JPH03114438A - Biosignal measuring apparatus - Google Patents

Biosignal measuring apparatus

Info

Publication number
JPH03114438A
JPH03114438A JP1254144A JP25414489A JPH03114438A JP H03114438 A JPH03114438 A JP H03114438A JP 1254144 A JP1254144 A JP 1254144A JP 25414489 A JP25414489 A JP 25414489A JP H03114438 A JPH03114438 A JP H03114438A
Authority
JP
Japan
Prior art keywords
frequency noise
cmr
biosignal
amplifier
biological signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254144A
Other languages
Japanese (ja)
Inventor
Yukio Wada
幸男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP1254144A priority Critical patent/JPH03114438A/en
Publication of JPH03114438A publication Critical patent/JPH03114438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure accurately a biosignal based on the same phase removal of a low frequency noise and a high frequency noise by providing a CMR adjusting circuit corresponding to the low frequency noise and a CMR adjusting circuit corresponding to the high frequency noise in a biosignal amplifier. CONSTITUTION:A biosignal measuring apparatus A consists of a stimulating apparatus 2 adding a stimulus s to an organism 1, a biosignal amplifier 3 amplifying a biosignal v from the organism 1 caused by the stimulus s and a display apparatue 4 displaying the biosignal v. and in the biosignal amplifier 3, a CMR adjusting circuit 5 corresponding to a low frequency noise and a CMR adjusting circuit 6 corresponding to a high frequency noise are provided. As the CMR adjusting circuit 5 corresponding to a low frequency noise and the CMR adjusting circuit 6 corresponding to a high frequency noise are provided in the biosignal amplifier 3, it is possible to remove a alternating current ham caused by a commercial alternating electric source in the same phase. In addition, an interference wave and a high frequency noise from a stimulating apparatus 2 can be removed in the same phase and it is possible to measure accurately the biosignal v accompanying a stimulus s of the organism 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体への電気、光、音等の刺激に伴う生体か
らの微小な生体信号(誘発電位)を増幅させて波形もし
くは図形モデルとして表示する生体信号測定装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention amplifies minute biological signals (evoked potentials) from a living body due to stimulation of the living body with electricity, light, sound, etc., and generates a waveform or graphic model. The present invention relates to a biological signal measuring device that displays a biological signal.

〔発明の概要〕[Summary of the invention]

本発明は、生体に対し刺激を加える刺激装置と、上記刺
激に伴う生体からの生体信号を増幅する生体信号増幅器
と、上記生体信号を波形もしくは図形モデルで表示する
モニタ表示装置とからなる生体信号測定装置において、
上記生体1言号増幅器に、低周波ノイズ対応のCMR調
整回路と高周波ノイズ対応のCMR調整回路を具備する
ように構成することにより、低周波ノイズ〈例えば商用
交流電源からの交流ハム〉と高周波ノイズ(例えば刺激
装置からの高周波レベルの妨害波)を同相除去できるよ
うにして生体信号を正確に測定できるようにしたもので
ある。
The present invention provides a biosignal system comprising a stimulator that applies stimulation to a living body, a biosignal amplifier that amplifies a biosignal from the living body associated with the stimulation, and a monitor display device that displays the biosignal in a waveform or graphic model. In the measuring device,
By configuring the biological single-speech amplifier to include a CMR adjustment circuit that handles low-frequency noise and a CMR adjustment circuit that handles high-frequency noise, it is possible to eliminate low-frequency noise (for example, AC hum from a commercial AC power source) and high-frequency noise. (For example, interference waves at a high frequency level from a stimulation device) can be removed in the same phase, thereby making it possible to accurately measure biological signals.

〔従来の技術〕[Conventional technology]

一般に、被検者の刺激(電気、光、音等)に伴う誘発電
位を測定する場合、商用交流電源からの交流ハムが測定
装置に混入して上記測定に大きな支障をもたらす。
Generally, when measuring the evoked potential associated with stimulation (electricity, light, sound, etc.) of a subject, AC hum from a commercial AC power source enters the measuring device, causing a major hindrance to the measurement.

