JPH03114116A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker

Info

Publication number
JPH03114116A
JPH03114116A JP25312189A JP25312189A JPH03114116A JP H03114116 A JPH03114116 A JP H03114116A JP 25312189 A JP25312189 A JP 25312189A JP 25312189 A JP25312189 A JP 25312189A JP H03114116 A JPH03114116 A JP H03114116A
Authority
JP
Japan
Prior art keywords
electrode
movable
current
circuit breaker
vacuum circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25312189A
Other languages
Japanese (ja)
Inventor
Kiyobumi Otobe
乙部 清文
Kunio Yokokura
邦夫 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25312189A priority Critical patent/JPH03114116A/en
Publication of JPH03114116A publication Critical patent/JPH03114116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6644Contacts; Arc-extinguishing means, e.g. arcing rings having coil-like electrical connections between contact rod and the proper contact

Abstract

PURPOSE:To prevent heat generation on an electrode part at a closing time by providing a flexible coil electrode having a spring action in the axial direction between a conduction axis and a main electrode. CONSTITUTION:A flexible coil electrode 38 composed of a multilayer thin plate or the like and having a spring action in the axial line direction of a movable conduction axis 18 is provided between the tip peripheral part 18a of the movable conduction axis 18 and the under surface peripheral part 35a of a main electrode 35. At a closing time of a vacuum circuit breaker 30, a movable electrode 32 is brought in contact with a fixed electrode 31, then the movable electrode 32 is pushed opposing to the spring action of the coil electrode 38 for making the tip part of the movable conduction axis 18 in contact with the rear of the main electrode 35. Then, a current of a feeding wire flows from the end of the movable condition axis 18 directly to the main electrode 35 while coming to flow through the arm part 38a and the circular are part 38b of the coil electrode 38 to the main electrode 35 thus to enlarge a passing sectional area of the current. The resistance of this electrode part, therefore, becomes smaller thus to reduce an amount of heat generation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は真空遮断器および真空遮断装置に係り、特に電
極間に生ずるアークに平行な磁界を発生するようにした
可撓性コイル電極を有する真空遮断器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum circuit breaker and a vacuum circuit breaker, and particularly to a flexible vacuum circuit breaker and a vacuum circuit breaker which generate a magnetic field parallel to an arc generated between electrodes. The present invention relates to a vacuum circuit breaker having a magnetic coil electrode.

(従来の技術) 送電線路、配電線路等に使用される真空遮断器は、遮断
時に電極間に発生するアークに平行な磁界を発生させ、
この磁界によりアークを切断する方法が採られいる。
(Prior art) Vacuum circuit breakers used for power transmission lines, distribution lines, etc. generate a magnetic field parallel to the arc generated between the electrodes when disconnecting.
A method is adopted in which the arc is cut using this magnetic field.

この代表的な真空遮断器は第7図に示すように構成され
ている。すなわち、 第7図において、全体を符号10によって示す真空遮断
器は、絶縁性の容器例えば絶縁性の円筒体11の両端開
口部を端板12,1Bで閉止して気密とし、内部を真空
とした真空容器14を有しており、この真空容器14の
内部には互いに対向する一対の電極15.16が設けら
れている。上部の電極15は上部の端板12を貫通する
固定通電軸17の先端部に取付けられ、また、下部の電
極16は下部の端板13を貫通する可動通電軸18の先
端部に取付けられている。
This typical vacuum circuit breaker is constructed as shown in FIG. That is, in FIG. 7, the vacuum circuit breaker, which is generally designated by the reference numeral 10, has an insulating container, such as an insulating cylindrical body 11, whose openings at both ends are closed with end plates 12 and 1B to make it airtight, and the inside is kept under vacuum. A pair of electrodes 15 and 16 facing each other are provided inside the vacuum container 14. The upper electrode 15 is attached to the tip of a fixed energizing shaft 17 that passes through the upper end plate 12, and the lower electrode 16 is attached to the tip of a movable energizing shaft 18 that passes through the lower end plate 13. There is.

固定通電軸17には図示しない送電線路、配電線路に接
続され、また、可動通電軸18にも送電線路、配電線路
等が接続されるとともにその基端部には外部操作機構が
取付けられ、電極16の投入あるいは遮断するときに矢
印方向に上下動させられるようになっている。
The fixed current-carrying shaft 17 is connected to a power transmission line and a power distribution line (not shown), and the movable current-carrying shaft 18 is also connected to a power transmission line, a power distribution line, etc., and an external operation mechanism is attached to the base end thereof. 16, it can be moved up and down in the direction of the arrow.

前記可動通電軸18が貫通する真空容器14の内部には
、この可動通電軸18を取巻いてベローズ19およびこ
のベローズ19の保護用ベローズカバー20が設けられ
、気密保持を行いながら可動通電軸18の移動を許すと
ともにアーク等による金属蒸気がベローズ19に付着し
ないようにされている。
Inside the vacuum vessel 14 through which the movable current-carrying shaft 18 passes, a bellows 19 and a protective bellows cover 20 for the bellows 19 are provided to surround the movable current-carrying shaft 18, and the movable current-carrying shaft 18 is maintained airtight. movement of the bellows 19, and prevents metal vapor caused by arcs from adhering to the bellows 19.

