JPH03115832A - Sampling column - Google Patents

Sampling column

Info

Publication number
JPH03115832A
JPH03115832A JP25404789A JP25404789A JPH03115832A JP H03115832 A JPH03115832 A JP H03115832A JP 25404789 A JP25404789 A JP 25404789A JP 25404789 A JP25404789 A JP 25404789A JP H03115832 A JPH03115832 A JP H03115832A
Authority
JP
Japan
Prior art keywords
sample
column
separation
outflow port
column container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25404789A
Other languages
Japanese (ja)
Inventor
Hiroyuki Murakita
宏之 村北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP25404789A priority Critical patent/JPH03115832A/en
Publication of JPH03115832A publication Critical patent/JPH03115832A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6065Construction of the column body with varying cross section

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To effectively utilize a separation agent by filling a column container having a taper formed thereto so that the cross-sectional area thereof is monotonously reduced from an inflow port to an outflow port with the separation agent. CONSTITUTION:When a mobile phase supply apparatus is connected to the inflow port 1a of a column container 1 to inject a definite amount of a sample in the column container 1, the injected sample is distributed in a definite volume and moves through a sample separation agent 2 toward the outflow port 1b by the flow of a mobile phase and the concn. of the sample per unit length is diluted. As mentioned above, since the concn. per unit length of the sample is lowered with the advance of separation, treatment quantity becomes little toward the outflow port 1b and, therefore, even when the inner diameter of the column container 1 becomes fine toward the outflow port 1b and the separation gent 2 per unit length is little, separation treatment can be furnished and the separation agent 2 can be used at the limit of its capacity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、サンプルから特定の目的成分を取り出すのに
適した分取用カラムの構造に閉する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to the structure of a preparative column suitable for extracting a specific target component from a sample.

(従来技術) サンプルから目的成分を分取する場合には、通常分析用
のカラムを使用してサンプルを成分に分離することがお
こなわれていた。
(Prior Art) When separating a target component from a sample, a conventional analytical column is used to separate the sample into components.

(発明が解決しようとする問題点) ところで、カラムにより処理することができるサンプル
量、いわゆる処理能力は、カラム入口の断面積により決
る一方、分析用カラムは、成分の同定をリテンションタ
イムにより行なう必要上、カラム軸方向の断面積が一様
に構成されており、また成分の分離が進行するにつれで
成分が希釈されるため、分取という面から見ると、カラ
ムの使用効率が低いという問題があった。
(Problems to be Solved by the Invention) By the way, the amount of sample that can be processed by a column, so-called processing capacity, is determined by the cross-sectional area of the column inlet, while for analytical columns, it is necessary to identify components based on retention time. First, the axial cross-sectional area of the column is uniform, and the components are diluted as their separation progresses, so from the perspective of preparative separation, the column usage efficiency is low. there were.

本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは分離剤を有効に利用すること
ができる新規な分取用のカラムを提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide a novel preparative column that can effectively utilize a separating agent.

(問題を解決するための手段) このような問題を解決するために、本発明においては、
流入口から流出口側に断面積が単調に減少するようにテ
ーパを形成したカラム容器に分離剤を充填した。
(Means for solving the problem) In order to solve such a problem, in the present invention,
A separating agent was filled in a column container that was tapered so that the cross-sectional area monotonically decreased from the inlet to the outlet.

(作用) サンプルから目的成分が分離されて目的成分の希釈が進
むのに応じてカラムの断面積も減少するため、目的成分
に対するカラムの断面積は、各位置で常に処理能力を満
たす限界ぎりぎりの値となり、したがって同一の充填剤
量で処理能力の向上を図ることができる。
(Function) As the target component is separated from the sample and the target component becomes diluted, the cross-sectional area of the column also decreases, so the cross-sectional area of the column for the target component is always at the very edge of the limit that satisfies the processing capacity at each position. Therefore, processing capacity can be improved with the same amount of filler.