交流ハム混入の原因としては、リーク電流に起因するも
の、静電透導に起因するもの、電磁誘導に起因するもの
等がある。リーク電流については、屋内配線や電灯線と
地面間に介在する絶縁物、即ち被検者のいる床面や側面
を流れる電流が被検者に流れ込むことによって交流ハム
が混入するものであり、静電誘導については、屋内配線
や電灯線と被検者間の静電容量を通して行なわれる電気
的な静電誘導によって交流ハムが混入するというもので
ある。また、電磁誘導については、屋内配線に流れる電
流によって生じる磁界が被検者に電磁的に結合すること
によって起電力を生ぜしめ、その結果交流ハムが混入す
るというものである。
Causes of AC hum include leakage current, electrostatic conduction, and electromagnetic induction. Regarding leakage current, alternating current hum is mixed in when the current flowing through indoor wiring or insulators between power lines and the ground, that is, the floor or side surfaces where the test subject is, flows into the test subject. Regarding electrical induction, alternating current hum is mixed in due to electrical electrostatic induction that occurs through the capacitance between indoor wiring or electric light lines and the subject. Furthermore, regarding electromagnetic induction, a magnetic field generated by a current flowing through indoor wiring is electromagnetically coupled to the subject, producing an electromotive force, which results in the introduction of AC hum.

そこで、通常は、シールドルームを用いて静電誘導を遮
蔽したりシールドルーム全体あるイハヘッドを碍子など
で床面から絶縁したりすることによって、外部誘導雑音
電圧を極力小さくするようにしている。また、交流ハム
が同相で増幅器の入力に加わることから、従来では増幅
器内に商用交流電源の周波数(50k又は60&)に相
当する周波数成分を同相除去するCMR調整回路を組込
むようにしている。
Therefore, the external induced noise voltage is usually minimized by using a shield room to shield electrostatic induction or by insulating the IHA head, which is located throughout the shield room, from the floor using an insulator or the like. Furthermore, since AC hum is applied to the input of the amplifier in the same phase, conventionally, a CMR adjustment circuit for removing the frequency component corresponding to the frequency (50k or 60&) of the commercial AC power supply is built into the amplifier.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の生体信号測定装置における生体信
号増幅器の同相除去(CMR)は、商用交流電源の周波
数(50Hz又は60敗)では高い能力があるが、刺激
装置が発生する1lill激波の持続時間である100
μ5eC1即ち10KHz近くの周波数に対しては、そ
の同相除去能力が著しく低下する。そのため、刺激装置
からの刺激波が測定装置の増幅器に妨害波(アーチファ
クト)として混入した場合、該妨害波を同相除去できな
いという不都合があると共に、高周波ノイズの影響も受
は易く、生体信号を正確に測定することができないとい
う不都合があった。
However, although the common mode rejection (CMR) of the biological signal amplifier in the conventional biological signal measuring device has a high ability at the frequency of the commercial AC power supply (50Hz or 60%), it has a high ability at the frequency of the commercial AC power supply (50Hz or 60%), but it has a high ability at the frequency of the 1lill pulse generated by the stimulator. There are 100
For frequencies near μ5eC1 or 10 KHz, its common mode rejection capability is significantly reduced. Therefore, if the stimulation wave from the stimulation device mixes into the amplifier of the measurement device as an interference wave (artifact), there is a problem that the interference wave cannot be removed in phase, and it is also susceptible to the effects of high frequency noise, making it possible to accurately measure biological signals. The disadvantage was that it was not possible to measure the