なお、21は前記一対の電極15.16を包囲するよう
に真空容器14の中央部に設けられた金属性のシールド
である。
Note that 21 is a metal shield provided in the center of the vacuum container 14 so as to surround the pair of electrodes 15 and 16.

前記電極15.16は第8図および第9図に示すように
、主電極22.23とコイル電極24.25とから構成
されているが、それぞれ同一の構造であるから以下は下
部の電極16について説明する。
As shown in FIGS. 8 and 9, the electrodes 15, 16 are composed of a main electrode 22, 23 and a coil electrode 24, 25, and since they have the same structure, the lower electrode 16 will be explained below. I will explain about it.

可動通電軸18の先端部には第9図に示すようなコイル
電極25が取付けられている。このコイル電極25は、
高導電率の金属板により構成され、通電軸18の先端部
に固定される中心円板26にほぼ90°の間隔をおいて
半径方向に延びる等しい長さの4つの水平腕26aが設
けられている。
A coil electrode 25 as shown in FIG. 9 is attached to the tip of the movable current-carrying shaft 18. This coil electrode 25 is
A central disk 26 made of a highly conductive metal plate and fixed to the tip of the current-carrying shaft 18 is provided with four horizontal arms 26a of equal length extending in the radial direction at approximately 90° intervals. There is.

この4つの水平腕26aには例えばそれぞれ反時計方向
に延びる円弧部26bが設けられ、この円弧部26bに
より作用を後述するアークに平行な磁界が発生するよう
になっている。この円弧部26bの先端部には軸方向の
上部に延びる突出部26cが設けられ、この突出部26
cが円盤状の形状をした前記主電極23の裏面に電気的
に接触するように固定されている。
Each of the four horizontal arms 26a is provided with, for example, a circular arc portion 26b extending counterclockwise, and the circular arc portion 26b generates a magnetic field parallel to the arc, the operation of which will be described later. A protrusion 26c extending upward in the axial direction is provided at the tip of the arcuate portion 26b.
c is fixed to the back surface of the disk-shaped main electrode 23 so as to be in electrical contact therewith.

なお、27は前記主電極23の裏面の中心部に取付けら
れた主電極23の補強板である。
Note that 27 is a reinforcing plate for the main electrode 23 attached to the center of the back surface of the main electrode 23.

(発明が解決しようとする課題) ところで、このような構成からなる真空遮断器において
、電極の投入時には真空遮断器を流れる電流は可動通電
軸、円板、腕部、円弧部、突出部を介して円盤状の主電
極に至り、ついで固定電極の主電極、突出部、円弧部、
腕部、円板を介して固定通電軸に至るようになっている
(Problem to be Solved by the Invention) By the way, in a vacuum circuit breaker having such a configuration, when the electrode is turned on, the current flowing through the vacuum circuit breaker passes through the movable energizing shaft, the disc, the arm, the arc, and the protrusion. Then, the main electrode of the fixed electrode, the protruding part, the circular arc part,
It is designed to reach a fixed current-carrying shaft via the arm portion and the disc.

このような電流の流れにおいて通電軸や主電極に比較し
てコイル電極の腕部、円弧部あるいは突出部の電流経路
の断面積が小さいので電気抵抗が大きくなり、抜部の発
熱量が大きくなり真空遮断器の容量を増大できない問題
がある。
In this type of current flow, the cross-sectional area of the current path in the arms, arcs, or protrusions of the coil electrode is smaller than that of the current-carrying shaft or main electrode, so the electrical resistance increases and the amount of heat generated at the extracted part increases. There is a problem that the capacity of the vacuum circuit breaker cannot be increased.

この抵抗を小さくさせるためには前記コイル電極の腕部
、円弧部あるいは突出部の断面積を大きくすればよいが
、この断面積を大きくすれば円弧部が短くなってしまい
アークに平行する磁界が弱くなりアークの遮断ができに
くくなる。
In order to reduce this resistance, the cross-sectional area of the arm, arc, or protrusion of the coil electrode can be increased, but if this cross-sectional area is increased, the arc becomes shorter and the magnetic field parallel to the arc is reduced. It becomes weaker and it becomes difficult to interrupt the arc.

そこで、磁界を強くし電気抵抗を少なくするためにはコ
イル電極を大きくし断面積を大きくすればよいが、その
ようにすると真空遮断器が大きくなってしまう。
Therefore, in order to strengthen the magnetic field and reduce the electrical resistance, the coil electrode may be made larger and its cross-sectional area may be increased, but doing so would increase the size of the vacuum circuit breaker.

