JPH03115737A - Supercharger system with variable matching mechanism - Google Patents

Supercharger system with variable matching mechanism

Info

Publication number
JPH03115737A
JPH03115737A JP1252221A JP25222189A JPH03115737A JP H03115737 A JPH03115737 A JP H03115737A JP 1252221 A JP1252221 A JP 1252221A JP 25222189 A JP25222189 A JP 25222189A JP H03115737 A JPH03115737 A JP H03115737A
Authority
JP
Japan
Prior art keywords
supercharger
load
generator
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1252221A
Other languages
Japanese (ja)
Inventor
Tetsuzou Oota
太田 徹造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1252221A priority Critical patent/JPH03115737A/en
Publication of JPH03115737A publication Critical patent/JPH03115737A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the engine efficiency by connecting a frequency converter to the power output side of a generator connected to the supercharger of an internal combustion engine, as well as connecting a power supply generating line to the output side of the frequency converter through a circuit breaker, thus controlling the frequency converter according to engine load. CONSTITUTION:A supercharger provided coaxially with an air compressor part 1 and a gas turbine part 2 drives the gas turbine part 2 with exhaust gas exhausted from an internal combustion engine 3, thereby operating the air compressor part 1 to compress intake air to be supplied to the internal combustion engine 3. In this case, a generator 8 is connected to the shaft of the supercharger, and a frequency converter 9 is connected to the power output side of the generator 8, as well as a power supply generating line 11 is connected to the output side of the frequency converter 9 through a circuit breaker 10. The frequency converter 9 is controlled by a frequency control circuit 12 on the basis of the output of a load detector 15 for detecting the load of the internal combustion engine 3, thus enabling the constantly optimum matching of the supercharger to the optional load of the internal combustion engine 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶の推進用ディーゼル主機関、或は陸用自
家発電に用いられる大型ディーゼル機関に付属した過給
機の運転制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an operation control system for a supercharger attached to a diesel main engine for propulsion of a ship or a large diesel engine used for land-based private power generation.

〔従来の技術〕[Conventional technology]

一般に過給機は、機関の工場試験時に組み合わせ特性を
確認し、必要があれば圧縮機のデイフユーザ又はガスタ
ービンのノズルを交換して最適マツチングを調整する。
Generally, the combination characteristics of a supercharger are checked during engine factory testing, and if necessary, the compressor differential user or gas turbine nozzle is replaced to adjust the optimal matching.

但し、このままでは組み合1jせ特性は一通)となり、
部分負荷では効率が必ずしも良くない所で運転される。
However, if this continues, the combination 1j will have only one characteristic),
Under partial load, the system is operated at a location where efficiency is not necessarily high.

部分負荷においても効率を高くする為には、機関の負荷
条件に追従し最適マツチングとなる様可変式のマツチン
グ機構が必要となる。
In order to increase efficiency even under partial load, a variable-style matching mechanism that follows the engine load conditions and provides optimal matching is required.

この目的の為、これまで用いられた装置を第5図に示す
。第5図に示した装置は、過給機の圧縮機部OX、過給
機のガスタービン部02、及び内燃機関03よりなる一
般的な構造に加えて、更にマツチングを可変とする為、
町動翼式ガスタービン入口ノズル04、及び可動翼制御
回路05が併設されている。
The apparatus hitherto used for this purpose is shown in FIG. In addition to the general structure consisting of the compressor section OX of the supercharger, the gas turbine section 02 of the supercharger, and the internal combustion engine 03, the device shown in FIG.
A rotary blade type gas turbine inlet nozzle 04 and a movable blade control circuit 05 are also provided.