本発明は、このような点に鑑み成されたもので、その目
的とするところは、商用交流電源からの交流ハムを同相
除去できると共に、刺激装置からの妨害波及び高周波ノ
イズをも同相除去することができる生体信号測定装置を
提供することにある。
The present invention has been made in view of the above points, and its purpose is to eliminate in-phase AC hum from a commercial AC power source, as well as to eliminate interference waves and high-frequency noise from a stimulation device in-phase. The object of the present invention is to provide a biosignal measuring device that can perform the following functions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の生体信号測定装置は、生体(1)に対し刺′a
、(s ) ヲ加エル刺激!2[(2)c!:、上記1
i1Jm (s )に伴う生体(1)からの生体信号(
V)を増幅する生体信号増幅器(3)と、上記生体信号
(V)を波形もしくは図形モデルで表示するモニタ表示
装置(4)とからなる生体信号測定装置(A)において
、上記生体信号増幅器(3)に、低周波ノイズ対応のC
MR調整回路(5)と高周波ノイズ対応のCM R調整
回路(6)を具備するように構成する。
The biological signal measuring device of the present invention provides a biological signal measuring device for a living body (1).
, (s) Wokaeru stimulation! 2[(2)c! :, above 1
The biological signal (
A biological signal measuring device (A) comprising a biological signal amplifier (3) that amplifies the biological signal (V) and a monitor display device (4) that displays the biological signal (V) in a waveform or graphic model. 3), C for low frequency noise
It is configured to include an MR adjustment circuit (5) and a CMR adjustment circuit (6) for dealing with high frequency noise.

〔作用〕[Effect]

上述の本発明の構成によれば、生体信号増幅器(3)内
に低周波ノイズ対応のCMR調整回路(5)と高周波ノ
イズ対応のCMR調整回路(6)を具備するようにした
ので、商用交流電源が起因する交流ハムを同相除去する
ことができると共に、刺激装置(2)からの妨害波及び
高周波ノイズを同相除去することができ、生体(1)の
刺激(S)に伴う生体信号(誘発電位)(V)を正確に
測定することが可能となる。
According to the configuration of the present invention described above, since the biosignal amplifier (3) is equipped with the CMR adjustment circuit (5) for dealing with low frequency noise and the CMR adjustment circuit (6) for dealing with high frequency noise, commercial AC AC hum caused by the power source can be removed in-phase, and interference waves and high-frequency noise from the stimulator (2) can be removed in-phase. It becomes possible to accurately measure the electric potential (V).

〔実施例〕〔Example〕

以下、第1図〜第4図を参照しながら本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 4.

第1図は、本実施例に係る生体信号測定装置(A)の構
成を示すブロック図である。この図において、(1)は
被検者、(2)は被検者(1)に対し電気刺激(S)を
加える電気刺激装置、(3)は電気刺激(S)に伴う被
検者〔1)からの微小な生体信号(誘発電位)(V)を
増幅する生体信号増幅器、(4)は増幅された生体信号
(V)を波形あるいは図形モデルで表示するモニタ表示
装置である。
FIG. 1 is a block diagram showing the configuration of a biological signal measuring device (A) according to this embodiment. In this figure, (1) is the subject, (2) is the electrical stimulation device that applies electrical stimulation (S) to the subject (1), and (3) is the subject who is undergoing electrical stimulation (S). 1) is a biosignal amplifier that amplifies the minute biosignal (evoked potential) (V); and (4) is a monitor display device that displays the amplified biosignal (V) in a waveform or graphic model.

しかして、本実施例においては、生体信号増幅器(3)
内に低周波ノイズ対応のCM R調整回路(5)と高周
波ノイズ対応のCMR調整回路(6)を組込んで成る。
Therefore, in this embodiment, the biological signal amplifier (3)
A CMR adjustment circuit (5) for dealing with low-frequency noise and a CMR adjustment circuit (6) for dealing with high-frequency noise are incorporated inside.

次に、生体信号増幅器(3)の構成又びその動作を第2
図に基づいて説明する。
Next, the configuration and operation of the biosignal amplifier (3) will be explained in the second section.
This will be explained based on the diagram.