また、このような真空遮断器を送電線路等に使用した場
合、各送電線路が同時に遮断されてしまい送電線路に大
きな開閉サージ電圧が発生し、これに接続される機器等
を故障させる等の問題がある。
In addition, when such a vacuum circuit breaker is used on power transmission lines, etc., each power transmission line is shut off at the same time, causing a large switching surge voltage to occur on the power transmission line, causing problems such as failure of equipment connected to it. There is.

これ等の問題を解決するためには開閉サージを保護する
CRサージサプレッサ、避雷器等のサージ保護装置を設
置すればよいが、これ等のサージ保護装置を設置するこ
とは真空遮断器が大きくなるばかりか、サージ保護装置
の取付は作業等が必要となる問題がある。
In order to solve these problems, it is possible to install surge protection devices such as CR surge suppressors and lightning arresters that protect against switching surges, but installing such surge protection devices only increases the size of the vacuum circuit breaker. However, there is a problem in that installing the surge protection device requires additional work.

本発明は上記各問題を解決するために電極を投入してい
るときに電気抵抗を増大しないようにした真空遮断器を
得るにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a vacuum circuit breaker that does not increase electrical resistance when electrodes are inserted.

〔発明の構成〕[Structure of the invention]

(発明が解決するための手段) 本発明は、両端開口部をそれぞれ端板で閉止した絶縁性
の真空容器内に、主電極とコイル電極とからなる電極を
接離自在に配置した真空遮断器において、上記コイル電
極を電極の可動方向に対してばね作用を有する可撓性と
し、そのコイル電極の一端を通電軸に連結するとともに
コイル電極の他端を上記主電極に連結し、電極が投入さ
れるときは主電極の裏面に通電軸の先端部が電気的に接
触し遮断されるときは主電極の裏面が通電軸の先端部か
ら電気的に引離されようにしたものである。
(Means for Solving the Invention) The present invention provides a vacuum circuit breaker in which an electrode consisting of a main electrode and a coil electrode is arranged so as to be able to be freely connected and separated in an insulating vacuum container whose openings at both ends are closed with end plates. The coil electrode is made of a flexible material having a spring action in the direction of movement of the electrode, one end of the coil electrode is connected to the current-carrying shaft, the other end of the coil electrode is connected to the main electrode, and the electrode is turned on. When the main electrode is disconnected, the tip of the current-carrying shaft is electrically contacted with the back surface of the main electrode, and when the main electrode is cut off, the back surface of the main electrode is electrically separated from the top of the current-carrying shaft.

また、前記通電軸の先端部と電極の裏面との間にはコイ
ル電極が過度に軸方向に移動をするのを防止するストッ
パーを設けるようにしものである。
Further, a stopper is provided between the tip of the current-carrying shaft and the back surface of the electrode to prevent the coil electrode from moving excessively in the axial direction.

(作 用) 真空遮断器の可動の通電軸が軸方向に移動され可動の電
極が固定の電極に投入されると給電線路が閉成され、1
の送電線路から他の送電線路に電力が供給される。また
、可動の通電軸が軸方向に移動され可動の電極が固定の
電極から引離されると給電線路が遮断され、1の送電線
路から他の送電線路に供給される電力の供給が断たれる
(Operation) When the movable energizing shaft of the vacuum circuit breaker is moved in the axial direction and the movable electrode is inserted into the fixed electrode, the power supply line is closed, and 1
Power is supplied from one transmission line to other transmission lines. Furthermore, when the movable current-carrying shaft is moved in the axial direction and the movable electrode is separated from the fixed electrode, the power supply line is cut off, and the supply of power from one power transmission line to the other power transmission lines is cut off. .

このような作用を行う真空遮断器において、可動の電極
が固定の電極に投入されているときは、電流は通電軸か
ら可動の電極を介して直接的に固定の電極に流れるもの
と通電軸から可撓性を有するコイル電極を介して可動の
電極に流れ、固定の電極に流れるちるものとがある。こ
の2つの電流通路により電極部の断面積が大きくなり電
気抵抗が少なくなりその発熱を減少させる。
In a vacuum circuit breaker that operates in this way, when the movable electrode is connected to the fixed electrode, the current flows from the current-carrying shaft directly to the fixed electrode via the movable electrode, and from the current-carrying shaft directly to the fixed electrode. Some flow through the flexible coil electrode to the movable electrode, and some flow to the fixed electrode. These two current paths increase the cross-sectional area of the electrode portion, reduce electrical resistance, and reduce heat generation.

また、可動の電極が固定の電極から引離されるときは、
可動の電極から固定の電極に流れ電流は直ちに遮断され
、可撓性を有するコイル電極から可動の電極を介して固
定の電極に流れる。この可撓性を有するコイル電極を流
れる電流により、アークに平行する磁界は弱まらない。
Also, when the movable electrode is separated from the fixed electrode,
The current flowing from the movable electrode to the fixed electrode is immediately interrupted, and the current flows from the flexible coil electrode to the fixed electrode via the movable electrode. The current flowing through this flexible coil electrode does not weaken the magnetic field parallel to the arc.

