JPH03114613A - Correcting device for bending axial line of long sized metallic member - Google Patents

Correcting device for bending axial line of long sized metallic member

Info

Publication number
JPH03114613A
JPH03114613A JP13983290A JP13983290A JPH03114613A JP H03114613 A JPH03114613 A JP H03114613A JP 13983290 A JP13983290 A JP 13983290A JP 13983290 A JP13983290 A JP 13983290A JP H03114613 A JPH03114613 A JP H03114613A
Authority
JP
Japan
Prior art keywords
value
correction
bending
amount
frc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13983290A
Other languages
Japanese (ja)
Other versions
JPH0694048B2 (en
Inventor
Motohiko Kitsukawa
橘川 元彦
Atsuo Suzuki
鈴木 淳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hashimoto Forming Industry Co Ltd
Original Assignee
Hashimoto Forming Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hashimoto Forming Industry Co Ltd filed Critical Hashimoto Forming Industry Co Ltd
Priority to JP13983290A priority Critical patent/JPH0694048B2/en
Publication of JPH03114613A publication Critical patent/JPH03114613A/en
Publication of JPH0694048B2 publication Critical patent/JPH0694048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PURPOSE:To always enable exact correction without making excessively the amount of deformation of axial line part by controlling the amount of deformation so as to be gradually smaller as it is approached to the correction target value when the axial line part of metallic member is corrected toward the correction target value. CONSTITUTION:When a correcting table 6 is moved from the reference position to the direction of the reference angle line of bending, correcting parts 10 is brought into contact with the axial part of the metallic member S which is fixed to a fixing device 2. Because contact is detected with a sensor, a value FRC at the moving position of the table 6 is detected. An AV value that shows each divided division where the distance between the axial line part S1 and the reference angle line of bending is devided into plural division and the FRC value are compared. The AV value corresponding to the FRC value and the BV value of the amount of a first correction corresponding to the AV value are selected and the amount of correction is operated and a driving motor is controlled. The axial line part is gradually corrected in the direction of the reference angle line of bending and, when the value FRC at the relevant position of the correcting part to the axial line part after correcting is approximately coincided with the correction target value and is made within tolerance, correcting action is stopped.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、自動車のドアサツシュやガイドレールなど、
予め所望形状に軸線曲げした長尺な金属部材の矯正を行
なう軸線曲げ矯正装置に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to automobile door sashes, guide rails, etc.
The present invention relates to an axial bending straightening device for straightening a long metal member that has been axially bent into a desired shape in advance.

(従来の技術) 従来、被加工部材の曲げ状態を矯正する手段としては自
動車用フレーム付きドアサブアッセンブリの製造工程で
ロウ付は後のドアフレームの建材位置を矯正するものが
知られている(実開昭61−92413号)。
(Prior Art) Conventionally, as a means for correcting the bent state of a workpiece, it is known that in the manufacturing process of a door subassembly with an automobile frame, the brazing is performed to correct the position of the building material of the door frame ( Utility Model No. 61-92413).

この矯正手段は、作業開始時にドアフレーム建材位置の
矯正部を測定原点位置まで駆動源で移動させ、それを測
定原点位置の検出センサて検知することにより停止させ
た後、矯正部に設けた建材位置測定センサでドアフレー
ムの建材位置を測定し、この測定信号に基づいてドアフ
レームの矯正すべき曲げ量を算出し、その曲げ量に応じ
て矯正部の駆動源を作動させ、この矯正部でドアフレー
ムを曲げ量だけ押し曲げて矯正した後、矯正部を復帰さ
せて球付位置測定用センサでドアフレームの建材位置を
再度測定し、その測定信号をコントローラに送って、次
のドアフレームの曲げ量を算出すると共に、この曲げ量
に応じて矯正部を移動することにより曲げ量がゼロにな
るまで矯正部を繰返し動作させるものである。
This correction means moves the correction part of the door frame building material position to the measurement origin position using a drive source at the start of work, stops it by detecting the measurement origin position with a detection sensor, and then moves the correction part of the building material position in the correction part. The position of the building material on the door frame is measured by a position measurement sensor, the amount of bending of the door frame to be corrected is calculated based on this measurement signal, and the drive source of the correction section is activated according to the amount of bending. After correcting the door frame by pushing it by the amount of bending, the correction unit is returned to its original position, and the position of the building material on the door frame is measured again using a position measurement sensor with a ball.The measurement signal is sent to the controller, and the next door frame is adjusted. The amount of bending is calculated, and the correcting section is repeatedly operated by moving the correcting section according to the amount of bending until the amount of bending becomes zero.

その矯正手段を適用し、例えば第15図に示すような横
断面形状を有し、しかも、第16図に示す如き軸線曲げ
形状を有する自動車用ドアサツシュSを矯正するときに
は、軸線部分SLを固定し、それから延長する軸線部分
S2またはS3が所定の曲げ形状基準点Oに対してプラ
ス側或いはマイナス側に位置するか、また、この位置が
第17図に示すような許容範囲を越えてどの程度である
か等を作業開始の初回データとして測定し、その上で測
定データに基づいて矯正部を移動させた後は、測定原点
と現在の軸線部分S2またはS3の位置との間で次の曲
げ量を測定して、曲げ量がねらい値ゼロになるまで矯正
部を繰返し動作させる手順で行わねばならないことにな
る。
When the straightening means is applied to straighten an automobile door sash S having a cross-sectional shape as shown in FIG. 15 and an axially bent shape as shown in FIG. 16, the axial portion SL is fixed. , whether the axis line portion S2 or S3 extending from it is located on the plus side or minus side with respect to the predetermined bending shape reference point O, and to what extent this position exceeds the allowable range as shown in Fig. 17. After measuring the amount of bending, etc. as initial data before starting work, and then moving the correction part based on the measured data, the next bending amount is measured between the measurement origin and the current position of the axis S2 or S3. This must be done by measuring the amount of bending and repeatedly operating the correction unit until the amount of bending reaches the target value of zero.

(発明が解決しようとする問題点) 然し、上述した矯正手段を自動車用ドアサツシュ等の軸
線曲げ部材に適用するときには、矯正ねらい値に対して
プラス、マイナス側の両方より矯正を行うところから、
データ類が多量になって取扱いが困難であるばかりでな
く、材質のバラ付き、ワークの種類、矯正個所、初期セ
ット位置等も考慮して曲げ量を求めなければならないか
ら、データが不明確なものになってしまう。
(Problems to be Solved by the Invention) However, when applying the above-mentioned correction means to an axial bending member such as an automobile door sash, correction is performed from both the plus and minus sides of the correction target value.
Not only is the amount of data difficult to handle, but the amount of bending must also be determined by taking into account variations in the material, type of workpiece, correction location, initial setting position, etc., so the data may be unclear. It becomes something.

