Comparison between cement paste and asphalt mastic modified by carbonaceous materials: Electrical and thermal properties
Lee et al. Thermal response characterization and comparison of carbon nanotube-enhanced cementitious composites
Dong et al. Mechanical and electrical properties of concrete incorporating an iron-particle contained nano-graphite by-product
US2776914A (en) Coated stone aggregate
JPH0311583A (en) Plane-form heat generator and its manufacture
Sun et al. Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat
EP0004188A1 (en) Heating unit capable of generating heat upon passing an electric current therethrough, method for producing such a heating unit, and heating systems comprising such a heating unit
KR101595484B1 (en) Planar heating element and method for manufacturing it
CN116462436A (en) Conductive aggregate, intelligent cement composite material, and preparation method and application thereof
CN104018645B (en) A kind of construction method of self-heating floor
KR20170010548A (en) A heatful yarn and a product method of it
US20210024418A1 (en) Electrically-conductive asphalt concrete containing carbon fibers
Huang et al. Controlling and increasing the inherent voltage in cement paste
CN206696210U (en) A kind of ice melting capability apparatus for evaluating for deck installation structure
JP2545756B2 (en) Conductive concrete
US2071263A (en) Cement and plaster material
CN1226526A (en) Electrically conductive graphite cement boards and process for producing the same
JPS5821446A (en) Heat-conductive electrically insulating sheet