JPH03114012A - Centering assembly device for lens - Google Patents

Centering assembly device for lens

Info

Publication number
JPH03114012A
JPH03114012A JP25352889A JP25352889A JPH03114012A JP H03114012 A JPH03114012 A JP H03114012A JP 25352889 A JP25352889 A JP 25352889A JP 25352889 A JP25352889 A JP 25352889A JP H03114012 A JPH03114012 A JP H03114012A
Authority
JP
Japan
Prior art keywords
lens
lens barrel
pin
lenses
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25352889A
Other languages
Japanese (ja)
Inventor
Ryusuke Nozawa
野澤 龍介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25352889A priority Critical patent/JPH03114012A/en
Publication of JPH03114012A publication Critical patent/JPH03114012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution, and also, to surely assemble a lens to a lens barrel in a state that optical axes of lenses coincide with each other by pushing the side face of the lens by a pin of a small diameter through plural pieces of holes made on the side of the lens barrel, and allowing optical axes of plural lenses to align with each other in the lens barrel of the lens. CONSTITUTION:By arranging plural pieces of small holes on the side face of a lens barrel 1, and pushing the side of a lens 2 by a pin 4 of a small diameter through this hole, optical axes of lenses are allowed to align with each other. That is, the eccentric quantity and the direction of the lens 2 are measured by an eccentricity measuring means 7, and by moving forward and backward the pin 4 in the direction for correcting the eccentricity from a result of its measurement, a position of the lens is determined, and in this state, and adhesive agent is hardened in a state that the lens position remains held. In such a way, optical axes of each lens can be allowed to align with each other by a simple mechanism and the assembly is facilitated, and also, it is scarcely influenced by the contraction at the time when the adhesive agent is hardened and the centering assembly can be executed with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はレンズ鏡筒内に複数のレンズの光軸を合致させ
てレンズを組込むようにしたレンズの心出し組立て装置
に関するものである。 (従来の技術) 従来、複数のレンズを1つの鏡筒に組込む場合、レンズ
の単体を心取り加工し、レンズ外径の中心軸と光軸とを
一致させ、レンズ鏡筒に、微小な隙間を持たせて嵌込ん
で接着、かしめ、ネジ締めなどによりレンズを組立てる
のが一般的な方法である。 また、レンズ相互の光軸を整合して鏡筒に組込む方法と
しては、鏡筒の内径の中心軸の位置を測定し、ベル効果
により心出し保持をしたレンズの光軸を鏡筒の中心に合
わせてレンズの組込みを行う方法は特開昭59−107
307号公報から既知であり、更に、レンズを副鏡枠に
組込み、この副鏡枠をレンズの半径方向に延在する複数
本の調整捧によって光軸の調整をした後に主鏡枠に組込
む方法は実開昭59−63316号公報等に提案されて
いる。 光軸を合致させた状態でレンズを組付け、接着剤で固定
するように1〜たレンズの組付は方法1;! 特開昭5
6−92511号公報に記載されている。 また、あらかじめ、レンズ鏡筒内に、硬化前には半流動
状態、ま1.−は容易に塑性変形し、硬化剤の添加や紫
外線の照射などで硬化1−7得る接着剤を被着し、この
接着剤により光軸が調整された1ノンズの仮保持をした
後これを所定の方法により硬化させる方法も特開昭59
−228615号公報に提案されている。 (発明が解決]7ようとする課題) 従来σ月ノンズの心取りを[、て鏡筒に嵌込む方式では
、1/ンズの挿入を容易とし組立て易くするために、鏡
筒とレンズとのクリアランスを大きく取ると、レンズ同
志の光軸合わせの精度が落ちて17まう。逆にクリアラ
ンスを狭ばめると組立てが非常に困難となり、自動化も
困難となる。また1ノンズと鏡筒との慴動により鏡筒内