(問題点を解決するための手段) この発明に係る軸線曲げ矯正装置は、予め所望形状に軸
線曲げした金属部材の1部を固定する固定装置と、金属
部材の曲げ矯正を行なう軸線部分を所定の曲げ基準角線
方向へ移動変形するための矯正部テーブルと、この矯正
部テーブルを往復動するための駆動装置とを備えてなる
軸線曲げ矯正装置にして、 金属部材の前記軸線部分を曲げ基準角線方向へ移動変形
すべく矯正部テーブルに備えた矯正部に対する軸線部分
の当接、離脱を検出するセンサと、基準位置からの矯正
テーブルの移動位置を検出する位置検出装置と、 金属部材の初期セット位置における軸線部分と曲げ基準
角線との間隔を複数の区域に区分した各区分域を示すA
V値と、各AV値に対応した初回矯正量のBV値と、各
BV値に対する矯正量の増加分のBVD値と、曲げ基準
角線近傍に設定した複数の粗ねらい値のCV値と、各C
V値に対する微小矯正量の増加分のDV値とを予め記憶
した矯正データ記憶部と、 基準位置から矯正部テーブルが移動して矯正部が軸線部
分に最初に当接したことをセンサが検出したときにおけ
る矯正部テーブルの移動位置の値FRCと前記矯正デー
タ記憶部のAV値とを比較してFRC値の該当するAV
値を選択すると共に当該AV値に対応するBV値を選択
して初回矯正量を演算し、前記矯正部に対する軸線部分
の当接が2回目以上と判断されたときには選択された前
記BV値に対応するBVD値を前記初回矯正量に毎回増
加して適数回の矯正時の各矯正量の総和を演算し、軸線
部分の矯正が繰り返されることによりFRC値がAV値
の矯正ねらい値近傍の粗ねらい値の位置を越える毎に各
粗ねらい値の各CV値に対応する各DV値を前記矯正量
の総和に毎回増加して矯正量を演算する演算部と、 上記演算部の演算結果に基き矯正部テーブルを曲げ基準
角線方向へその都度移動せしめて軸線部分の矯正を行な
うべく駆動モータを制御する駆動制御部と、 を備えてなり、前記演算部の演算結果に基いて軸線部分
の矯正作用を数回繰り返し、矯正部テーブルの矯正部が
矯正後の軸線部分と当接した位置のFRC値がAV値の
矯正ねらい値A12にほぼ一致したときに矯正を停止す
るよう構成してなるものである。
(Means for Solving the Problems) The axial bending straightening device according to the present invention includes a fixing device for fixing a part of a metal member that has been axially bent into a desired shape in advance, and a fixing device for fixing a part of the metal member whose axial line is to be straightened by bending. An axial bending straightening device comprising a straightening section table for moving and deforming in the direction of a bending reference angle line, and a drive device for reciprocating this straightening section table, A sensor for detecting contact and separation of an axial portion with respect to a correction section provided on a correction section table to be moved and deformed in an angular direction; a position detection device for detecting a movement position of the correction table from a reference position; A showing each divided area where the interval between the axis line part and the bending reference angle line at the initial set position is divided into multiple areas.
V value, the BV value of the initial correction amount corresponding to each AV value, the BVD value of the increase in the correction amount for each BV value, and the CV value of a plurality of rough aim values set near the bending reference angle line, Each C
A correction data storage section that stores in advance the DV value of the increase in the amount of minute correction with respect to the V value, and a sensor that detects when the correction section table moves from the reference position and the correction section first contacts the axis portion. The value FRC of the movement position of the correction unit table at the time is compared with the AV value of the correction data storage unit, and the AV corresponding to the FRC value is determined.
In addition to selecting a value, the BV value corresponding to the AV value is selected to calculate the initial correction amount, and when it is determined that the axial portion contacts the correction part for the second or more time, the correction corresponds to the selected BV value. The BVD value is increased each time to the initial correction amount, and the sum of each correction amount during an appropriate number of corrections is calculated, and by repeating the correction of the axial line portion, the FRC value becomes rough near the correction target value of the AV value. a calculation unit that calculates a correction amount by increasing each DV value corresponding to each CV value of each rough aim value to the sum of the correction amounts each time the target value position is exceeded; a drive control unit that controls a drive motor to move the straightening unit table in the direction of the bending reference angle line each time to correct the axial line portion; The action is repeated several times and the correction is stopped when the FRC value at the position where the correction part of the correction part table comes into contact with the post-correction axis line portion almost matches the correction target value A12 of the AV value. It is.

(作用) 上記構成において、駆動制御部の制御の下に駆動モータ
を回転せしめて矯正部テーブルを基準位置から曲げ基準
角線方向へ移動せしめると、固定装置に固定された金属
部材の軸線部分に矯正部が当接し、センサが軸線部分の
当接を検知するので、FRC値が検出される。軸線部分
に対する矯正部の当接が1回目のときには、矯正データ
記憶部に記憶されているAV値とFRC値とが比較され
、FRC値に該当するAV値およびAV値に対応するB
V値が選択され、このFRC値、AV値およびBV値に
より矯正量(この場合は基準位置から矯正部テーブルを
移動すべき位置までの移動量)が演算され、この演算結
果に基いて駆動モータが制御される。
(Function) In the above configuration, when the drive motor is rotated under the control of the drive control unit and the correction unit table is moved from the reference position in the direction of the bending reference angle line, the axis of the metal member fixed to the fixing device Since the correction part contacts and the sensor detects the contact of the axis portion, the FRC value is detected. When the correction section contacts the axis part for the first time, the AV value and FRC value stored in the correction data storage section are compared, and the AV value corresponding to the FRC value and the B value corresponding to the AV value are compared.
The V value is selected, and the amount of correction (in this case, the amount of movement from the reference position to the position to which the correction unit table should be moved) is calculated based on the FRC value, AV value, and BV value, and based on this calculation result, the drive motor is controlled.

駆動モータの制御により矯正部に対する軸線部分の当接
が2回目以後は前記BV値に対応するBVD値が矯正量
に毎回増加されて矯正量の総和が毎回演算され、毎回の
演算結果に基いて駆動モータが制御され、軸線部分は曲
げ基準角線方向へ次第に矯正される。
From the second time onwards when the axis portion comes into contact with the correction part under the control of the drive motor, the BVD value corresponding to the BV value is increased to the correction amount each time, and the sum of the correction amounts is calculated each time, based on the calculation result each time. The drive motor is controlled and the axial portion is gradually corrected in the direction of the bend reference angle line.