本実施例に係る生体信号増幅器(3)は、基本的には図
示する如く、例えば3つのOPアンプOA、。
The biological signal amplifier (3) according to this embodiment basically includes, for example, three OP amplifiers OA, as shown in the figure.

OA2及びOA、から成る所謂差動型の直流増幅器の構
成を有する。即ち、プラス人力のOPアンプ○A1 、
抵抗R8及び負帰還抵抗RI からなる非反転増幅回路
(7)と、プラス入力のOPアンプOA2、抵抗R8及
び負帰還抵抗R2からなる非反転増幅回路(8)と、上
記2つの非反転増幅回路(7)及び(8)からの出力が
夫々抵抗R3及びR4を介して差動入力されるOPアン
プOA3、抵抗R6及び負帰還抵抗R5とからなる差動
増幅回路(9)とで構成されてなる。
It has a configuration of a so-called differential type DC amplifier consisting of OA2 and OA. In other words, plus human-powered OP amplifier ○A1,
A non-inverting amplifier circuit (7) consisting of a resistor R8 and a negative feedback resistor RI, a non-inverting amplifier circuit (8) consisting of a positive input OP amplifier OA2, a resistor R8 and a negative feedback resistor R2, and the above two non-inverting amplifier circuits. It is composed of an OP amplifier OA3 into which the outputs from (7) and (8) are differentially input via resistors R3 and R4, a differential amplifier circuit (9) consisting of a resistor R6 and a negative feedback resistor R5. Become.

そして、本例では更に抵抗R6とグランド間に可変抵抗
Rt で構成された低周波ノイズ対応のCMR調整回路
(5)を有すると共に、接点a3及び84間に可変抵抗
RとコンデンサCで構成された高周波ノイズ対応のCM
R調整回路(6)を有する。次に動作を説明するが、そ
の前に接点a3及び81間に高周波ノイズ対応のCMR
調整回路(6)が接続されていない場合についての動作
を説明する。
This example further includes a CMR adjustment circuit (5) for dealing with low frequency noise, which is composed of a variable resistor Rt between the resistor R6 and the ground, and a CMR adjustment circuit (5) composed of a variable resistor R and a capacitor C between the contacts a3 and 84. CM that supports high frequency noise
It has an R adjustment circuit (6). Next, we will explain the operation, but before that, we will introduce a CMR between contacts a3 and 81 to prevent high frequency noise.
The operation when the adjustment circuit (6) is not connected will be explained.

まず、G1 端子及びG2端子に夫々例えば誘発電位v
1 及びv2が入力されると、各電位v1 及びv2 
は、夫々非反転増幅回路(7)及び(8)にて増幅され
る。接点a1 及びG2での電位v3及びv4は次式で
表わされる。
First, for example, an evoked potential v is applied to the G1 terminal and the G2 terminal, respectively.
1 and v2 are input, each potential v1 and v2
are amplified by non-inverting amplifier circuits (7) and (8), respectively. Potentials v3 and v4 at contacts a1 and G2 are expressed by the following equations.

このとき、商用交流電源からの交流ハム(50Hz又は
6〇七)は、同相でG1 端子及びG2端子に混入する
ため、可変抵抗Rr を調整して上記交流ノ1ムを同相
除去する。この低周波ノイズ、特に商用交流電源周波数
対応のCMR調整回路(5)は、通常の差動型直流増幅
器にはすでに搭載され、調整済のため、ここで新たに調
整する必要はない。
At this time, since the AC hum (50Hz or 607) from the commercial AC power source mixes into the G1 and G2 terminals in the same phase, the variable resistor Rr is adjusted to remove the AC hum in the same phase. The CMR adjustment circuit (5) for dealing with this low frequency noise, especially the frequency of the commercial AC power supply, is already installed and adjusted in a normal differential type DC amplifier, so there is no need for new adjustment here.