にゴミ等が混入する原因となる。 また、鏡筒内に鏡筒の軸を測定する手段を挿入し、ベル
方式により1/ンズを心出I7かつ保持して鏡筒の中心
軸に−・致させ挿入する方式では、鏡筒の中心軸測定器
を兼ねた1ノンズホルダの構造が複雑となり、レンズの
径が小さくなると、鏡筒内に挿入できる大きさで小型化
するのが困難となる。。 更に、副鏡枠を用いる方法は鏡枠の構造が複雑で大きく
重量が嵩む、Jン)になる欠点があった。また接着剤で
、仮保持をする方法では、接着剤の硬化に伴う収縮なと
て光軸がずれて17まう等の欠点もあった。 本発明は、構成が簡単で、j−から、確実にレンズの光
軸が一致I7た状態で1メンズを鏡筒に組付は得るよう
に1、た上述(、た種類のレンズの心出し組立て装置を
捉供することを目的とする。 (課題を解決するための手段および作用)本発明lノン
ズの6出17組立て装置はレンズ鏡筒内に複数のレンズ
の光軸を合致させて1ノンズを組込む装置であって、レ
ンズ鏡筒を回転可能に支持する鏡筒保持機構と、この鏡
筒保持機構全体を上下方向に移動せしめ得るステージと
、鏡筒側面にあけた孔から鏡筒内の1/ンズの側面を突
き得るようにした複数個のピンと、このピンを軸方向に
移動せ(7める移動機構と、レンズの光軸の偏心を測定
する偏心測定手段と、鏡筒の側面にあけた孔の位置を検
出するための孔検出手段と、レンズを鏡筒に接着するた
めの接着剤塗付装置と、−に記偏心測定手段および上記
孔検出手段からの信号を処理して上記各機構の位置を制
御する制御装置とを備えることを特徴とする。 第1図は本発明レンズの心出し組立て装置の概念図を示
すものである。 従来の装置ではレンズの心取り精度と、レンズ外径と、
鏡筒内径とによって心出
(Field of Industrial Application) The present invention relates to a lens centering and assembling device for aligning the optical axes of a plurality of lenses and assembling the lenses into a lens barrel. (Prior art) Conventionally, when multiple lenses are assembled into one lens barrel, the single lens is centered, the center axis of the lens outer diameter is aligned with the optical axis, and a minute gap is created in the lens barrel. A common method is to assemble the lens by holding it in place, then gluing it, caulking it, tightening screws, etc. In addition, as a method of aligning the optical axes of the lenses with each other and assembling them into the lens barrel, measure the position of the center axis of the inner diameter of the lens barrel, and align the optical axis of the lens, which is centered and maintained using the Bell effect, at the center of the lens barrel. The method of assembling the lens at the same time is described in Japanese Patent Application Laid-Open No. 107-1983.
This method is known from Japanese Patent No. 307, and further includes a method in which a lens is assembled into a secondary lens frame, and the secondary lens frame is assembled into a primary lens frame after adjusting the optical axis using a plurality of adjusting rods extending in the radial direction of the lens. has been proposed in Japanese Utility Model Application Publication No. 59-63316. Method 1 is how to assemble the lens by aligning the optical axes and fixing it with adhesive. Japanese Patent Application Publication No. 5
It is described in Japanese Patent No. 6-92511. In addition, the lens barrel is placed in a semi-fluid state before curing. - is easily plastically deformed and can be hardened to 1-7 by adding a hardening agent or irradiating with ultraviolet rays, etc., and after temporarily holding the 1-non with the optical axis adjusted by this adhesive, this is A method of curing by a prescribed method is also disclosed in JP-A-59