軸線部分の矯正を数回繰り返した後、矯正後の軸線部分
に対する矯正部の当接位置の値FRCが矯正ねらい値の
近傍の複数の粗ねらい値のCV値を越えたときには、各
粗ねらい値のCV値に対応するDV値を増加して矯正量
の増加率を次第に小さくして矯正量を毎回演算し、その
演算結果に基き駆動モータを毎回制御して軸線部分の矯
正をさらに繰り返し、矯正後の軸線部分に対する矯正部
の当該位置の値FRCが矯正ねらい値にほぼ一致し、公
差内になったときに矯正作用を停止するものである。
After repeating the correction of the axial line part several times, if the value FRC of the contact position of the correction part with respect to the axial line part after correction exceeds the CV value of a plurality of coarse aim values in the vicinity of the correction aim value, each coarse aim value The amount of correction is calculated each time by increasing the DV value corresponding to the CV value and gradually decreasing the rate of increase in the amount of correction.Based on the calculation result, the drive motor is controlled each time to further repeat the correction of the axis portion. The correction action is stopped when the value FRC of the correcting part at the relevant position with respect to the rear axis line portion almost matches the correction target value and falls within the tolerance.

したがって、この発明によれば、金属部材の軸線部分は
矯正ねらい値に向って矯正されるとき、軸線部分の変形
量は、一方向から矯正ねらい値に近づく程度によって次
第に小さく制御され、最終的には矯正ねらい値にほぼ一
致したときに停止されるので、軸線部分の変形量が過大
になるようなことがなく、常に正確な矯正を行なうこと
ができるものである。
Therefore, according to the present invention, when the axial portion of the metal member is corrected toward the correction target value, the amount of deformation of the axial portion is gradually controlled to be small depending on the degree to which it approaches the correction target value from one direction, and finally Since the correction is stopped when the correction value substantially matches the correction target value, the amount of deformation of the axial line portion does not become excessive, and accurate correction can always be performed.

(実施例) 以下、第1〜14図を参照して説明すれば、次の通りで
ある。
(Example) The following will be described with reference to FIGS. 1 to 14.

軸線曲げ矯正装置は、予め所望形状に軸線曲げしたワー
ク、例えば自動車用のドアサツシュやガイドレール等の
長尺な金属素材の矯正に適用するものである。軸線曲げ
の具体例として、例えば第1図に示すドアサツシュを例
示すると、このドアサツシュ(金属部材)Sは中間辺の
軸線部分S1を中心に左右に延長する軸線部分s2.s
3を曲げ加工機(図示せず)で予め所望形状に曲げ加工
しである。その軸線曲げに際しては、所定の曲げ基準角
線Oに対して基準角度αを越えた小さな範囲の曲げ角度
β1.β2・・・または基準角度αに達しない大きな範
囲のいずれか一方にまとめて各軸線部分s2.s3を軸
線曲げする。この軸線曲げ加工に従って、第1図中には
軸線部分S2が基準角度αを越えた小さな範囲の曲げ角
度β1.β2・・・ 即ちマイナス側に曲げて示されて
おり、それは第2図に示す白抜き部分の許容範囲以外は
全て斜線描写したマイナス側に超過的げされたものにな
っている。
The axial bending straightening device is applied to straightening workpieces that have been axially bent into a desired shape in advance, such as long metal materials such as automobile door sashes and guide rails. As a specific example of axis bending, take the door sash shown in FIG. 1 as an example. This door sash (metal member) S has an axis line portion s2. s
3 was previously bent into a desired shape using a bending machine (not shown). During the axial bending, a small range of bending angles β1. Each axis line portion s2... or a large range that does not reach the reference angle α. Bend s3 along its axis. According to this axial bending process, in FIG. 1, the axial portion S2 has a small bending angle β1 which exceeds the reference angle α. β2... In other words, it is shown bent to the minus side, and everything except the tolerance range shown in the white area shown in FIG. 2 is exceeded to the minus side indicated by diagonal lines.

第3図〜第5図に示すように、予め前加工を行った金属
部材Sの軸線部分SIまたはS2の曲げ矯正を行う矯正
装置は、金属部材Sをいずれも同じ位置にセットすべく
、軸線部分S1に付けた基準点1やこれと共に金属部材
Sの曲げ加工前に先端部より一定長さ位置に付着するマ
ークに合せて金属部材Sを固定する固定装置の1例とし
てクラ1 ンプ2を備えている。このクランプ2はエアー圧または
油圧等の駆動シリンダ2aで金属部材Sの矯正されない
軸線部分SIを長手方向に沿って挟持固定できるように
なっている。
As shown in FIGS. 3 to 5, the straightening device that straightens the bending of the axial portion SI or S2 of the metal member S, which has been pre-processed in advance, The clamp 2 is an example of a fixing device that fixes the metal member S in accordance with the reference point 1 attached to the portion S1 and a mark attached at a certain length from the tip of the metal member S before bending the metal member S. We are prepared. This clamp 2 is capable of clamping and fixing the uncorrected axial line portion SI of the metal member S along the longitudinal direction using a drive cylinder 2a such as air pressure or hydraulic pressure.

そのセット位置から金属部材Sの軸線部分S2゜S3の
左右に突出する位置にはサーボ、パルス。
Servos and pulses are located at positions protruding from the set position to the left and right of the axial line portions S2 and S3 of the metal member S.

ステッピング等の駆動モータ3を動作する駆動機構部が
配置されており、この駆動モータ3はカップリング4a
で連結したボールねじ軸4を回動し、ガイドレール5に
沿って矯正部テーブル6を所定方向に移動させるように
なっている。ボールねじ軸4は受は台4b、4cで軸支
され、また、ガイドレール5は左右端がブラケット5a
、5bに夫々固定支持し或いはボルトで基板に直接固定
することにより取付けられている。
A drive mechanism unit for operating a drive motor 3 such as a stepping motor is disposed, and this drive motor 3 is connected to a coupling 4a.
By rotating the ball screw shaft 4 connected to the corrector table 6, the correction unit table 6 is moved in a predetermined direction along the guide rail 5. The ball screw shaft 4 is supported by supports 4b and 4c, and the left and right ends of the guide rail 5 are supported by brackets 5a.
, 5b, respectively, or directly fixed to the board with bolts.

矯正部テーブル6の移動路側部には原点及びオーバーラ
ン防止用のアクチュエータドッグ6aが装備され、また
、反対側の側部には位置検出装置の1例としてのパルス
ジェネレータ7が配置されている。このパルスジェネレ
ータ7は矯正部チー 2 プル6に取付けた金具6bと端末を連結したワイヤー7
aの移動量が摺動駒7bを介して伝達されることにより
ワイヤー7aの移動量を検知するものであり、ワイヤー
7aは溝付きの案内駒7c。
An actuator dog 6a for the origin and overrun prevention is provided on the side of the movement path of the correction unit table 6, and a pulse generator 7 as an example of a position detection device is provided on the opposite side. This pulse generator 7 is connected to a metal fitting 6b attached to the orthodontic part cheek 2 pull 6 and a wire 7 connected to the terminal.
The amount of movement of the wire 7a is detected by transmitting the amount of movement of the wire 7a through the sliding piece 7b, and the wire 7a is a grooved guide piece 7c.