また、可撓性を有するコイル電極は通電軸と電極間で過
度の弾圧あるいは弾発がされないように軸方向の移動が
制限される。
Further, the flexible coil electrode is limited in its axial movement to prevent excessive pressure or repulsion between the current-carrying shaft and the electrode.

(実施例) 以下本発明真空遮断器の一実施例を第1図乃至第6図を
参照しながら説明する。なお、上記図面において第7図
、第8図および第9図と同一部分は同一符号をもって説
明しその詳細な説明は省略する。
(Embodiment) An embodiment of the vacuum circuit breaker of the present invention will be described below with reference to FIGS. 1 to 6. In the above drawings, the same parts as in FIGS. 7, 8, and 9 will be explained using the same reference numerals, and detailed explanation thereof will be omitted.

第1図において符号3oで示す真空遮断器は、固定電極
31.可動電極32を除き第7図に示した従来の真空遮
断器1oと同様に構成されている。
The vacuum circuit breaker designated by the reference numeral 3o in FIG. 1 has fixed electrodes 31. The structure is similar to the conventional vacuum circuit breaker 1o shown in FIG. 7 except for the movable electrode 32.

この固定電極31は固定通電軸17に取付けられ、可動
電極32は可動通電軸18に取付けられるが、両固定電
極31と可動電極32は通電軸が固定が可動の違いがあ
る以外は同様な構造であるので以下可動電極32につい
て説明する。すなわち、可動電極32を取付ける可動通
電軸18の先端部には第2図に示すように軸方向に延び
る長さtoの縦穴33が明けられ、その縦穴33の開口
部には半径方向に延びる複数の突起34が円周方向に適
宜間隙を置いて設けられている。前記縦穴33の内径は
doとされ、突起34の内径はdlにされている。この
縦穴33には主電極35の下面中央部から下方に延びる
ように取付けられた長さtlのストッパー36が挿入さ
れている。このストッパー36の先端には最大直径がd
2の突起37が設けられ、ストッパー36が縦穴33に
挿入されるときに突起37が複数の突起34の間を介し
て挿入できるようしである。この主電極35は縦穴33
に挿入されてからある角度回動され、ストッパー36の
突起37が可動通電軸18の突起34により軸方向の移
動が一定範囲内に制限されている。
This fixed electrode 31 is attached to the fixed energizing shaft 17, and the movable electrode 32 is attached to the movable energizing shaft 18, but both the fixed electrode 31 and the movable electrode 32 have the same structure except that the energizing shaft is fixed and movable. Therefore, the movable electrode 32 will be explained below. That is, as shown in FIG. 2, a vertical hole 33 with a length to extending in the axial direction is bored at the tip of the movable current-carrying shaft 18 to which the movable electrode 32 is attached, and a plurality of holes extending in the radial direction are formed in the opening of the vertical hole 33. The protrusions 34 are provided at appropriate intervals in the circumferential direction. The inner diameter of the vertical hole 33 is set to do, and the inner diameter of the projection 34 is set to dl. A stopper 36 having a length tl is inserted into the vertical hole 33 and is attached to extend downward from the center of the lower surface of the main electrode 35 . The tip of this stopper 36 has a maximum diameter of d.
Two protrusions 37 are provided so that when the stopper 36 is inserted into the vertical hole 33, the protrusion 37 can be inserted between the plurality of protrusions 34. This main electrode 35 is connected to the vertical hole 33
The protrusion 37 of the stopper 36 is rotated by a certain angle after being inserted into the movable current-carrying shaft 18, and the axial movement of the protrusion 37 of the stopper 36 is limited within a certain range by the protrusion 34 of the movable current-carrying shaft 18.

また、前記可動通電軸18の先端外周部18aと主電極
35の下面外周部35aには多層薄板等により構成され
、可動通電軸18の軸線方向にばね作用を有する可撓性
コイル電極38が設けられている(第3図参照)。この
コイル電極38には前記可動通電軸18の先端外周部1
8aに取付けられる4つの腕部38aが設けられている
。このそれぞれの腕部38aは同一の長さであり、半径
方向に延びるに従い上方に傾斜するように構成されてい
る。この腕部38aの先端には上方に傾斜して反時計方
向の円周上を延びるように構成された円弧部38bが設
けられ、その円弧部38bの先端が前記主電極35の下
面外周部35aに取付けられている。これら各円弧部3
8bにより、コイルが形成されている。
Furthermore, a flexible coil electrode 38 is provided on the tip outer circumferential portion 18a of the movable current-carrying shaft 18 and the lower surface outer circumferential portion 35a of the main electrode 35, which is made of a multilayer thin plate or the like and has a spring action in the axial direction of the movable current-carrying shaft 18. (See Figure 3). This coil electrode 38 has a tip outer peripheral portion 1 of the movable current-carrying shaft 18.
Four arm portions 38a are provided to be attached to 8a. The respective arm portions 38a have the same length and are configured to slope upward as they extend in the radial direction. An arcuate portion 38b is provided at the tip of the arm portion 38a and is configured to incline upward and extend on the circumference in a counterclockwise direction. installed on. Each of these arcuate parts 3
8b forms a coil.