この方式では、機関の負荷特性信号06(例えば燃料ポ
ンプラック位置又は掃気空気圧力、外)を検出し、ガス
タービンの入口ガス流れが機関の負荷に見合ったものと
なるようにサーボモーター07を介し、機械的にガスタ
ービン入口ノズル04の翼を制御している。
In this method, an engine load characteristic signal 06 (for example, fuel pump rack position or scavenging air pressure, external) is detected and a servo motor 07 is used to adjust the inlet gas flow of the gas turbine to match the engine load. , mechanically controls the blades of the gas turbine inlet nozzle 04.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のような従来技術には次のような問題点がある。 The prior art as described above has the following problems.

■ ガス入口ノズルの翼を機械的に動く構造とする為、
構造が複雑となシ、加工・組立に手間がかかる。
■ Because the blades of the gas inlet nozzle have a mechanically movable structure,
The structure is complex, and processing and assembly are time-consuming.

■ 小さな可動部品が高温ガスと接触する為、部品の保
守点検を簡素化できない。
■ Maintenance and inspection of parts cannot be simplified because small moving parts come into contact with high-temperature gases.

■ タービンの方式(半径流又は軸流)によシ、同一の
構造・機構が使えない。
■ The same structure and mechanism cannot be used depending on the turbine type (radial flow or axial flow).

本発明は、上述の問題点を解決するため、マツチング調
整部分に1機械的移動部材を排除した可変マツチング付
き過給機を提供することを目的とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide a supercharger with variable matching that eliminates one mechanically moving member in the matching adjustment section.

〔課題を解決するための手段〕[Means to solve the problem]

(1)過給機の回転軸と発電機の回転軸とを接触し、発
電機の電気出力側に周波数変換器を設け、電気的に任意
の負荷を外部から過給機に加えることにより、過給機特
性と内燃機関特性とを適合させる。
(1) By bringing the rotating shaft of the supercharger into contact with the rotating shaft of the generator, installing a frequency converter on the electrical output side of the generator, and applying any electrical load to the supercharger from the outside, Matching supercharger characteristics and internal combustion engine characteristics.

(2)過給機の回転軸と発電機の回転軸とを電磁すべり
継手を介して接続し、同すべり継手のすべり度を制御す
ることにより、過給機特性と内燃機関特性とを適合させ
る。
(2) Match the characteristics of the supercharger and the internal combustion engine by connecting the rotating shaft of the supercharger and the rotating shaft of the generator via an electromagnetic slip joint and controlling the degree of slippage of the slip joint. .

〔作用〕[Effect]

(1)発電機を電力供給母線から遮断した場合、発電機
は過給機ローター(圧縮機部およびガスタービン部)と
共に回転するが負荷はか\らない。
(1) When the generator is cut off from the power supply bus, the generator rotates together with the supercharger rotor (compressor section and gas turbine section), but the load does not increase.

発電機を電力供給母線に接続した時は、発電機にか\る
負荷がガスタービンに対し抵抗として働く。
When a generator is connected to a power supply bus, the load on the generator acts as a resistance to the gas turbine.

発電機にか\る負荷は、周波数変換器により変換する周
波数を制御することによシ増減される。
The load on the generator is increased or decreased by controlling the frequency converted by a frequency converter.

(2)  電磁すべり継手に電流を流さなければ、発電
機と過給機ローター(圧縮機部およびガスタービン部)
とは縁が切れ、過給機には負荷がか\らない。
(2) If no current is applied to the electromagnetic slip joint, the generator and supercharger rotor (compressor section and gas turbine section)
The connection is severed, and there is no load on the supercharger.

電磁すべυ継手に電流を流し、発電機を電力供給母線に
接続すると、発電機Kか\る負荷がガスタービンに対し
抵抗として働く。
When a current is applied to the electromagnetic slip joint and the generator is connected to the power supply bus, the load from the generator K acts as a resistance to the gas turbine.

電磁すべり継手に送る電流を制御することにより、発電
機の回転数即ち負荷が変化し、ガスタービンに対する抵
抗が変化する。
By controlling the current sent to the electromagnetic slip joint, the rotational speed or load of the generator changes, and the resistance to the gas turbine changes.