7dで回転可能に張設支持されている。また、アクチュ
エータドッグ6aを装備した側には原点検出アクチュエ
ータ8とオーバーラン防止用アクチュエータ9a、9b
が配設されている。
7d and is rotatably supported under tension. Also, on the side equipped with the actuator dog 6a, there is an origin detection actuator 8 and overrun prevention actuators 9a and 9b.
is installed.

テーブル6上に装着した矯正部10は、第4゜5図に示
すように、金属部材Sの軸線部分S2+83を受止め載
置可能な略し字状をなしており、テーブル6に対して首
振り自在(回動自在)なように、その下部側はスラスト
ベアリングllaを介在させてカムフォロア11をセッ
トボルト11b、llcで固定することにより矯正部テ
ーブル6に取付けられている。その矯正部10には垂直
部分の上下端側に投光器、受光器等のセンサー12a、
12bを備えて、軸線部分s2.s3の当接、離脱を検
出できる構成となっている。ボールねじ軸4を軸受けす
る保持具13の位置は、゛パルスジェネレータ7の出力
信号を適宜に処理することにより検出できるよう構成さ
れている。
The correction unit 10 mounted on the table 6 has an abbreviated shape that can receive and place the axis line portion S2+83 of the metal member S, as shown in FIGS. The cam follower 11 is attached to the correction unit table 6 so as to be freely (rotatable) by fixing the cam follower 11 with set bolts 11b and llc through a thrust bearing lla. The correction unit 10 includes sensors 12a such as a light emitter and a light receiver on the upper and lower ends of the vertical portion.
12b, the axial portion s2. The configuration is such that contact and separation of s3 can be detected. The position of the holder 13 that supports the ball screw shaft 4 can be detected by appropriately processing the output signal of the pulse generator 7.

この矯正装置においては、基準点1に合せてクランプ2
で軸線部分S1を挟持して金属部材Sをセットした後、
軸線部分s2.s3を矯正部10で数回に亘って移動変
形させることにより、所定の曲げ基準角線まで矯正する
。その矯正にあたっては、第6図に示すように、エアー
押しトライで試験的に求めた値区分に応じて、初期セッ
ト位置と曲げ基準角度の所定位置との間を、第7図に示
すように、複数の区域A、、A2 、A3・・・An(
以下、rAV値」と略称する)に区分し、この区分毎に
初回矯正量(以下、rBV値」と略称する)を設定する
と共に、粗ねらい値C1、C2 。
In this orthodontic device, the clamp 2 is aligned with the reference point 1.
After setting the metal member S by sandwiching the axis line portion S1,
Axis line portion s2. By moving and deforming s3 several times in the correction unit 10, the bending is corrected to a predetermined reference angle line. To correct this, as shown in Fig. 6, the distance between the initial set position and the predetermined position of the bending reference angle is adjusted as shown in Fig. , multiple areas A, , A2 , A3...An(
The initial correction amount (hereinafter referred to as "rBV value") is set for each classification, and rough target values C1 and C2 are set.

C3・・・(以下「CV値」と略称する)に機械的原点
側に近い方から設定されたCV値を一段づつ通過するに
従って少しづつ矯正量の加算値を減少した矯正量を設定
する。但し、CV値はセンサー12a、12bが検知す
る上限または下限のねらい値の(±)方向に設定し、そ
れが(±)の範囲内にあるときにはCV値は適用されな
い。
C3... (hereinafter abbreviated as "CV value") is set to a correction amount in which the added value of the correction amount is decreased little by little as the CV value set from the side closer to the mechanical origin is passed one step at a time. However, the CV value is set in the (±) direction of the upper or lower target value detected by the sensors 12a, 12b, and when it is within the (±) range, the CV value is not applied.

これらは第7図に示す如く、曲げ基準角度の所定位置(
以下、「矯正ねらい値」と略称する)をAV値−A12
と設定し、それに対して第6図に示すようにCV値は軸
線部分s2.s3をプラス方向に曲げ加工した場合、即
ち矯正オーバーに対する公差値−c、、−A、2に、ま
たマイナス方向に曲げ加工した場合1矯正不足に対する
公差値=c2− A 12になるよう設定する。また、
その設定された各BV値に対し矯正量の増加分を設定す
る(以下、「BVD値」と略称する)。また、各CV値
に対して微小の矯正量の増加分を設定する(以下、rD
V値」と略称する)。この際にBVD値〉DV値であり
、しかもDV値は対応するCV値が原点側に向うほど大
きくして矯正ねらい値に近くなるほど小さい値に設定す
る。
As shown in Fig. 7, these are the predetermined positions (
(hereinafter abbreviated as "correction target value") is AV value - A12
As shown in FIG. 6, the CV value is set as s2. When s3 is bent in the positive direction, the tolerance value for over-correction is -c, -A, 2, and when it is bent in the negative direction, the tolerance value for under-correction is set to c2-A 12. . Also,
An increase in the amount of correction is set for each of the set BV values (hereinafter abbreviated as "BVD value"). In addition, a minute increase in correction amount is set for each CV value (hereinafter referred to as rD
(abbreviated as “V value”). At this time, BVD value>DV value, and the DV value is set to a larger value as the corresponding CV value approaches the origin, and smaller as the corresponding CV value approaches the correction target value.

コレラA V 、  B V 、  B V D 、 
 D V SCV値を整理すると、第7図に示すような
折線グラフとして表わすことができ、それを矯正データ
として用いる。スナワち上記A V 、 B V 、 
B V D 、 D Vおよ 5 びC■値は、矯正装置を制御する制御装置における矯正
データ記憶部に矯正データとして予め格納されているも
のである。この矯正データを用いるに際し、原点検出ア
クチュエータ8がドッグ6aによって作動された位置(
パルスジェネレータ7の原点信号出力時の位置でも良い
)を基準位置とし、金属部材Sの軸線部分s2.s3を
センサ12a、12bが検知したときの位置と矯正ねら
い値との位置関係を比較するときは、AV値による比較
部とCV値による比較部の2系列が用いられ、上記比較
部の比較に基いて、制御装置の演算部において矯正量が
演算される。
Cholera AV, BV, BVD,
When the D V SCV values are organized, they can be expressed as a line graph as shown in FIG. 7, which is used as correction data. Sunawachi above AV, BV,
The B V D , D V , and C■ values are stored in advance as correction data in the correction data storage section of the control device that controls the correction device. When using this correction data, the origin detection actuator 8 is at the position (
) may be the position when the pulse generator 7 outputs the origin signal) as the reference position, and the axis portion s2 of the metal member S. When comparing the positional relationship between the position when s3 is detected by the sensors 12a and 12b and the correction target value, two series are used: a comparison section based on AV value and a comparison section based on CV value. Based on this, the amount of correction is calculated in the calculation section of the control device.