It is proposed in the publication No.-228615. (Problems to be Solved by the Invention 7) In the conventional method of fitting the lens into the lens barrel, in order to facilitate the insertion of the lens and the assembly, the alignment between the lens barrel and lens was changed. If the clearance is large, the accuracy of optical axis alignment between the lenses will decrease, resulting in an increase of 17 points. On the other hand, if the clearance is narrowed, assembly becomes extremely difficult and automation becomes difficult. Furthermore, the sliding movement between the 1-nons and the lens barrel causes dust and the like to get mixed into the lens barrel. In addition, in the method of inserting a means for measuring the axis of the lens barrel into the lens barrel, and using the bell method to hold the 1/2 lens at center I7 and aligning it with the center axis of the lens barrel, The structure of the 1-nons holder, which also serves as a central axis measuring device, becomes complicated, and when the diameter of the lens becomes small, it becomes difficult to miniaturize the lens holder to a size that can be inserted into the lens barrel. . Furthermore, the method of using a secondary lens frame has the disadvantage that the structure of the lens frame is complicated, large and heavy. In addition, the method of temporarily holding the object with an adhesive has the disadvantage that the optical axis may shift due to shrinkage caused by the curing of the adhesive. The present invention has a simple configuration, and the centering of the above-mentioned types of lenses can be achieved by assembling the lens into the lens barrel while ensuring that the optical axes of the lenses are aligned. An object of the present invention is to provide an assembly device for assembling a lens with 6 lenses and 17 lenses according to the present invention. This device incorporates a lens barrel holding mechanism that rotatably supports the lens barrel, a stage that can move the entire lens barrel holding mechanism in the vertical direction, and a hole drilled in the side of the lens barrel that allows the inside of the lens barrel to be A plurality of pins capable of touching the side surface of the lens, a moving mechanism for moving the pins in the axial direction, an eccentricity measuring means for measuring the eccentricity of the optical axis of the lens, and a side surface of the lens barrel. a hole detection means for detecting the position of the hole drilled in the lens; an adhesive application device for bonding the lens to the lens barrel; The present invention is characterized by comprising a control device that controls the positions of each of the above-mentioned mechanisms. Fig. 1 shows a conceptual diagram of the lens centering and assembly device of the present invention. In the conventional device, the centering accuracy of the lens , the lens outer diameter,
Centered by the inner diameter of the lens barrel

【7をするようにしていたのに
対し、本発明装置では鏡筒1の側面に小さな孔を複数個
配設j〜、この孔を通し小径のピン4でレンズ2の側面
を押すことにより、1ノンズの光軸を合致さぜる。即ち