このように構成された真空遮断器30において、可動電
極32が固定電極31から引離された状態すなわち遮断
状態のときは第1図のような関係位置にある。この場合
、可動通電軸18と主電極35の端面とはコイル電極3
8のばね作用により引離され、主電極35と可動通電軸
18とはコイル電極38を介して接続されている(第2
図参照)。
In the vacuum circuit breaker 30 configured as described above, when the movable electrode 32 is separated from the fixed electrode 31, that is, in the cutoff state, it is in the relative position as shown in FIG. In this case, the movable current-carrying shaft 18 and the end face of the main electrode 35 are connected to the coil electrode 3
8, and the main electrode 35 and the movable current-carrying shaft 18 are connected via the coil electrode 38 (the second
(see figure).

次に可動電極32が固定電極31に投入されるときは、
可動通電軸18が操作装置の操作力により実線矢印の軸
方向に移動され、可動電極32が固定電極31に接触さ
せられる。この状態でさらに可動通電軸18が押される
と、可動電極32がコイル電極38のばね作用に抗して
押され、可動通電軸18の先端部が主電極35に裏面に
接触させられる。このような作用は固定電極31でも行
われる。そのためこの真空遮断器30の投入状態では、
給電線の電流は可動通電軸18の端面から直接に主電極
35に流れるとともにコイル電極38の腕部38a2円
弧部38bを介して主電極35に流れるようになり、電
流の通過断面積が大きくされる。それ故、この電極部の
抵抗が小さくなり発熱が少なくなる。
Next, when the movable electrode 32 is inserted into the fixed electrode 31,
The movable energizing shaft 18 is moved in the axial direction of the solid arrow by the operating force of the operating device, and the movable electrode 32 is brought into contact with the fixed electrode 31. When the movable energizing shaft 18 is further pushed in this state, the movable electrode 32 is pushed against the spring action of the coil electrode 38, and the tip of the movable energizing shaft 18 is brought into contact with the back surface of the main electrode 35. Such an action is also performed on the fixed electrode 31. Therefore, in the closed state of this vacuum circuit breaker 30,
The current of the power supply line flows directly from the end face of the movable current-carrying shaft 18 to the main electrode 35 and also flows to the main electrode 35 via the arm portion 38a2 of the coil electrode 38 and the arc portion 38b, so that the current passage cross-sectional area is increased. Ru. Therefore, the resistance of this electrode portion becomes smaller and less heat is generated.

可動電極32が固定電極31から引離されるときすなわ
ち遮断されるときは、可動通電軸18が操作装置の操作
力により点線矢印方向に移動され、可動電極32が固定
電極31から引離される。この遮断操作において可動通
電軸18の端面が可動電極32の主電極35から引離さ
れ、電流は可動通電軸18からコイル電極38を介して
主電極35に流すものだけにされる。
When the movable electrode 32 is separated from the fixed electrode 31, that is, when it is cut off, the movable energizing shaft 18 is moved in the direction of the dotted arrow by the operating force of the operating device, and the movable electrode 32 is separated from the fixed electrode 31. In this cutoff operation, the end face of the movable energizing shaft 18 is separated from the main electrode 35 of the movable electrode 32, and only the current is allowed to flow from the movable energizing shaft 18 to the main electrode 35 via the coil electrode 38.

さらに可動通電軸18がさらに点線矢印方向に移動され
と、可動電極32が固定電極31から引離され、可動電
極32と固定電極31との間にア一りが発生させられる
。このアーク電流は可動通電軸18、コイル電極38の
腕部38a2円弧部38bを介して主電極35に流れる
。このアーク電流は固定電極にも流れ、可動電極32の
円弧部38bを流れる電流および固定電極31の円弧部
を流れる電流によりアークに平行な強力な磁界が発生し
、前記アークに横方向の電気力が与えられてアークが遮
断される。
When the movable energizing shaft 18 is further moved in the direction of the dotted arrow, the movable electrode 32 is separated from the fixed electrode 31, and a gap is generated between the movable electrode 32 and the fixed electrode 31. This arc current flows to the main electrode 35 via the movable current-carrying shaft 18, the arm portion 38a2 of the coil electrode 38, and the arc portion 38b. This arc current also flows to the fixed electrode, and the current flowing through the circular arc portion 38b of the movable electrode 32 and the current flowing through the circular arc portion of the fixed electrode 31 generates a strong magnetic field parallel to the arc, and a lateral electric force is applied to the arc. is given and the arc is interrupted.

そのため、この可撓性コイル電極38を有する可動電極
32と固定電極31により、電力の供給時には電極部の
発熱が少なくなり長時間の使用に適する。また、遮断時
には通常の真空遮断器と同様にアークに平行な強力な磁
界が発生し、アークが適確に遮断される。
Therefore, due to the movable electrode 32 having the flexible coil electrode 38 and the fixed electrode 31, the electrode portion generates less heat when power is supplied, making it suitable for long-term use. In addition, when breaking, a strong magnetic field parallel to the arc is generated, similar to a normal vacuum circuit breaker, and the arc is properly interrupted.