(実施例) 第1図は、本発明の一実施例を示すものであって、図中
符号1はカラムを構成する容器で、流入口1aとなる一
方の端部から流出口1bとなる他方の端部にかけて内径
が単調に減少するように形成され、内部に分離剤2が充
填されでいる。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which reference numeral 1 indicates a container constituting a column, from one end serving as an inlet port 1a to the other end serving as an outlet port 1b. It is formed so that the inner diameter monotonically decreases toward the end, and the separating agent 2 is filled inside.

この実施例において、流入口1aに移動相供給袋Mを接
続し、一定量Aのサンプルを注入すると、注入されたサ
ンプルは、カラムの流入口1a近辺の体積、サンプルの
溶媒により決る一定の体積に分布する。
In this example, when a mobile phase supply bag M is connected to the inlet 1a and a fixed amount A of sample is injected, the injected sample has a fixed volume determined by the volume near the inlet 1a of the column and the solvent of the sample. distributed in

移動相の流れによりサンプルが分離剤2内を流出口1b
側に移動すると、サンプルは分離剤2との相互作用によ
り成分毎に分離されて軸方向に広がるため、単位長さ当
りでのサンプルの濃度が希釈される。
The flow of the mobile phase causes the sample to flow through the separation agent 2 to the outlet 1b.
When moving to the side, the sample is separated into components by interaction with the separation agent 2 and spread in the axial direction, so that the concentration of the sample per unit length is diluted.

ところで、カラムを構成しでいる容器1は、その内径が
流出口1bに行くにしたがって細くなっているが、前述
したように分離が進行するにつれで、単位長さ当りの濃
度が低くなるため、流出口1bに行くにつれて処理量が
少なくので、単位長さ当りの分離剤が少なくでもため、
分層処理を賄うことができる。
Incidentally, the inner diameter of the container 1 constituting the column becomes narrower as it goes toward the outlet 1b, but as mentioned above, as the separation progresses, the concentration per unit length decreases. As the amount of treatment decreases toward the outlet 1b, the amount of separating agent per unit length can be reduced.
It can cover layer separation processing.

このようにして分Mされた各成分は、カラム形状、及び
分離剤により決る時間の経過後に流出口1bから排出さ
れることになる。
Each component thus separated is discharged from the outlet 1b after a period of time determined by the column shape and separation agent.

[実施例] 成るjlA(マイクログラム)のサンプルを、内径が均
等なカラム、例えば分析用カラムに注入すると、このサ
ンプルは、カラムの流入口において成る体積内に分布す
る。この分布体積は、サンプルを構成している溶媒や、
サンプル量に依存するものであるが、カラムの全体積に
より上限値が定まる1例えば、M2図に示したような注
入容量と理論段数Nの間係を有する内径6ミリメードル
、長さ15センチメートルの分析用カラムを例に採って
、その上限値(なお、上限値とは、通常、注入量無限小
の場合の段数が90%まで低下する注入量をいう)を試
料溶媒Cの場合について求めると、約5マイクロリツト
ルとなる(なお、サンプルを構成している溶媒の種類に
よっては注入時にカラム流入口で濃縮が起こるので、見
掛は上200及至1000マイクロリツトルのサンプル
を注入しても事実上5マイクロリツトル以下に分布し、
したがって段数の低下を起こさない場合もある)。
EXAMPLE When a sample of jlA (micrograms) is injected into a column of uniform internal diameter, for example an analytical column, the sample is distributed within the volume at the inlet of the column. This distribution volume is determined by the solvent that makes up the sample,
Although it depends on the amount of sample, the upper limit is determined by the total volume of the column1.For example, a column with an inner diameter of 6 mm and a length of 15 cm with the relationship between the injection volume and the number of theoretical plates N as shown in the M2 diagram. Taking an analytical column as an example, if we find its upper limit (the upper limit usually refers to the injection volume at which the number of plates decreases to 90% when the injection volume is infinitesimal) for sample solvent C, , approximately 5 microliters (note that depending on the type of solvent that makes up the sample, concentration may occur at the column inlet during injection, so even if the sample is injected with an apparent size of 200 to 1000 microliters, it will actually be Distributed below 5 microliters,
Therefore, there may be cases where the number of stages does not decrease).