、偏心測定手段7によりレンズ2の偏心量と方向とを測
定し、その測定結果より、偏心を修正する方向にピン4
を前後させてレンズの位置を決め、この状態でレンズ位
置を保持′したまま接着剤を硬化させるようにする。 本発明によれば、レンズの心取り精度にたよる必要はな
く、心取りされていないレンズであっても確実に光軸を
そろえて組立てることができる。 また、全ての作業を鏡筒の外から行うため、レンズ鏡筒
が著しく小さなものであっても、そのまま装置で無理な
く対応することができ、またレンズ外径と、鏡筒1.の
内径のクリアランスも比較的大きくとれるので、自動組
立てが極めて容易となる等の利点がある。 更に、レンズはピン4によってその位置を保持したまま
の状態で接着剤を硬化するので硬化収縮の影響も受ける
ことはない、。 (実施例) 以下に、図面につき本発明の詳細な説明する。 第2図は本発明レンズの心出し組立て装置の−・実施例
の全体構成を示すものである。 本発明において、レンズ12を組込むための鏡筒11は
その内側に1ノンズを保持するための段差を設ける。こ
の鏡筒11の内周はlノノズ12の外周と適度なりリア
ランスをもって嵌合し得るように構成する。又、この鏡
筒11は、鏡筒保持装置13によって鏡筒11の外径の
中心軸とスピンドル14の回転軸がほぼ一致するように
保持する。鏡筒11および鏡筒保持装置13は精密なス
ピンドル14によって回転自在に保持しベルト15を介
してモータ16によって任意の方向および位置に回転し
得るようにする。又、17は回転角度検出装置である。 更に、構成部材11〜17は一体に構成して、スピンド
ル14の回転軸方向に移動可能なステージ25に載置す
る。ステージ25は送りネジ26およびベルト27を介
してモータ28に連結し、モータ28を回転することに
よりスピンドルが軸方向に移動し得るようにする。モー
タ16と、回転角検出装置17と、孔検出センサ20と
によって自動的に鏡筒11の孔を検出し得るようにする
。 ピン駆動ユニット18(後に詳述する)はスピンドル1
4の回転軸に直角な方向に移動可能とし、スピンドル回
転軸に近付いた際(以下「前進位置」と称する)の停止
する位置を微調整することができる。ピン駆動ユニット
18上に、微動機構(後に詳述する)を介してピン19
を設け、このピン19を微小長さずつ繰り出し得るよう
にする。 孔検出センサ20は光反射式または触針式とし、これに
より鏡筒11の側面の孔の位置を検出し得るようにする
。この孔検出センサ20もスピンドル回転軸に対し直角
方向に移動可能とするが、鏡筒11の外径が一定である
場合には移動できなくてもよい。 レンズ押えユニット(後で詳述する)21によってレン
ズ12が鏡筒11の段差の部分から浮き上がるのを防止
し得るようにするが、これはレンズの自重が十分大きく
浮き上がる心配がない場合には必要ない。このレンズ押
えユニット21は、これを鏡枠11の着脱およびレンズ
12の挿入の際障害にならない所へ移動するために、ス
ピンドル回転軸方向とこれに垂直な方向とに移動可能と
する。レンズ12と鏡筒11との接着は接着剤塗布装置
22によって行う。 偏心測定器23によってレンズの曲率中心を観察してそ
の偏心量を検出する。紫外線照射装置24によって心出
し保持されたレンズを固定するための紫外線硬化型接着
剤を硬化する。 第3図はピン駆動ユニット18の構成を詳細に示す。ピ
ン19はステージ30によって軸方向に移動可能に保持
しバネ31によりピン19が引込む方向に付勢する。送
りネジ32はプーリ33および34とベルト35とを介
してモータ36に結合し、モータ36が回転することに
よりピン19を前後に微動し得るようにする。 ステージ37は、ピンの微動機構全体をピンの軸方向に
移動可能に支持するとともにエアシリンダまたはモータ
(図示せず)により移動させる構造とする。又、ストッ
パ38によってステージ37のスピンドル側の停止位置
を決めるとともにこの停止位置を精度よく調整し得るよ
うにする。 第4a図はレンズ押えユニット21の構成を詳細に示す
。本例でも11は鏡筒、12はレンズとする。 本例において、中空円筒40はその外径を鏡筒11の内
径よりも僅かに小さくし、3本のピン41によってリン
グ42に固定する。第4b図は円筒40、ピン41およ
びリング42より成るレンズ押え部分の構成を斜視図で
示す。この図から明らかなように、円筒40はレンズを
押えながら、しかもレンズの偏心を測定する光路を妨げ
ないように中空としている。 また、リング42はその自重によってレンズを押えるよ
うに構成する。 更に、アーム43はシリンダ44によって上下方向に移
動し得るように構成する。ステージ45はエアシリンダ
またはモータ(図示せず)などによって矢印の方向に移
動可能とする。レンズの挿入などのため、レンズ押えが
邪魔となる場合には、シリンダ44でレンズ押えを持ち
上げ、ステージ45を後方にさげて、レンズ押えを迫避
させることができるように構成する。 レンズ押えによってレンズを押えている(第4a図)の
状態では、リング42とアーム43とは離間しており、
レンズ押え部分40〜42はレンズ12とともに回転し
得るように構成する。 第5図は本発明レンズの心出し組立て装置の全体の動作
を制御するための制御系のブロック図である。 本発明においては、1ノンズの心出12組立て装置の全
体の心出しおよび組立て工程を自動的に行うための制御
装置と1〜でコンビコータ(CPU) 48を用いるよ
うにする。 以下に、第2図の装置を参照l−で本発明レンズの心出
15組立て装置の動作を説明する。 まず初めに、鏡筒11を鏡筒保持装置13に装着する。 次に、モータ28を回転させてスピンドル14を上下方
向に移動させ、孔検出センサ20の高さL鏡筒11の孔
の高さが一致するように上下位置を調整しモータ1Gに
よりスピンドルを回転;−1鏡筒11の孔の位置を孔検
出上ンサ20と回転角検出装置17により検出する。 次に、検出された鏡筒11の孔の位置を避けて、接着剤
塗布装置22により鏡筒11のレンズ保持部分に紫外線
硬化型接着剤を塗布する。 レンズ12を鏡筒11に落し込み、次いでレンズ押えユ
ニット21によりレンズを」二から押さえる。 スピンドル14をモータIGによって回転し、偏心測定
装置23によりスピンドルの回転軸に対するレンズの偏
心量と方向とを測定する。 次に、モータ16によりスピンドル14を回転し、既に
検出されている鏡筒1】の孔と、ピン19の位置とを合
致させ、孔にピン19を挿入し得るようにする。 この状態でピン駆動ユニット18のスピンドル37(第
3図)を前進さぜ、ピン19がレンズ12に触れる直前