このような作用を行う真空遮断器において、可動通電軸
18と主電極35との間にはストッパー36が設けられ
ているから、コイル電極38にばね作用があっても主電
極35を固定電極の方向に過度に突出させることもなけ
ればまた可動通電軸18の方向に押込むこともない。
In a vacuum circuit breaker that performs such an action, a stopper 36 is provided between the movable energizing shaft 18 and the main electrode 35, so even if there is a spring action on the coil electrode 38, the main electrode 35 is not connected to the fixed electrode. It is neither excessively protruded in the direction nor pushed in the direction of the movable current-carrying shaft 18.

第4図および第5図は第2図および第3図における可動
通電軸18とコイル電極38とを改良して通電時の電流
容量を増大するとともに主電極35のストッパーの取付
けを容易にしたものである。
FIGS. 4 and 5 show an improved version of the movable energizing shaft 18 and coil electrode 38 in FIGS. 2 and 3 to increase the current capacity during energization and to make it easier to attach the stopper of the main electrode 35. It is.

第4図において可動通電軸40の直径はdmにされ、そ
の先端部は小径dnにされる。また、コイル電極41の
中心部には可動通電軸40の直径dmより大きな直径d
zの円盤42が設けられ、この円盤42から半径方向に
延びる4つの腕部42aが設けられている。この腕部4
2aの長さは同一にされ、それぞれ先端部から反時計方
向に延びる円弧部42bが設けられ可撓性コイルが形成
されている。前記円盤42は前記可動通電軸40の小径
dnの上端部40aに固定され、また、円弧部42bの
先端部42cは主電極43の下部外周部に固定されてい
る。
In FIG. 4, the movable current-carrying shaft 40 has a diameter of dm, and its tip has a small diameter of dn. Further, a diameter d larger than the diameter dm of the movable current-carrying shaft 40 is provided at the center of the coil electrode 41.
z disk 42 is provided, and four arm portions 42a extending radially from this disk 42 are provided. This arm 4
The lengths of the coils 2a are the same, and each of the coils 2a is provided with an arcuate portion 42b extending counterclockwise from the tip thereof to form a flexible coil. The disc 42 is fixed to the upper end 40a of the small diameter dn of the movable current-carrying shaft 40, and the tip 42c of the arc portion 42b is fixed to the lower outer circumference of the main electrode 43.

主電極35の下側には前記コイル電極41の腕部42a
の間を通って下方に延び円盤42の下部に係合されるス
トッパー43が設けられている。
The lower side of the main electrode 35 has an arm portion 42a of the coil electrode 41.
A stopper 43 is provided that extends downwardly through the space and engages the lower portion of the disc 42.

このように構成した電極によっても前記電極32と同様
に、可動通電軸40の先端部が大きな円盤42を介して
直接に主電極35に接触させることができるから、投入
時の電気抵抗を小さくすることができる。また、ストッ
パー43が主電極35の下部に取付けられ、円盤42の
下側に係合されるものであるから、取付は作業を簡単に
行うことができる。
With the electrode configured in this way, the tip of the movable current-carrying shaft 40 can be brought into direct contact with the main electrode 35 via the large disc 42, similar to the electrode 32, so that the electrical resistance at the time of injection is reduced. be able to. Further, since the stopper 43 is attached to the lower part of the main electrode 35 and engaged with the lower side of the disk 42, the attachment can be easily performed.

前記第2図および第3図あるいは第4図および第5図で
説明した可撓性コイル電極を有する真空遮断器と第7図
、第8図および第9図で説明した一般的に使用されてい
る固定のコイル電極を有する真空遮断器とを組合わせて
使用すると、開閉サージの中で最も大きい3相同時遮断
のときに発生する開閉サージを防止することができる。
A vacuum circuit breaker having a flexible coil electrode as shown in FIGS. 2 and 3 or 4 and 5, and a commonly used vacuum circuit breaker as shown in FIGS. 7, 8, and 9. When used in combination with a vacuum circuit breaker having a fixed coil electrode, it is possible to prevent switching surges that occur when three phases are simultaneously cut off, which is the largest among switching surges.