〔第1実施例〕 第1図、第2図において、1は過給機の空気圧縮機部、
2は過給機のガスタービン部、3は内燃機関、4は圧縮
機に吸い込まれる外気、5は圧縮機部1で圧縮され機関
3に供給される空気、(6)は機関3から排出され、ガ
スタービン部2に入る高温燃焼ガス、7はガスタービン
駆動後排出される燃焼ガス、8は発電機、9は周波数変
換器、1oは電気遮断器、11は電力供給母線、12は
周波数制御回路、13は機関負荷特性信号(周波数制御
回路12への入力)、14は周波数制御信号、15は機
関3の負荷検出器である。
[First embodiment] In Figs. 1 and 2, 1 is an air compressor section of a supercharger;
2 is the gas turbine section of the supercharger, 3 is the internal combustion engine, 4 is the outside air sucked into the compressor, 5 is the air compressed by the compressor section 1 and supplied to the engine 3, and (6) is the air discharged from the engine 3. , high-temperature combustion gas entering the gas turbine section 2, 7 combustion gas discharged after driving the gas turbine, 8 a generator, 9 a frequency converter, 1o an electric circuit breaker, 11 a power supply bus, 12 a frequency control 13 is an engine load characteristic signal (input to the frequency control circuit 12), 14 is a frequency control signal, and 15 is a load detector for the engine 3.

第1図において、周波数変換器9によυ発電機8が電力
供給母線11に同期投入されていない場合、発電機8は
過給機ローター(1及び2)と共に回転するが、負荷は
かからない。即ち、過給機は従来同様、内燃機関3の負
荷に対応し、過給機の回転数、空気流量、圧縮比、効率
の関係がある一定の特性曲線に従って変化する。
In FIG. 1, if the υ generator 8 is not synchronized with the power supply bus 11 by the frequency converter 9, the generator 8 rotates together with the supercharger rotors (1 and 2) but is not loaded. That is, as in the conventional case, the supercharger corresponds to the load of the internal combustion engine 3, and changes according to a constant characteristic curve in which the rotation speed, air flow rate, compression ratio, and efficiency of the supercharger are related.

然るに、周波数変換器9で発電機8を同期投入すると、
発電機8はガスタービン2によって駆動され、発生した
電力は遮断器10を通して電力供給母線11に送られる
。この事は逆に言えば、発電機8にかかる負荷がガスタ
ービン2に対し抵抗として働く事となシ、初期の過給機
特性曲線からずれた性能点で過給機は運転される。
However, when the generator 8 is turned on synchronously by the frequency converter 9,
The generator 8 is driven by the gas turbine 2, and the generated power is sent to the power supply bus 11 through the circuit breaker 10. In other words, the load applied to the generator 8 does not act as resistance to the gas turbine 2, and the supercharger is operated at a performance point that deviates from the initial supercharger characteristic curve.

発電機8にかかる負荷は、変換する周波数を制御する事
により増減できるので、内燃機関3の負荷を示す信号1
3(例えば燃料ポンプラック、掃気空気圧力等)を検出
し、その負荷に対し最適な過給機の運転点(回転数)に
なる様な発電機8の負荷を、制御回路12に予めプログ
ラムしておく事により、内燃機関3の任意の負荷に対し
、常に最適な過給機のマツチングを行なう事ができる。
The load on the generator 8 can be increased or decreased by controlling the frequency to be converted, so the signal 1 indicating the load on the internal combustion engine 3
3 (for example, fuel pump rack, scavenging air pressure, etc.), and programs the load of the generator 8 in advance in the control circuit 12 so that the operating point (rotation speed) of the supercharger is optimal for that load. By doing so, it is possible to always perform optimal supercharger matching for any given load on the internal combustion engine 3.

第2図に過給機部分の縦断面図を示す。Fig. 2 shows a longitudinal sectional view of the supercharger section.