すなわち、作動系統は第8図に示されており、初回矯正
に先立ってAV値による比較を開始する前に初回である
か2回目以降かを判定させ、AV値による比較またはC
V値による比較かを選択する。制御装置の制御の下に駆
動モータ3が回転されて、原点(基準位置)より矯正部
10が移動を開始して、軸線部分s2.s3に当接した
ことをセンサー12a、12bが感知すると、パルスジ
 6 エネレータ7による検出位置(以下、rF RClと略
称する)が制御装置のメモリ部へ読み込まれ、その位置
を記憶して比較部へ移る。比較部では初回の比較か或い
は2回以降の比較かを判定してAV値(またはCV値)
を比較選択して、金属部材を矯正したときに発生する矯
正ねらい値に対する矯正オーバーを事前に防止する。こ
の比較操作はA1≧FRCを満足しない場合に、次のA
2≧FRC,&A3≧FRC・・・と順次に進む。また
、満足した場合にはAV値比較部に初回を通過したこと
を記憶させてフラグセットする。この際にFRCハA 
V値+7)AK−、<FRC≦AKを満足する位置関係
にあるから、それに対応する初回矯正量BV値が選択さ
れる。
That is, the operating system is shown in FIG. 8, and before starting the comparison based on the AV value prior to the first correction, it is determined whether it is the first time or the second time or later, and the comparison based on the AV value or the C
Select whether to compare by V value. The drive motor 3 is rotated under the control of the control device, and the correction unit 10 starts moving from the origin (reference position), and moves to the axis section s2. When the sensors 12a and 12b sense that it has come into contact with s3, the position detected by the pulse generator 7 (hereinafter abbreviated as rF RCl) is read into the memory section of the control device, the position is stored and sent to the comparison section. Move. The comparison section determines whether it is the first comparison or the second or subsequent comparison and calculates the AV value (or CV value).
By comparing and selecting the above, it is possible to prevent in advance the over-correction of the correction target value, which occurs when the metal member is corrected. When this comparison operation does not satisfy A1≧FRC, the next A
The process proceeds sequentially as 2≧FRC, &A3≧FRC, and so on. Furthermore, if the test is satisfied, the AV value comparison unit is made to remember that the first test has been passed, and a flag is set. At this time, FRC
Since the positional relationship satisfies V value +7) AK-, <FRC≦AK, the corresponding initial correction amount BV value is selected.

また、2回目よりCV値の01に向って矯正を進めるた
めに矯正量の加算値となるBVD値を選択する。これに
より初期に設定された補正量を含めて矯正量が決定され
る。即ち、AK−1<FRC≦Aに区分を満足するFR
Cに対する矯正量−(BV値)+ (FRC)+ (補
正量)が制御装置の演算部で演算される。その計算結果
は、基準位置からの総和として記憶すると共に更にプリ
セットする。上記演算部の演算結果に基き駆動制御部に
より駆動モータ3が制御され、テーブル6、矯正部10
が移動される。矯正部10の移動は常にパルスジェネレ
ータ7を介してチエツクされており、プリセット値まで
駆動モータ3は作動し続ける。その作動で移動距離がプ
リセットの値になると、駆動モータ3を停止させ、タイ
マーに設定された時間が経過するまで少し時間を持った
後に戻り動作開始させる。この際に矯正部10の位置を
記憶するカウンターは矯正方向ヘア・ツブカウントされ
、また戻り方向へダウンカウントされるようになってい
る。
Further, in order to proceed with the correction toward the CV value of 01 from the second time onward, a BVD value is selected as an additional value of the correction amount. In this way, the correction amount is determined including the initially set correction amount. That is, FR that satisfies the classification AK-1<FRC≦A
The correction amount for C - (BV value) + (FRC) + (correction amount) is calculated by the calculation unit of the control device. The calculation result is stored as a total sum from the reference position and is further preset. The drive motor 3 is controlled by the drive control section based on the calculation result of the calculation section, and the table 6 and the correction section 10 are controlled by the drive control section.
is moved. The movement of the correction unit 10 is constantly checked via the pulse generator 7, and the drive motor 3 continues to operate up to a preset value. When the moving distance reaches the preset value by this operation, the drive motor 3 is stopped and the return operation is started after a short period of time until the time set on the timer has elapsed. At this time, the counter that stores the position of the correction section 10 is configured to count hairs and lumps in the correction direction and to count down in the return direction.

矯正部10が金属部材Sの軸線部分s2.s3から離反
したことをセンサー12a、12bが検出すると、戻り
動作は停止されて、タイマーの設定時間が経過するまで
少し時間を持った後に、或いは上記離反位置から適宜距
離後退した後に再度矯正方向に移動を開始する。それに
伴って、矯正部10の位置を記憶するカウンターはアッ
プカウントされるようになる。なお、矯正部10が戻り
動作を開始した位置と矯正部10から軸線部分S2、S
3が離反した位置を検知し、その差を演算することによ
り、スプリングバック量を検知可能である。
The correction portion 10 is located at the axial line portion s2 of the metal member S. When the sensors 12a and 12b detect that the robot has moved away from s3, the return operation is stopped, and after a short period of time until the set time on the timer has elapsed, or after retreating an appropriate distance from the above-mentioned separation position, it returns to the correction direction again. Start moving. Accordingly, the counter that stores the position of the correction unit 10 starts to count up. Note that the position where the correction unit 10 starts the return operation and the axis line portions S2, S from the correction unit 10
The amount of springback can be detected by detecting the position where 3 is separated and calculating the difference.

ところで、矯正部10でもって軸線部分S2゜S3を移
動せしめて矯正を行なうとき、矯正部10は、矯正部テ
ーブル6に対して首振り自在(回動自在)に設けられて
いるから、矯正部10が軸線部分s2.s3と当接した
部分は常に軸線部分s2.s3に倣っており、軸線部分
との線接触あるいは面接触が維持されて、安定した矯正
力を軸線部分s2.s3に付与することができる。すな
わち、軸線部分s2.s3に矯正以外に余分に変形せし
めるようなことがないものである。
By the way, when performing correction by moving the axis portions S2 and S3 with the correction section 10, since the correction section 10 is provided so as to be swingable (rotatable) with respect to the correction section table 6, the correction section 10 10 is the axis line portion s2. The part in contact with s3 is always the axis part s2. s3, line contact or surface contact with the axis line portion is maintained, and stable orthodontic force is applied to the axis line portion s2. It can be given to s3. That is, the axis line portion s2. There is no need to cause extra deformation to s3 other than correction.