すなわち、第6図は3相の交流電源の正弦波形であり、
S相に一般的に使用されている固定のコイル電極を有す
る真空遮断器10が使用され、R相、T相に本発明の可
撓性コイル電極を有する真空遮断器30が使用されてい
る。このような真空遮断器を用いた電力の給電回路にお
いて、電力の遮断が必要なときに各相の真空遮断器の電
極が同時に引き外される。この場合、S相の真空遮断器
は電極間に遊びがないので例えば10点で開極されるが
、R相、T相の真空遮断器はコイル電極のばね作用によ
りΔTだけの遅れを生じて開極される。そのため、S相
が電流零点Toで遮断すると、T相では1/3πの遅れ
のT1点で、R相では2/3πの遅れの12点で遮断さ
れる。この遅れによりS相が再点弧により生じた高周波
電流が、R相、T相に重畳して流される。このときR相
、T相はまだ開極されていないので、このR相、T相の
アークがなく3相が同時遮断にならない。そのため電力
の遮断に苛酷なサージを発生する)相同時遮断が2/3
πの遅れで確実に防止することができる。
In other words, Figure 6 shows the sine waveform of a three-phase AC power supply,
A vacuum circuit breaker 10 having a generally used fixed coil electrode is used for the S phase, and a vacuum circuit breaker 30 having a flexible coil electrode of the present invention is used for the R and T phases. In a power supply circuit using such a vacuum circuit breaker, when power needs to be cut off, the electrodes of the vacuum circuit breakers of each phase are simultaneously tripped. In this case, the S-phase vacuum circuit breaker is opened at, for example, 10 points because there is no play between the electrodes, but the R-phase and T-phase vacuum circuit breakers are delayed by ΔT due to the spring action of the coil electrodes. Opened. Therefore, when the S phase is cut off at current zero point To, the T phase is cut off at point T1 with a delay of 1/3π, and the R phase is cut off at point 12 with a delay of 2/3π. Due to this delay, the high frequency current generated by restriking the S phase is superimposed on the R phase and T phase. At this time, the R phase and T phase are not yet opened, so there is no arc in the R phase and T phase, and the three phases are not cut off at the same time. Therefore, a severe surge is generated when power is cut off) Phase simultaneous cut-off is 2/3
This can be reliably prevented with a delay of π.

なお、上記場合において遮断電流か小さいと、電流零点
で消弧されるので小電流領域に使用される真空遮断器で
は3相同時遮断が確実に防止される。
In the above case, if the breaking current is small, the arc will be extinguished at the current zero point, so a vacuum circuit breaker used in a small current area will reliably prevent three-phase simultaneous breaking.

〔発明の効果〕〔Effect of the invention〕

本発明真空遮断器は通電軸と主電極との間に軸方向にば
ね作用を有する可撓性のコイル電極を設けたから、電極
が投入状態にあるときは通電軸と主電極とを接触させ、
遮断状態にあるときは通電軸を主電極から引離し通電軸
からコイル電極を介して主電極に電流を流すことができ
る。その結果、投入時における電極部の発熱が防止され
るとともに遮断時にはアークに強力な平行磁界を発生さ
せることができる。
In the vacuum circuit breaker of the present invention, a flexible coil electrode having a spring action in the axial direction is provided between the current-carrying shaft and the main electrode, so that when the electrode is in the closed state, the current-carrying shaft and the main electrode are in contact with each other.
When in the cutoff state, the current-carrying shaft is separated from the main electrode, allowing current to flow from the current-carrying shaft to the main electrode via the coil electrode. As a result, it is possible to prevent the electrode portion from generating heat when it is turned on, and to generate a strong parallel magnetic field in the arc when it is turned off.

また、コイル電極は通電軸と主電極とに取付けられたス
トッパーにより支持されているから、コイル電極すなわ
ち主電極が通電軸から過度に突出されたり押圧されたり
することがない。
Further, since the coil electrode is supported by a stopper attached to the current-carrying shaft and the main electrode, the coil electrode, that is, the main electrode, is not excessively protruded or pressed from the current-carrying shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明真空遮断器の概要を示す断面図、第2
図は、第1図の真空遮断器に使用されている電極の断面
図、第3図は、第2図に示す電極に使用されるコイル電
極の平面図、第4図および第5図は、第2図および第3
図に示す電極およびコイル電極の他の変形例を示す断面
図および平面図、第6図は3相交流電源の波形を示す特
性図、第7図は、従来の真空遮断器の概要を示す断面図
、第8図は、第7図の真空遮断器に使用されている電極
の断面図、第9図は、第8図に示す電極に使用されるコ
イル電極の平面図である。 10・・・真空遮断器、11・・・円筒体、12.13
・・・端板、14・・・真空容器、15.16・・・電
極、17.18・・・通電軸、19・・・ベローズ、2
0・・・ベローズカバー、21・・・シールド、22.
23・・・主電極、24.25・・・コイル電極、26
・・・円盤、26a・・・腕部、26b・・・円弧部、
27・・・補強板、30・・・真空遮断器、31.32
・・・電極、33・・・縦穴、34・・・突起、35・
・・主電極、36・・・ストッパ、37・・・突起、3
8・・・コイル電極、40・・・電極、41・・・コイ
ル電極、42・・・コイル板、43・・・主電極、44
・・・ストッパー
FIG. 1 is a sectional view showing the outline of the vacuum circuit breaker of the present invention, and FIG.
The figure is a cross-sectional view of the electrode used in the vacuum circuit breaker of Figure 1, Figure 3 is a plan view of the coil electrode used in the electrode shown in Figure 2, and Figures 4 and 5 are: Figures 2 and 3
6 is a characteristic diagram showing waveforms of a three-phase AC power supply, and FIG. 7 is a cross-sectional view showing an outline of a conventional vacuum circuit breaker. 8 is a sectional view of an electrode used in the vacuum circuit breaker of FIG. 7, and FIG. 9 is a plan view of a coil electrode used in the electrode shown in FIG. 10... Vacuum circuit breaker, 11... Cylindrical body, 12.13
... End plate, 14 ... Vacuum container, 15.16 ... Electrode, 17.18 ... Current-carrying shaft, 19 ... Bellows, 2
0... Bellows cover, 21... Shield, 22.
23... Main electrode, 24.25... Coil electrode, 26
...Disk, 26a...Arm part, 26b...Circular arc part,
27... Reinforcement plate, 30... Vacuum circuit breaker, 31.32
...electrode, 33...vertical hole, 34...protrusion, 35.
...Main electrode, 36...Stopper, 37...Protrusion, 3
8... Coil electrode, 40... Electrode, 41... Coil electrode, 42... Coil plate, 43... Main electrode, 44
···stopper