ところが、G、端子及びG2端子には、商用交流電源か
らの交流ハムのほか、電気刺激装置(2)からの妨害波
(アーチファクト)も混入する。この妨害波は、刺激波
とほぼ同じ周波数をもち、現在では約100μsecの
パルス幅、即ち1QkHz程度の周波数を有する。通常
の差動型直流増幅器のCMR特性(CMRR)は、上記
の如く、商用交流電源からの交流ハムに対するCMR調
整を行っていることから、比較的低周波、例えば100
 Hz前後までは、はぼ80dB程度の特性を有するが
、l kHz以上になると極端に劣化し、10k)Iz
の周波数に対しては約4QdBにまで劣化する(第4図
の曲線■参照)。
However, in addition to AC hum from the commercial AC power source, interference waves (artifacts) from the electrical stimulation device (2) are mixed into the G terminal and the G2 terminal. This interference wave has approximately the same frequency as the stimulation wave, and currently has a pulse width of approximately 100 μsec, that is, a frequency of approximately 1QkHz. As mentioned above, the CMR characteristics (CMRR) of a normal differential type DC amplifier are relatively low frequency, for example, 100
It has a characteristic of about 80 dB up to around 1 kHz, but it deteriorates extremely when it exceeds 1 kHz.
It deteriorates to about 4QdB for the frequency (see curve ■ in FIG. 4).

そこで本例では、接点a3及びG4 間に高周波ノイズ
対応のCMR調整回路(6)を組込んで、上記妨害波を
同相除去するようになす。即ち、妨害波は、G、端子及
びG2端子に同相で人力するが、各端子間の電位にばら
つきがある。このような妨害波を差動増幅回路(9)で
同相除去するには、各端子に混入した妨害波の各電位を
そろえる必要がある。従って、本例では、接点a3及び
81間に可変抵抗Rを接続し、その抵抗Rを可変するこ
とによって、各妨害波のレベ1しを移動させて各妨害波
の電位をそろえるようにする。可変抵抗Rの後段にコン
デンサCを接続したのは、生体信号の直流成分をカット
しないようにするためである。尚、出力端子からの出力
電位Vout は、次式で表わされる。
Therefore, in this example, a CMR adjustment circuit (6) for dealing with high frequency noise is incorporated between contacts a3 and G4 to remove the above-mentioned interference waves in the same phase. That is, the interference waves are applied to the G terminal and the G2 terminal in the same phase, but there are variations in the potential between the terminals. In order to eliminate such interference waves in the same mode using the differential amplifier circuit (9), it is necessary to equalize the potentials of the interference waves mixed into each terminal. Therefore, in this example, a variable resistor R is connected between the contacts a3 and 81, and by varying the resistor R, the level of each interference wave is moved and the potentials of each interference wave are made to be the same. The reason why the capacitor C is connected after the variable resistor R is to prevent the direct current component of the biological signal from being cut. Note that the output potential Vout from the output terminal is expressed by the following equation.

5 ・・・・(3) ここで、k = (R6+ Rr)(R++ r )で
ある。
5...(3) Here, k = (R6+Rr)(R++r).

■、及びV、については上式(1)及び(2)を参照。For (2) and V, see equations (1) and (2) above.

また、妨害波の同相除去の調整方法としては、例えば第
3図に示すように、電気刺激装置(2)から出力される
刺激波(S)の振幅IE(1)を小から大へ変化させ、
生体信号増幅器(3)を介してモニタ表示装置(4)に
表示される波形のうち、基線上の増幅されたノイズ波形
に注目し、これを最小とするようにCMR調整回路(6
)の可変抵抗Rを調整すればよい。
In addition, as an adjustment method for in-phase removal of interference waves, for example, as shown in Fig. 3, the amplitude IE (1) of the stimulation wave (S) output from the electrical stimulation device (2) is changed from small to large. ,
Among the waveforms displayed on the monitor display device (4) via the biosignal amplifier (3), the CMR adjustment circuit (6) focuses on the amplified noise waveform on the baseline and minimizes it.
) may be adjusted by adjusting the variable resistor R.