上述したように、カラム入口での分布体積の上限値が5
マイクロリツトルであるとすると、この量は、カラム体
積が[πX (6/2)X (6/2)x 150] 
=4239 (マイクロリットル)となるから、カラム
体積の約1 /800となる。
As mentioned above, the upper limit of the distribution volume at the column inlet is 5
Assuming microliters, this amount is equivalent to the column volume [πX (6/2)X (6/2)x 150]
=4239 (microliter), which is approximately 1/800 of the column volume.

一方、充填剤の空隙率をα、空隙の全体積をVO(マイ
クロリットル)とすると、注入時におけるサシプルの濃
度は A+ [(VO/(1)/800] =800(!A/
VO(L19/L11) ・・・・(1)となる。
On the other hand, if the porosity of the filler is α and the total volume of the voids is VO (microliter), the concentration of sacsiple at the time of injection is A+ [(VO/(1)/800] = 800(!A/
VO (L19/L11) ...(1).

一方、サンプルは、カラムの流出口では希釈されるので
、この希釈率を分配比にのピークに着目して計算した場
合、ピークの半値幅をW+/2hとすると、ピークの頂
点の濃度はA/W+/2hにより表されるから、 A/Wl/2h=A/ rJ石54/NX (1+K)
xVO]    (u9/ui)−・−(2)となる(
ただし、Nはカラムの理論段数を表す)。
On the other hand, the sample is diluted at the outlet of the column, so when calculating this dilution rate by focusing on the peak in the distribution ratio, if the half-width of the peak is W+/2h, the concentration at the top of the peak is A. Since it is expressed by /W+/2h, A/Wl/2h=A/ rJ stone 54/NX (1+K)
xVO] (u9/ui)--(2) becomes (
However, N represents the number of theoretical plates in the column).

したがって希釈率は、上記式(1)及び式(2)から [800aA/VO] / [、/”−石54/NX(
1+K)XVO] =[1880α(1+K)]/FX ・・・・(3)と
ころで冥用に際しては分布比K>1  のところで使用
するから、K=7となるようにカラムを設計すれば全て
のケースに対応することができる。
Therefore, the dilution rate is calculated from the above formulas (1) and (2) as follows: [800aA/VO] / [, /”-Stone 54/NX (
1+K) be able to handle the case.

したがって、この条件を当てはめで式(3)から計算す
ると、流出口での希釈率は3760α/ff となる。
Therefore, when this condition is applied and calculated from equation (3), the dilution rate at the outlet becomes 3760α/ff.

このことから、流入側内径D1:流出側内径D2=1:
      α/F即 となるように流入口と流出口の内径を選択することによ
り、カラムの軸方向の各位置の分離剤をその能力の限界
で使用することができ、従来のカラムと同量の分離剤を
使用した場合には処理絶対量が上昇することになる。
From this, inflow side inner diameter D1: outflow side inner diameter D2 = 1:
By selecting the internal diameters of the inlet and outlet so that α/F is equal to If a separating agent is used, the absolute amount to be treated will increase.

なお、この実施例においては、カラム断面の形状を円形
としているが、他の形状例えば楕円形であっても同様の
作用を奏することは明らかである。
In this embodiment, the cross-section of the column is circular, but it is clear that the same effect can be obtained even if the column has another shape, such as an ellipse.

(発明の効果) 以上、説明したように本発明においては、流入口から流
出口側に断面積が単調に減少するようにテーパを形成し
たカラム容器1こ分離剤を充填したので、分離が進むに
つれで生じるサンプルの希釈に応じて、各分離工程で必
要となる分離剤jlを少なくし、もってカラム全体の分
離剤を有効に利用できて、少ない分離剤で処理能力の高
いカラムを得ることができる。
(Effects of the Invention) As explained above, in the present invention, the separation agent is filled in one column container which is tapered so that the cross-sectional area decreases monotonically from the inlet to the outlet, so that the separation progresses. According to the dilution of the sample that occurs over time, the amount of separation agent required in each separation step can be reduced, making it possible to effectively utilize the separation agent in the entire column and obtain a column with high throughput using less separation agent. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の構成図、及び第
2図はカラムのサンプル注入容Iと理論段数Nの関係を
示す図である。
FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the sample injection volume I of the column and the number N of theoretical plates.