2回目からの矯正ではセンサー12a、12bが金属部
材Sの軸線部分s2.s3を感知すると、パルスジェネ
レータ7による検出位置を読み取り、その位置(FRC
)を記憶して比較部の選択を行1 つ う。その選択は初回でフラグがセットされているので、
それで判別することができる。2回目では、CV値との
比較が開始されて、C2≧FRCて条件が満足される場
合に、初回で選択されたBVD値が前回の総和(計算結
果)に加算されることにより総和として再び保存される
。また、2回目以降の矯正動作はCV値の01に向って
条件が合わなくなるまで、初回に選択されたBVD値を
矯正量の増加分として順次に加算されていくことになる
In the second and subsequent corrections, the sensors 12a and 12b detect the axial line portion s2 of the metal member S. When s3 is sensed, the detection position by the pulse generator 7 is read and the position (FRC
) and select the comparison section in one row. The flag is set for that selection the first time, so
That's how you can tell. In the second time, the comparison with the CV value is started, and if the condition C2≧FRC is satisfied, the BVD value selected in the first time is added to the previous total (calculation result), and the total is again calculated. Saved. Further, in the second and subsequent correction operations, the initially selected BVD value is sequentially added as an increment of the correction amount until the condition no longer meets the CV value of 01.

従って、矯正量を変化させて直接に矯正ねらい値(AV
値のA12)に接近させるのではなく、粗の矯正ねらい
値CV値の01に向って矯正動作を進めることにより、
材質乃至特性のバラ付き、断面形状のバラ付き、加工工
程からのバラ付き等があって矯正量に対する矯正結果に
不確定要素からのバラ付きが含まれていても、公差をオ
ーバーせずにC1<FRC≦C2の条件を満足するに十
分な寸法位置関係に寄せられるようになる。
Therefore, by changing the correction amount, the correction target value (AV
By proceeding with the correction operation toward the coarse correction target value CV value 01, rather than approaching the value A12),
Even if there are variations in the material or properties, variations in the cross-sectional shape, variations from the processing process, etc., and the correction results for the correction amount include variations from uncertain factors, C1 can be achieved without exceeding the tolerance. The dimensional and positional relationships are brought together to be sufficient to satisfy the condition <FRC≦C2.

なお、金属部材の材質乃至特性のバラ付きによ 0 る矯正量の増減は外部の転換器、サムスイッチ等を用い
てコード化された符号付きの補正量として設定し、それ
を初回矯正量の演算時に演算要素として用いれば、材質
乃至特性のバラ付きに伴う矯正量の変化を補正できるこ
とにより、ロット毎に材質の特性が大きく変化しても、
矯正操作に用いる種々のデーター(例えばAV、BV、
CV・・・等の値)を大幅に入れ換えずに済むようにで
きる。
Incidentally, the increase or decrease in the amount of correction due to variations in the material or characteristics of the metal member is set as a coded correction amount using an external converter, thumb switch, etc., and this is set as a coded correction amount using an external converter or thumb switch. If used as a calculation element during calculation, it is possible to correct changes in the amount of correction due to variations in material or properties, so even if material properties vary greatly from lot to lot,
Various data used for correction operations (e.g. AV, BV,
It is possible to avoid the need to significantly change the values of CV, etc.).

前回の矯正動作でC1<FRC≦C2が条件を満足する
と、それ以降の比較はCV値の02と比較され、条件が
満足する場合には矯正量の増加分BVD値より小さい増
加分DV値がCV値に対応して選択されることにより、
矯正量は(DV値)+(総和)となる。また、それ以降
はFRCにはC2≧FRCの条件に合わなくなるまでD
V値が加算されるので、矯正量の変化は第9図に示すよ
うになる。その結果で02≧FRCの条件に合わなくな
ると、次はCV値のC3と比較されることにになるとこ
ろから、第8図に示すように、C2<FRC≦C3の条
件が満足する場合にはOKとなる。すなわち、矯正量の
増加率を次第に小さく設定して矯正動作を繰り返すもの
である。
When the condition C1<FRC≦C2 is satisfied in the previous correction operation, the subsequent comparison is made with the CV value of 02, and if the condition is satisfied, the increase DV value is smaller than the increase BVD value of the correction amount. By being selected according to the CV value,
The amount of correction is (DV value) + (total sum). Also, after that, FRC will have D until it no longer meets the condition of C2≧FRC.
Since the V value is added, the change in the amount of correction becomes as shown in FIG. If the result does not meet the condition of 02≧FRC, it will be compared with the CV value C3, so as shown in Figure 8, if the condition of C2<FRC≦C3 is satisfied, is OK. That is, the correction operation is repeated by gradually setting the rate of increase in the amount of correction to a smaller value.

なお、FRC>C3の場合にはプラス公差をオバーした
ことになるためNGとする。従って、CV値の02がマ
イナス方向の公差を示して03がプラス方向の公差とな
っている。また、第10図に示すように、粗ねらい値に
数区分したCV値を用いると(c+≧+ C2≧、C3
,。4≧)、矯正ね≧ らい値に近づくに従って少しづつ変化させることが可能
となるため、金属部材Sが含む多くの条件のバラ付きに
対して矯正精度を十分に維持できる。
In addition, in the case of FRC>C3, the positive tolerance is exceeded, so it is judged as NG. Therefore, a CV value of 02 indicates a tolerance in the negative direction, and a CV value of 03 indicates a tolerance in the positive direction. Furthermore, as shown in Fig. 10, if CV values divided into several rough aim values are used (c+≧+C2≧, C3
,. 4≧), correction ≧ Since it is possible to change the correction value little by little as it approaches the leprosy value, the correction accuracy can be sufficiently maintained against variations in many conditions that the metal member S includes.

この場合、第8図に示す作動系統図はCV値による比較
部が拡張されるところから、第11図に示す如き作動系
統図となり、また、そのときのAV。
In this case, the operation system diagram shown in FIG. 8 has a comparison section based on CV values expanded, so it becomes an operation system diagram as shown in FIG. 11, and the AV at that time.

BV、BVD、DV、CV値は第12図に示す通りとな
る。
The BV, BVD, DV, and CV values are as shown in FIG.

この他に、精度を上げる目的から粗ねらい値であるCV
値の使用例としては第13図に示す作動系統図を適用で
きる。この例では、粗ねらい値の区分及び加算量の関係
を速度制御時に用いるスロプダウン方式と同様に、粗ね
らい値の111及び加算量を調整して徐々に減すること
により、矯正ねらい値に接近させている。また、プラス
方向の公差はAV値のA ) 3が用いられている。そ
の際、DV、CV値(他の関係は変化なしとする)は第
14図に示すように設定されている。このようにすれば
、矯正ねらい値に対する精度を更に確実にして精度を倍
化できると同時に、同じロット内での材質、特性の小さ
なバライ」きで生ずる第7図に示すX−Y軸関係の変化
を十分に吸収して安定した矯正結果が得られるようにな
る。
In addition to this, CV, which is a rough aim value, is used for the purpose of increasing accuracy.
As an example of using the values, the operation system diagram shown in FIG. 13 can be applied. In this example, the coarse aim value 111 and the addition amount are adjusted to gradually reduce the relationship between the coarse aim value classification and the addition amount, similar to the slope down method used for speed control, so that the correction aim value is approached. ing. Furthermore, the AV value A) 3 is used as the tolerance in the positive direction. At that time, the DV and CV values (other relationships remain unchanged) are set as shown in FIG. 14. In this way, the accuracy of the correction target value can be further ensured and the accuracy can be doubled, and at the same time, the X-Y axis relationship shown in Figure 7, which occurs due to small variations in materials and characteristics within the same lot, can be Changes can be fully absorbed and stable correction results can be obtained.