上述の如く、本例によれば、生体信号増幅器(3)内に
商用交流電源からの交流ハム(50Hz又は60 )1
z)に対応したCMR調整回路(5〕と電気刺激装置(
2)からの妨害波(10kHz)に対応したCMR調整
回路(6)を設けるようにしたので、商用交流電源から
の交流ハムを同相除去することができると共に、電気刺
激装置(2)からの妨害波も同相除去することができる
。また、CMR調整回路(6)の設置により、生体信号
増幅器(3)におけるCMHの周波数特性は、第4図の
曲線■に示す如< 1okHzのCM Rも10〇七付
近と同様に80dB程度となるため、10kHz付近の
高周波ノイズに対する同相除去も有効に働く。
As mentioned above, according to this example, an AC hum (50Hz or 60Hz) 1 from a commercial AC power source is installed in the biological signal amplifier (3).
CMR adjustment circuit (5) and electric stimulation device (
Since a CMR adjustment circuit (6) corresponding to interference waves (10kHz) from 2) is provided, in-phase AC hum from the commercial AC power source can be removed, and interference from the electric stimulation device (2) can be removed. Waves can also be removed in phase. In addition, by installing the CMR adjustment circuit (6), the frequency characteristics of CMH in the biological signal amplifier (3) are as shown in the curve ■ in Fig. 4.The CMR of <1 kHz is also about 80 dB as in the vicinity of 1007. Therefore, common-mode removal for high-frequency noise around 10 kHz also works effectively.

従って、被検者(1)の刺激に伴う生体信号(誘発電位
)を正確に測定することが可能となり、生体信号測定装
置(A)の信頼性をより一層向上させることができる。
Therefore, it becomes possible to accurately measure the biological signal (evoked potential) accompanying stimulation of the subject (1), and the reliability of the biological signal measuring device (A) can be further improved.

〔発明の効果〕〔Effect of the invention〕

本発明に係る生体信号測定装置は、生体信号増幅器に低
周波ノイズ対応のCMR調整回路と高周波ノイズ対応の
CMR調整回路を具備するようにしたので、商用交流電
源からの交流ノ\ムを同相除去出来ると共に、刺激装置
からの妨害波や高周波ノイズを同相除去することができ
、生体の刺激に伴う生体信号を正確に測定することがで
きる。
In the biological signal measuring device according to the present invention, the biological signal amplifier is equipped with a CMR adjustment circuit for dealing with low-frequency noise and a CMR adjustment circuit for dealing with high-frequency noise. In addition, interference waves and high-frequency noise from the stimulation device can be removed in the same phase, and biological signals accompanying stimulation of the living body can be accurately measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例に係る生体信号測定装置の構成を示す
ブロック図、第2図は本実施例に係る生体信号増幅器の
一例を示す回路図、第3図は本実施例に係るCMR調整
方法の説明に供する波形図、第4図は本実施例に係る生
体信号増幅器におけるCMRの周波数特性を示す特性図
である。 (A)は生体信号測定装置、(1)は被検者、(2)は
電気刺激装置、(3)は生体信号増幅器、(4)はモニ
タ表示装置、(5)は低周波ノイズ対応のCMR調整回
路、(6)は高周波ノイズ対応のCMR調整回路である
。 代 理 人 松 隈 秀 盛
FIG. 1 is a block diagram showing the configuration of a biological signal measuring device according to this embodiment, FIG. 2 is a circuit diagram showing an example of a biological signal amplifier according to this embodiment, and FIG. 3 is a CMR adjustment according to this embodiment. FIG. 4 is a waveform diagram used to explain the method, and is a characteristic diagram showing the frequency characteristics of CMR in the biological signal amplifier according to this embodiment. (A) is a biological signal measuring device, (1) is a subject, (2) is an electrical stimulation device, (3) is a biological signal amplifier, (4) is a monitor display device, and (5) is a low frequency noise countermeasure device. CMR adjustment circuit (6) is a CMR adjustment circuit that deals with high frequency noise. Agent Hidemori Matsukuma