過給機ガスタービン部、2は半径流ガスタービンの例を
示している。nは軸受、Uは過給機ケーシング、5は吸
込空気サイレンサである。過給機、) ローターnと発電機8とは、可撓継手かにより結合され
る。
The supercharger gas turbine section 2 shows an example of a radial flow gas turbine. n is a bearing, U is a supercharger casing, and 5 is an intake air silencer. Supercharger) The rotor n and the generator 8 are coupled by a flexible joint.

発電機8はサイレンサーδから支持されている。The generator 8 is supported from the silencer δ.

なお、軸流ガスタービンの場合、ガスタービン部2の形
状が異なるが、その他は変わらない。
Note that in the case of an axial flow gas turbine, the shape of the gas turbine section 2 is different, but other aspects remain the same.

〔第2実施例〕 第3図、第4図において、1は過給機の空気圧縮機部、
2は過給機のガスタービン部、3は内燃機関、4は圧縮
機に吸い込まれる外気、5は圧縮機部1で圧縮され機関
に供給される空気、6は機関3から排出され、ガスター
ビン部2に入る高温燃焼ガス、7はガスタービン駆動後
排出される燃焼ガス、8は発電機、10は電気遮断器、
11は電力供給母線、15は機関3の負荷検出器、16
は電磁すべり継手、17はすべり継手負荷制御器、18
は機関負荷特性信号(負荷制御器17への入力)、19
はすべり継手制御電流(負荷制御器17からの出力)で
ある。
[Second Embodiment] In FIGS. 3 and 4, 1 is an air compressor section of a supercharger;
2 is the gas turbine section of the supercharger, 3 is the internal combustion engine, 4 is the outside air sucked into the compressor, 5 is the air compressed by the compressor section 1 and supplied to the engine, 6 is the air discharged from the engine 3, and is the gas turbine High-temperature combustion gas enters part 2, 7 is combustion gas discharged after driving the gas turbine, 8 is a generator, 10 is an electric circuit breaker,
11 is a power supply bus, 15 is a load detector for engine 3, 16
is an electromagnetic slip joint, 17 is a slip joint load controller, 18
is the engine load characteristic signal (input to the load controller 17), 19
is the slip joint control current (output from the load controller 17).

第3図において、電磁すべり継手16のコイルに電流を
流さなければ、継手16は全く力を伝達せず、発電機8
と過給機ローター(1及び2)とは縁が切れる。即ち、
過給機は従来のものと全く同様に、内燃機関3の負荷に
対応し、過給機の回転数、空気流量、圧縮比、効率の関
係がある一定の特性曲線に従って変化する。
In FIG. 3, if no current is applied to the coil of the electromagnetic slip joint 16, the joint 16 will not transmit any force and the generator 8
The edge is separated from the supercharger rotor (1 and 2). That is,
The supercharger responds to the load of the internal combustion engine 3, just as in the conventional case, and changes according to a constant characteristic curve in which the rotational speed of the supercharger, the air flow rate, the compression ratio, and the efficiency are related.

然るに、電磁すべり継手16のコイルに電流を流す事に
より、発電機8はガスタービン2によって駆動され、発
生した電力は遮断器1o全通して電力供給母線11に送
られる。この事は逆に言えば、発電機8にかかる負荷が
ガスタービン2に対し抵抗として働く事となり、初期の
過給機特性曲線からずれた性能点で過給機は運転される
However, by passing current through the coil of the electromagnetic slip joint 16, the generator 8 is driven by the gas turbine 2, and the generated power is sent to the power supply bus 11 through the circuit breaker 1o. In other words, the load applied to the generator 8 acts as a resistance to the gas turbine 2, and the supercharger is operated at a performance point that deviates from the initial supercharger characteristic curve.