Claims (1)

【特許請求の範囲】 1、両端開口部をそれぞれ端板で閉止した絶縁性の真空
容器内に、主電極とコイル電極とからなる電極を接離自
在に配置した真空遮断器において、上記コイル電極を電
極の可動方向に対してばね作用を有する可撓性とし、そ
のコイル電極の一端を通電軸に連結するとともにコイル
電極の他端を上記主電極に連結し、電極が投入されると
きは主電極の裏面に通電軸の先端部が電気的に接触し遮
断されるときは主電極の裏面が通電軸の先端部から電気
的に引離されようにしたことを特徴とする真空遮断器。 2、前記通電軸の先端部と電極の裏面との間にはコイル
電極が過度に軸方向に移動をするの防止するストッパー
を設けるようにしたことを特徴とする請求項1記載の真
空遮断器。
[Scope of Claims] 1. A vacuum circuit breaker in which an electrode consisting of a main electrode and a coil electrode is disposed in a movable manner in an insulating vacuum container whose openings at both ends are closed with end plates, wherein the coil electrode is flexible and has a spring action in the moving direction of the electrode, and one end of the coil electrode is connected to the current-carrying shaft, and the other end of the coil electrode is connected to the main electrode, and when the electrode is inserted, the main electrode A vacuum circuit breaker characterized in that the back surface of the main electrode is electrically separated from the tip of the current-carrying shaft when the tip of the current-carrying shaft electrically contacts the back surface of the electrode and is interrupted. 2. The vacuum circuit breaker according to claim 1, wherein a stopper is provided between the tip of the current-carrying shaft and the back surface of the electrode to prevent the coil electrode from moving excessively in the axial direction. .
JP25312189A 1989-09-28 1989-09-28 Vacuum circuit breaker Pending JPH03114116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25312189A JPH03114116A (en) 1989-09-28 1989-09-28 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25312189A JPH03114116A (en) 1989-09-28 1989-09-28 Vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH03114116A true JPH03114116A (en) 1991-05-15

Family

ID=17246792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25312189A Pending JPH03114116A (en) 1989-09-28 1989-09-28 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH03114116A (en)

Similar Documents

Publication Publication Date Title
US6506992B2 (en) Vacuum interrupter for vacuum breaker
US7906742B2 (en) Vacuum interrupter chamber and contact arrangement for a vacuum circuit breaker
JP2010503161A (en) Vacuum circuit breaker
JPS62103928A (en) Vacuum circuit breaker
US20070246444A1 (en) Contact system for an electrical switching device
JP6174597B2 (en) Protective device against particles generated by electric switching arc
JP2004519836A (en) Controller for at least one vacuum breaker gap
JPS5878335A (en) Power breaker
US3372259A (en) Vacuum-type electric circuit interrupter with arc-voltage limiting means
US4267415A (en) Current limiter vacuum envelope
US4345126A (en) Vacuum interrupter with transfer-type axial magnetic field contacts
JP3431439B2 (en) Insulated switchgear
EP0076659A1 (en) A vacuum interrupter
CN111952111B (en) Double-fracture quick vacuum arc extinguish chamber
JP2002538592A (en) Vacuum shutoff chamber with ring insulator
US6762388B2 (en) Vacuum cartridge for an electrical protection apparatus such as a switch or circuit breaker
KR100331197B1 (en) Rotating Arc Interrupter for Loadbreak Switch
JPH03114116A (en) Vacuum circuit breaker
CN215118761U (en) Vacuum power switch
GB2025139A (en) Gas-blast circuit breaker
US10410813B1 (en) Vacuum switching apparatus and electrical contact therefor
US3778573A (en) Vacuum circuit interrupter having improved contact structure
US4748302A (en) Arc interrupter
EP4276864A1 (en) Vacuum interrupter
JPH087723A (en) Vacuum valve