なお、上述した実施例は線形状の矯正動作のみを説明し
たが、矯正動作開始と同時に金属部材を部分的に支える
バーまたはクランプ部を面形状の矯正部位に面圧が加わ
るように上または下方向よりセットし、また、線形状の
矯正動作中にガイド可能にして、線形状の矯正動作に合
せて上下方向に移動制御することにより面圧を制御すれ
ば、面形状も共に矯正できるようになる。
In addition, although the above-mentioned embodiment explained only the linear correction operation, at the same time as the correction operation starts, the bar or clamp part that partially supports the metal member is moved up or down so as to apply surface pressure to the planar correction area. If you set it from the direction, and also make it guideable during the linear correction operation, and control the surface pressure by controlling the movement in the vertical direction according to the linear correction operation, you can also correct the surface shape at the same time. Become.

[発明の効果]  3 以上のごとき実施例の説明より理解されるように、この
発明によれば、金属部材の軸線部分を矯正ねらい値へ一
方向から矯正するとき、矯正データ記憶部に予め格納し
である矯正データに基いて矯正量を演算し、軸線部分が
矯正ねらい値へ次第に矯正されるに従って矯正量の増加
率が小さくなるので、軸線部分が矯正ねらい値から大き
く離反した状態に矯正されるようなことがなく、常に許
容精度内に正確な矯正を行なうことができるものである
[Effects of the Invention] 3 As can be understood from the description of the embodiments as described above, according to the present invention, when the axial portion of a metal member is straightened from one direction to the straightening target value, the straightening data is stored in advance in the straightening data storage unit. The amount of correction is calculated based on the correction data, and as the axial line portion is gradually corrected to the correction target value, the rate of increase in the amount of correction becomes smaller, so the axial line portion is corrected to a state far away from the correction target value. Therefore, accurate correction can always be performed within the allowable accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置で矯正する金属部材本発明に
係る装置で用いる矯正データの設定条件を図表化して示
す説明図、第7図は同矯正データに基づく数回の矯正量
を連続させて示す折線グラ 4 る変形量を微小範囲で行う量をストロークで示す説明図
、第11図はCV値の比較部を拡張した場合の拡張部の
みを示す作動系統図、第12図は第11図に示す作動系
統図を用いた場合のAV、BV、BVD、DV、CV値
を図表化して示す説明図、第13図は精度を」二げる目
的からCV値の比較部変形使用例を変形した部分でのみ
示す作動系統図、第14図は第13図に示す作動系統図
を用いた場合のDV、CV値(他の関係は変化なしとす
る)を図表化して示す説明図、第15図は長尺な金属部
材を示す断面図、第1−6図は従来例に係る方法で矯正
する金属部材の軸線曲げ形状を示す説明図、第17図は
同金属部材で生ずる軸線曲げのバラ付き分布を示す棒線
グラフである。 S・・・金属部材 Sl・・・位置決めセットする軸線部分s2.s3・・
・矯正部げする軸線部分α・・・曲げ基準角度 β1.β2・・・基準角度を越えまたは達しない範囲の
曲げ角度 2・・・固定装置 6・・・矯正部テーブル 10・・・矯正部 3・・・駆動モータ 7・・・位置検出装置 12a、12b−・・センサ
Fig. 1 is an explanatory diagram that graphically shows the setting conditions of the correction data used in the apparatus of the present invention for metal parts to be corrected by the device according to the present invention, and Fig. 7 shows the amount of correction performed several times in succession based on the same correction data. Figure 11 is an explanatory diagram showing the amount of deformation performed in a minute range using strokes, Figure 11 is an operation system diagram showing only the extended part when the CV value comparison part is expanded, and Figure 12 is an illustration of An explanatory diagram showing graphically the AV, BV, BVD, DV, and CV values when using the operation system diagram shown in Figure 11, and Figure 13 is an example of the modified usage of the CV value comparison section for the purpose of increasing accuracy. FIG. 14 is an explanatory diagram showing the DV and CV values (other relationships remain unchanged) when the operating system diagram shown in FIG. 13 is used. Fig. 15 is a sectional view showing a long metal member, Figs. 1-6 are explanatory diagrams showing the axially bent shape of the metal member corrected by the conventional method, and Fig. 17 is an axial bend that occurs in the same metal member. It is a bar graph showing the distribution with variation. S... Metal member Sl... Axis line portion to be positioned and set s2. s3...
・Axle line portion α for straightening part...bending reference angle β1. β2...Bending angle in a range that exceeds or does not reach the reference angle 2...Fixing device 6...Correcting section table 10...Correcting section 3...Drive motor 7...Position detecting devices 12a, 12b −・・Sensor

Claims (1)