発電機8にかかる負荷(発電機の回転数)は、電磁すべ
り継手16に送る電流19で制御する事ができるので、
内燃機関3の負荷を示す信号18(例えば燃料ポンプラ
ック、掃気空気圧力等)を検出し、その負荷に対し最適
な過給機の運転点になる様な発電機8の負荷を、制御器
17に予めプログラムしておく事により、内燃機関3の
任意の負荷に対し、常に最適な過給機のマツチングを行
なう事ができる。
The load on the generator 8 (the rotational speed of the generator) can be controlled by the current 19 sent to the electromagnetic slip joint 16.
The controller 17 detects a signal 18 indicating the load on the internal combustion engine 3 (for example, fuel pump rack, scavenging air pressure, etc.), and adjusts the load on the generator 8 so that the operating point of the supercharger is optimal for that load. By programming in advance, it is possible to always optimally match the supercharger to any load on the internal combustion engine 3.

第4図に過給機部分の縦断面図を示す。FIG. 4 shows a longitudinal sectional view of the supercharger section.

2は過給機ガスタービン部2は半径流ガスタービンの例
を示している。乙は軸受、冴は過給機ケーシング、5は
吸込空気サイレンサである。
2 shows an example in which the supercharger gas turbine section 2 is a radial flow gas turbine. B is the bearing, Sae is the supercharger casing, and 5 is the intake air silencer.

過給機ローターnと発電機8は電磁すべり継手16を介
して結合されているが、軸同士の機械的接触はない。電
磁すべり継手16と発電機8とはサイレンサ5から支持
される。
Although the supercharger rotor n and the generator 8 are coupled via an electromagnetic slip joint 16, there is no mechanical contact between the shafts. The electromagnetic slip joint 16 and the generator 8 are supported by the silencer 5.

なお、軸流ガスタービンの場合゛;ガスタービン部2の
形状が異なるが、その他は変わらない。
In the case of an axial flow gas turbine, the shape of the gas turbine section 2 is different, but other aspects are the same.

〔発明の効果〕〔Effect of the invention〕

本発明による可変マツチング機構を有する過給機システ
ムは、内燃機関の過給機に連結した発電機と、同発電機
の電力出力側に設けた周波数変換器又は同発電機と過給
機との間に設けた電磁すべり継手と、同発電機の電気出
力側に接続する電力供給母線と、前記周波数変換器又は
電磁すべり継手を制御する制御器と、前記内燃機関の負
荷を検出して前記制御器に入力する負荷検出器とを具え
9・たことKより、次の効果を有する。
A supercharger system having a variable matching mechanism according to the present invention includes a generator connected to a supercharger of an internal combustion engine, and a frequency converter provided on the power output side of the generator, or between the generator and the supercharger. an electromagnetic slip joint provided therebetween, a power supply bus connected to the electrical output side of the generator, a controller that controls the frequency converter or the electromagnetic slip joint, and a controller that detects the load of the internal combustion engine and controls the internal combustion engine. 9. Since the load detector is provided with a load detector input to the device, the following effects are obtained.

(1)広範な運転領域で最適マツチングができる。(1) Optimal matching can be performed in a wide range of operating ranges.

(2)機関性能の経年変化にも、過給機を改造せずに対
応できる。
(2) It is possible to respond to changes in engine performance over time without modifying the supercharger.

(3)ガスタービンのノズル翼を動かさずに、上記(1
)(2+項が可能になる。
(3) Without moving the nozzle blades of the gas turbine,
) (2+ terms become possible.

(4)上記(3)項の結果、構造が簡素化できる。(4) As a result of the above item (3), the structure can be simplified.

(5)信頼性が高く、保守が簡素化できる。(5) High reliability and easy maintenance.