Claims (1)

【特許請求の範囲】 生体に対し刺激を加える刺激装置と、上記刺激に伴う生
体からの生体信号を増幅する生体信号増幅器と、上記生
体信号を波形もしくは図形モデルで表示するモニタ装置
とからなる生体信号測定装置において、 上記生体信号増幅器に、低周波ノイズ対応のCMR調整
回路と高周波ノイズ対応のCMR調整回路を具備してな
る生体信号測定装置。
[Claims] A living body comprising a stimulation device that applies stimulation to a living body, a biological signal amplifier that amplifies a biological signal from the living body accompanying the stimulation, and a monitor device that displays the biological signal in a waveform or a graphic model. A biological signal measuring device, wherein the biological signal amplifier is provided with a CMR adjustment circuit for dealing with low frequency noise and a CMR adjusting circuit for dealing with high frequency noise.
JP1254144A 1989-09-29 1989-09-29 Biosignal measuring apparatus Pending JPH03114438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254144A JPH03114438A (en) 1989-09-29 1989-09-29 Biosignal measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254144A JPH03114438A (en) 1989-09-29 1989-09-29 Biosignal measuring apparatus

Publications (1)

Publication Number Publication Date
JPH03114438A true JPH03114438A (en) 1991-05-15

Family

ID=17260835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254144A Pending JPH03114438A (en) 1989-09-29 1989-09-29 Biosignal measuring apparatus

Country Status (1)

Country Link
JP (1) JPH03114438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077580A (en) * 2014-10-17 2016-05-16 裏出 良博 Biological signal amplifying device and biological signal transmitting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077580A (en) * 2014-10-17 2016-05-16 裏出 良博 Biological signal amplifying device and biological signal transmitting apparatus

Similar Documents

Publication Publication Date Title
Huhta et al. 60-Hz interference in electrocardiography
Winter et al. Reduction of interference due to common mode voltage in biopotential amplifiers
EP0617917B1 (en) Receiver for differential signals
US4235242A (en) Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
Winter et al. Driven-right-leg circuit design
Chimene et al. A comprehensive model for power line interference in biopotential measurements
Thakor et al. Ground-free ECG recording with two electrodes
US7039455B1 (en) Apparatus and method for removing magnetic resonance imaging-induced noise from ECG signals
US3880146A (en) Noise compensation techniques for bioelectric potential sensing
US5020541A (en) Apparatus for sensing lead and transthoracic impedances
US4919145A (en) Method and apparatus for sensing lead and transthoracic impedances
US4993423A (en) Method and apparatus for differential lead impedance comparison
US10090807B2 (en) Medical amplifier isolation
US4917099A (en) Method and apparatus for differential lead impedance comparison
JPS6217044Y2 (en)
Haberman et al. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL
JPS61249441A (en) Narrow band brain wave amplifier
JP2003235823A (en) External ac noise eliminating system for biological electric signal
Barry AAEM minimonograph# 36: basic concepts of electricity and electronics in clinical electromyography
KR101048567B1 (en) Apparatus for measurement the voltage which occurs in from subject
JPH03114438A (en) Biosignal measuring apparatus
Virtanen et al. Biopotential amplifier for simultaneous operation with biomagnetic instruments
Nikola et al. A novel AC-amplifier for electrophysiology: active DC suppression with differential to differential amplifier in the feedback-loop
Takaki et al. Fibre-optic ECG monitoring instrument for use in the operating room
Schoenfeld Common-mode rejection ratio-two definitions