【特許請求の範囲】[Claims] (1)予め所望形状に軸線曲げした金属部材Sの1部を
固定する固定装置2と、金属部材Sの曲げ矯正を行なう
軸線部分S_2を所定の曲げ基準角線0方向へ移動変形
するための矯正部テーブル6と、この矯正部テーブル6
を往復動するための駆動モータ3とを備えてなる軸線曲
げ矯正装置にして、金属部材Sの前記軸線部分S_2を
曲げ基準角線方向へ移動変形すべく矯正部テーブル6に
備えた矯正部10に対する軸線部分S_2の当接、離脱
を検出するセンサ12a、12bと、 基準位置からの矯正部テーブル6の移動位置を検出する
位置検出装置7と、 金属部材Sの初期セット位置における軸線部分S_1と
曲げ基準角線との間隔を複数の区域A_1、A_2、A
_3・・・Anに区分した各区分域を示すAV値と、各
AV値に対応した初回矯正量のBV値と、各BV値に対
する矯正量の増加分のBVD値と、曲げ基準角線近傍に
設定した複数の粗ねらい値C_1、C_2・・・のCV
値と、各CV値に対する微小矯正量の増加分のDV値と
を予め記憶した矯正データ記憶部と、 基準位置から矯正部テーブル6が移動して矯正部10が
軸線部分S_2に最初に当接したことをセンサ12a、
12bが検出したときにおける矯正部テーブル6の移動
位置の値FRCと前記矯正データ記憶部のAV値とを比
較してFRC値の該当するAV値を選択すると共に当該
AV値に対応するBV値を選択して初回矯正量を演算し
、前記矯正部10に対する軸線部分S_2の当接が2回
目以上と判断されたときには選択された前記BV値に対
応するBVD値を前記初回矯正量に毎回増加して適数回
の矯正時の各矯正量の総和を演算し、軸線部分S_2の
矯正が繰り返されることによりFRC値がAV値の矯正
ねらい値A_1_2近傍の粗ねらい値C_1、C_2・
・・の位置を越える毎に各粗ねらい値C_1、C_2・
・・の各CV値に対応する各DV値を前記矯正量の総和
に毎回増加して矯正量を演算する演算部と、 上記演算部の演算結果に基き矯正部テーブル6を曲げ基
準角線方向へその都度移動せしめて軸線部分S_2の矯
正を行なうべく駆動モータ3を制御する駆動制御部と、 を備えてなり、前記演算部の演算結果に基いて軸線部分
S_2の矯正作用を数回繰り返し、矯正部テーブル6の
矯正部10が矯正後の軸線部分S_2と当接した位置の
FRC値がAV値の矯正ねらい値A_1_2にほぼ一致
したときに矯正を停止するよう構成してなることを特徴
とする長尺な金属部材の軸線曲げ矯正装置。
(1) A fixing device 2 for fixing a part of the metal member S whose axis has been bent in advance into a desired shape, and a device for moving and deforming the axis portion S_2 of the metal member S whose bending is to be corrected in the direction of a predetermined bending reference angle line 0. Orthodontic department table 6 and this orthodontic department table 6
A straightening unit 10 is provided on a straightening unit table 6 to move and deform the axial line portion S_2 of the metal member S in the direction of the bending reference angle line. Sensors 12a and 12b that detect the contact and separation of the axis line portion S_2 with respect to, the position detection device 7 that detects the movement position of the correction unit table 6 from the reference position, and the axis line portion S_1 at the initial set position of the metal member S. The distance from the bending reference angle line to multiple areas A_1, A_2, A
_3... AV value indicating each segmented area divided into An, BV value of the initial correction amount corresponding to each AV value, BVD value of the increase in correction amount for each BV value, and the vicinity of the bending reference angle line CV of multiple rough aim values C_1, C_2... set to
and a correction data storage section that stores in advance the DV value of the increase in the amount of minute correction for each CV value; The sensor 12a,
12b compares the movement position value FRC of the correction unit table 6 at the time of detection with the AV value of the correction data storage unit, selects the AV value corresponding to the FRC value, and selects the BV value corresponding to the AV value. select and calculate the initial correction amount, and when it is determined that the axis line portion S_2 is in contact with the correction section 10 for the second or more time, the BVD value corresponding to the selected BV value is increased to the initial correction amount each time. The total sum of each correction amount during a suitable number of corrections is calculated, and by repeating the correction of the axis line portion S_2, the FRC value becomes the coarse aim value C_1, C_2, near the correction aim value A_1_2 of the AV value.
Each coarse aim value C_1, C_2.
a calculation unit that calculates the correction amount by increasing each DV value corresponding to each CV value to the sum of the correction amounts each time, and bending the correction unit table 6 in the reference angle line direction based on the calculation result of the calculation unit. a drive control section that controls the drive motor 3 to correct the axis section S_2 by moving the navel each time; repeating the action of correcting the axis section S_2 several times based on the calculation result of the calculation section; It is characterized by being configured so that the correction is stopped when the FRC value at the position where the correction part 10 of the correction part table 6 comes into contact with the post-correction axis line portion S_2 almost matches the correction target value A_1_2 of the AV value. A straightening device for axial bending of long metal members.
JP13983290A 1990-05-31 1990-05-31 Axis straightening device for long metal members Expired - Lifetime JPH0694048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13983290A JPH0694048B2 (en) 1990-05-31 1990-05-31 Axis straightening device for long metal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13983290A JPH0694048B2 (en) 1990-05-31 1990-05-31 Axis straightening device for long metal members

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21814187A Division JPS6462220A (en) 1987-08-31 1987-08-31 Method for straightening axial line bend of long-sized metal member

Publications (2)

Publication Number Publication Date
JPH03114613A true JPH03114613A (en) 1991-05-15
JPH0694048B2 JPH0694048B2 (en) 1994-11-24

Family

ID=15254535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13983290A Expired - Lifetime JPH0694048B2 (en) 1990-05-31 1990-05-31 Axis straightening device for long metal members

Country Status (1)

Country Link
JP (1) JPH0694048B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053434A (en) * 2001-08-21 2003-02-26 Soowa Techno:Kk Device for finishing axial bending work of headrest stay
WO2003097265A1 (en) * 2002-05-20 2003-11-27 Uk-Tech Ltd. Method for inspecting/correcting component and system for inspecting/correcting component
CN117340050A (en) * 2023-10-12 2024-01-05 广东大洋医疗科技股份有限公司 Wheelchair rod piece correction jig and process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053434A (en) * 2001-08-21 2003-02-26 Soowa Techno:Kk Device for finishing axial bending work of headrest stay
WO2003097265A1 (en) * 2002-05-20 2003-11-27 Uk-Tech Ltd. Method for inspecting/correcting component and system for inspecting/correcting component
CN117340050A (en) * 2023-10-12 2024-01-05 广东大洋医疗科技股份有限公司 Wheelchair rod piece correction jig and process
CN117340050B (en) * 2023-10-12 2024-05-17 广东大洋医疗科技股份有限公司 Wheelchair rod piece correction jig and process

Also Published As

Publication number Publication date
JPH0694048B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
KR930005246B1 (en) Tube bending device
JP3734315B2 (en) Bending method and bending apparatus
US5899103A (en) Bending machine
US20110180516A1 (en) Position detection device and a position detection method for a workpiece to be welded
ATE224261T1 (en) OPERATING METHOD FOR A WORKROOM WITH A ROBOT ATTACHED TO A BENDING PRESS FOR PROCESSING SHEET METAL PARTS
CA2221324A1 (en) Tub bending apparatus and method
US3553989A (en) Tube bender with incremental tube measurement
WO1995034803A1 (en) Method and apparatus for testing coiled materials
CN113399500B (en) T-shaped guide rail straightening device and method
JPH03114613A (en) Correcting device for bending axial line of long sized metallic member
JP4558877B2 (en) Bending method and apparatus
JP3666926B2 (en) Press brake
JP4447666B2 (en) Method for making an automotive flat bar wind wiper with a curved flat bar
JPS63248517A (en) Method for straightening axial line bending of long-sized metal member
JP3373075B2 (en) Press brake
JPH0354011B2 (en)
JP2517361B2 (en) Intelligent bending press
JPH106025A (en) Press control method in welding gun
JP7234420B6 (en) Method for scanning the surface of a metal workpiece and method for performing a welding process
JPH0694049B2 (en) Axis straightening device for long metal members
JPH09201623A (en) Bending method in metal-plate bending machine and metal-plate bending machine applying the bending method
JP3581480B2 (en) Straightening amount detection method and straightening device
JP2000271655A (en) Bending method and bending device
JP3058468B2 (en) Stretch bending system
SU1232327A1 (en) Method of automatic control of sheet bending