(6)ガスタービンの方式に拘らず、同一のシステムと
なる。
(6) The system is the same regardless of the type of gas turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る過給機システムの概
念図、第2図は同上の過給機・発電機部分の断面図、第
3図は本発明の第2実施例に係る過給機システムの概念
図、第4図は第3図の過給機・発電機部分の断面図、第
5図は従来の過給機システムの概念図である。 1.2・・・過給機     3・・・内燃機関8・・
・発電機       9・・・周波数変換器11・・
・電力供給母線    12・・・周波数制御回路15
・・・負荷検出器 代理 人  弁理士 岡 本 重 文 外1名 11−・電力廿む命母7線 12−・−周汲数和側口路 15・−・負荷検出器 第2図 ¥3図 第4図 第5図
Fig. 1 is a conceptual diagram of a supercharger system according to a first embodiment of the present invention, Fig. 2 is a sectional view of the same supercharger/generator section, and Fig. 3 is a conceptual diagram of a supercharger system according to a second embodiment of the present invention. A conceptual diagram of such a supercharger system, FIG. 4 is a sectional view of the supercharger/generator portion of FIG. 3, and FIG. 5 is a conceptual diagram of a conventional supercharger system. 1.2...Supercharger 3...Internal combustion engine 8...
- Generator 9... Frequency converter 11...
・Power supply bus 12...frequency control circuit 15
...Load detector agent Patent attorney Shige Okamoto Fumiaki 1 person 11--Power supply circuit 7 line 12--Surrounding number sum side exit 15--Load detector diagram 2 ¥3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の過給機に連結した発電機と、同発電機
の電力出力側に設けた周波数変換器と、同周波数変換器
の出力側に電気遮断器を介して接続した電力供給母線と
、前記周波数変換器を制御する周波数制御回路と、前記
内燃機関の負荷を検出して周波数制御回路に入力する負
荷検出器とを具えたことを特徴とする可変マツチング機
構を有する過給機システム。
(1) A generator connected to the supercharger of an internal combustion engine, a frequency converter installed on the power output side of the generator, and a power supply bus connected to the output side of the frequency converter via an electric circuit breaker. A supercharger system having a variable matching mechanism, comprising: a frequency control circuit that controls the frequency converter; and a load detector that detects the load of the internal combustion engine and inputs the detected load to the frequency control circuit. .
(2)電磁すべり継手を介して内燃機関の過給機に連結
した発電機と、同発電機の電気出力側に電気遮断器を介
して接続した電力供給母線と、前前電磁すべり継手を制
御するすべり継手負荷制御器と、前記内燃機関の負荷を
検出してすべり継手負荷制御器に入力する負荷検出器と
を具えたことを特徴とする可変マツチング機構を有する
過給機システム。
(2) Controls the generator connected to the internal combustion engine's supercharger via an electromagnetic slip joint, the power supply bus connected to the electrical output side of the generator via an electrical breaker, and the front electromagnetic slip joint. A supercharger system having a variable matching mechanism, comprising: a slip joint load controller that detects the load of the internal combustion engine and inputs the detected load to the slip joint load controller.
JP1252221A 1989-09-29 1989-09-29 Supercharger system with variable matching mechanism Pending JPH03115737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252221A JPH03115737A (en) 1989-09-29 1989-09-29 Supercharger system with variable matching mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252221A JPH03115737A (en) 1989-09-29 1989-09-29 Supercharger system with variable matching mechanism

Publications (1)

Publication Number Publication Date
JPH03115737A true JPH03115737A (en) 1991-05-16

Family

ID=17234197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252221A Pending JPH03115737A (en) 1989-09-29 1989-09-29 Supercharger system with variable matching mechanism

Country Status (1)