Claims (1)

【特許請求の範囲】[Claims] 流入口から流出口側に断面積が単調に減少するようにテ
ーパを形成したカラム容器に分離剤を充填してなる分取
用カラム。
A preparative column is made by filling a separation agent into a column container that is tapered so that the cross-sectional area decreases monotonically from the inlet to the outlet.
JP25404789A 1989-09-29 1989-09-29 Sampling column Pending JPH03115832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25404789A JPH03115832A (en) 1989-09-29 1989-09-29 Sampling column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25404789A JPH03115832A (en) 1989-09-29 1989-09-29 Sampling column

Publications (1)

Publication Number Publication Date
JPH03115832A true JPH03115832A (en) 1991-05-16

Family

ID=17259497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25404789A Pending JPH03115832A (en) 1989-09-29 1989-09-29 Sampling column

Country Status (1)

Country Link
JP (1) JPH03115832A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521041A (en) * 2002-03-19 2005-07-14 ウオーターズ・インベストメンツ・リミテツド Solid phase extraction apparatus and method for purifying a sample before analysis
JP2006159148A (en) * 2004-12-10 2006-06-22 Nagoya Institute Of Technology Column for chromatography and column for electrochromatography
JP2007163153A (en) * 2005-12-09 2007-06-28 Yamazen Corp Condition determination support device of liquid chromatography, liquid chromatograph, and condition determination support program of liquid chromatography
CN106062551A (en) * 2013-09-18 2016-10-26 安捷伦科技有限公司 Liquid chromatography columns with structured walls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521041A (en) * 2002-03-19 2005-07-14 ウオーターズ・インベストメンツ・リミテツド Solid phase extraction apparatus and method for purifying a sample before analysis
JP2006159148A (en) * 2004-12-10 2006-06-22 Nagoya Institute Of Technology Column for chromatography and column for electrochromatography
JP2007163153A (en) * 2005-12-09 2007-06-28 Yamazen Corp Condition determination support device of liquid chromatography, liquid chromatograph, and condition determination support program of liquid chromatography
CN106062551A (en) * 2013-09-18 2016-10-26 安捷伦科技有限公司 Liquid chromatography columns with structured walls
US10718743B2 (en) 2013-09-18 2020-07-21 Agilent Technologies, Inc. Liquid chromatography columns with structured walls

Similar Documents

Publication Publication Date Title
DE69930757T2 (en) MONOLITHIC MATRIX FOR THE SEPARATION OF NUCLEIC ACIDS BY ION-PAIR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH REVERSED PHASES
JPH02187659A (en) Liquid chromatography using micro-porous hollow fiber
US6749733B1 (en) Materials classifier, method of using, and method of making
EP1355709A1 (en) Multi column chromatography system
US3966410A (en) Group extraction of organic compounds present in liquid samples
JPH03115832A (en) Sampling column
Bombaugh et al. High resolution preparative liquid chromatography using recycle
JPS644149B2 (en)
Giddings Hydrodynamic relaxation and sample concentration in field-flow fractionation using permeable wall elements
JPH05212206A (en) Device for extracting solvent
US4107041A (en) Electromatographic separating apparatus and system
FR2511894A1 (en) IMPROVED APPARATUS FOR WASHING AND GRANULOMETRIC SEPARATION OF SUSPENDED SOLID MATERIALS
US3709665A (en) Solvent extraction apparatus
JPS5855012A (en) Solid-liquid separating device of slurry
US20170304744A1 (en) Dispersed mobile-phase countercurrent chromatography
US3694335A (en) Chromatographic separation
EP1087227A1 (en) a free flow electrophoresis apparatus
JPS585085B2 (en) Upflow moving bed filtration equipment
SU776538A3 (en) Method and device for liquid extraction
JP2004101198A (en) Preparative deice and preparative liquid chromatograph
SU1011244A1 (en) Separating funnel
JPS59176670A (en) Column for high-speed liquid chromatograph
Akiba et al. Enrichment and separation of holmium and erbium by high-speed countercurrent chromatography
Giddings Theoretical basis of macromolecular chromatography
JPS5297475A (en) Pelletized sedimentation separator