Country Link
JP (1) JPH03115737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276634A (en) * 2004-03-25 2005-10-06 Tokyo Gas Co Ltd Power generation, power arrangement, and its operating method
JP2007505261A (en) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド Multi-shaft turbine generator system and control method
US20100089056A1 (en) * 2008-10-09 2010-04-15 General Electric Company Integrated turbo-boosting and electric generation system and method
US8096127B2 (en) 2007-02-09 2012-01-17 Mitsubishi Heavy Industries, Ltd. Exhaust turbo-supercharger
WO2015125910A1 (en) * 2014-02-24 2015-08-27 三菱重工業株式会社 Supercharger and method for cooling electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622724A (en) * 1979-08-02 1981-03-03 Asahi Chem Ind Co Ltd Pharmaceutical preparation of n4-acylcytosine arabinoside
JPS61142332A (en) * 1984-12-17 1986-06-30 Mitsubishi Heavy Ind Ltd Generator device utilizing excess power from supercharger
JPS62218277A (en) * 1986-03-19 1987-09-25 Mitsubishi Electric Corp Control method for motor driven power steering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622724A (en) * 1979-08-02 1981-03-03 Asahi Chem Ind Co Ltd Pharmaceutical preparation of n4-acylcytosine arabinoside
JPS61142332A (en) * 1984-12-17 1986-06-30 Mitsubishi Heavy Ind Ltd Generator device utilizing excess power from supercharger
JPS62218277A (en) * 1986-03-19 1987-09-25 Mitsubishi Electric Corp Control method for motor driven power steering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505261A (en) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド Multi-shaft turbine generator system and control method
JP2005276634A (en) * 2004-03-25 2005-10-06 Tokyo Gas Co Ltd Power generation, power arrangement, and its operating method
US8096127B2 (en) 2007-02-09 2012-01-17 Mitsubishi Heavy Industries, Ltd. Exhaust turbo-supercharger
EP2110531B1 (en) * 2007-02-09 2016-11-30 Mitsubishi Heavy Industries, Ltd. Exhaust gas turbocharger
US20100089056A1 (en) * 2008-10-09 2010-04-15 General Electric Company Integrated turbo-boosting and electric generation system and method
WO2015125910A1 (en) * 2014-02-24 2015-08-27 三菱重工業株式会社 Supercharger and method for cooling electric motor
US11396889B2 (en) 2014-02-24 2022-07-26 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd. Supercharger and motor cooling method

Similar Documents

Publication Publication Date Title
US5148670A (en) Gas turbine cogeneration apparatus for the production of domestic heat and power
JP2526100B2 (en) Supercharger control device
SU1382408A3 (en) Control device for internal combustion engine with turbo-compressor
GB2394014A (en) Turbocharger apparatus
MX9800660A (en) Motor-assisted variable geometry turbocharging system.
US6415606B1 (en) Method and apparatus for turbocharging an engine of a locomotive
EP3862569B1 (en) Recovery from gas turbine compressor surge using an electric motor
US5160080A (en) Gas turbine engine and method of operation for providing increased output shaft horsepower
EP0222546B1 (en) Engine exhaust gas energy recovery apparatus
JPH0343630A (en) Power plant of gas turbine
US4640091A (en) Apparatus for improving acceleration in a multi-shaft gas turbine engine
JPH06346748A (en) Power section control device for turbocharger motor
JPH03202633A (en) Control device for turbo-charger with rotary electric machine
JPH03115737A (en) Supercharger system with variable matching mechanism
EP0349211B1 (en) Exhaust-driven electric generator system for internal combustion engines
US20060225432A1 (en) Supercharged open cycle gas turbine engine
US5400597A (en) Turbocharger system with electric blower
EP0219772B1 (en) Turbo compound internal combustion engine
JP3160822B2 (en) Exhaust energy recovery device
EP0150729A2 (en) Method and apparatus for improving acceleration in a multi-shaft gas turbine engine
JPH04342828A (en) Control device for turbocharger provided with rotary electric equipment
JP2012177330A (en) Hybrid supercharger
EP0219140A2 (en) Single piece shroud for turbine rotor
GB2395753A (en) Fuel compressor system for a gas turbine
WO2023032498A1 (en) Control device for gas turbine, gas turbine facility, method for controlling gas turbine, and control program for gas turbine