で停止させるようにする。次に、偏心測定装置23によ
って1/ンズの光軸位置を観察しながらピン19を1−
本ずつ微動機構により前進させて光軸のスポット像が動
くのを検出し、ピン19がレンズ1−2の側面に触れた
位置を検出17た後ピンの微動を停止させる。 スピンドル14の回転軸と鏡筒11の中心軸とは互いに
一致するように保持1.ているため、各ピン19を前後
に微動させるだけで、レンズ12の光軸がスピンドル1
4の回転軸と一致するようにレンズの位置を調整するこ
とができる。 ピン19とレンズ12とあ接触は、ピン19側に電圧素
子やひずみゲージ等の圧力センサ等を設置l−て検出す
ることもできる。また、鏡枠11の中心軸とスピンドル
14の回転軸とを一致させて保持し得ない場合には、レ
ンズ12の裏面の曲率中心がベル効果により鏡枠の中心
軸上にあることから、レンズ12の光軸スポット・を偏
心測定装置23で観察し、そのスポット位置に表面のス
ポット位置を合致させることによっても測定を行うこと
ができる。 このようにして、レンズ12の光軸が鏡枠11の中心軸
と一致した状態をピン19により保持したままで接着剤
の塗布を行い、次いで紫外線照射装置24による紫外線
の照射により接着剤を硬化させてレンズ12を固定する
。 最後に、ピン19を鏡筒から抜きレンズ押え21をレン
ズから離す。 この手順を、鏡筒に組込むレンズの枚数骨だけ繰返すこ
とによって鏡筒の中心軸にレンズの光軸が正確に一致1
−たレンズ群を組立てることができる。 (第2実施例) 次に、本発明レンズの心出し組立て装置の第2実施例を
第6図につき説明する。本例では第2図に示す第1実施
例の構成に加え、スピンドルの回転軸に対する鏡筒の偏
心を測定する手段を設ける。 上述した第1.実施例ではスピンドル回転軸を基準にし
て、レンズの光軸の合致すべき位置を決めたが、このか
わりに、本例では鏡筒の外径の振れを接触または非接触
の手段により測定し、その測定値から鏡筒の中心を求め
るようにする。 接触式の外径振れ測定装置を第6a図に示12、非接触
式(即ち、光量検出式)の外径振れ測定装置を第6b図
に示す。 本例において、61は接触式の微小変位測定手段、62
は信号変換のためのアンプを示し、63は非接触の振れ
検出装置の投光器、64は同じくその受光器、62は同
じ(信号変換のためのアンプを示し、これらを図示のよ
うに構成配置する。このアンプ62からの出力を前述し
たように制御装置に供給し、これにより鏡筒の中心軸の
スピンドル回転軸に対する偏心量と方向とを測定し、鏡
筒の中心軸にレンズの光軸を合致させるようにピンの繰
出し量を制御する。 かように構成した第2実施例においては、スピンドルの
回転軸と鏡筒の中心軸とがずれていても、鏡筒の中心軸
にレンズの光軸を正確に一致させることができる利点が
ある。 (発明の効果) 上述した所から明らかなように、本発明によれば、簡単
な機構でレンズ同志の光軸を合致させることができ、そ
の組立てを極めて容易に行うことができる。また、レン
ズと鏡筒とのクリアランスを大きくとることができるた
め、自動組立て等にも極めて好適である。 また、レンズは、光軸が合致した状態に保持したまま接
着剤を塗布し硬化させるのため、接着剤が硬化する際の
収縮の影響も受けに(く、従って高精度な心出し組立て
を行うことができる。
[7] In contrast, in the device of the present invention, a plurality of small holes are provided on the side surface of the lens barrel 1, and by passing through these holes and pushing the side surface of the lens 2 with a small diameter pin 4, 1 Align the optical axes of the nons. That is, the eccentricity measuring means 7 measures the amount and direction of eccentricity of the lens 2, and based on the measurement results, the pin 4 is moved in the direction to correct the eccentricity.
Move the lens back and forth to determine the position of the lens, and in this state, while holding the lens position, allow the adhesive to harden. According to the present invention, there is no need to rely on the accuracy of lens centering, and even lenses that are not centered can be assembled with their optical axes reliably aligned. In addition, since all work is done from outside the lens barrel, even if the lens barrel is extremely small, it can be easily handled with the equipment. Since the inner diameter clearance can be relatively large, there are advantages such as automatic assembly being extremely easy. Furthermore, since the adhesive is cured while the lens is held in position by the pin 4, it is not affected by curing shrinkage. (Example) Below, the present invention will be described in detail with reference to the drawings. FIG. 2 shows the overall structure of an embodiment of the lens centering and assembly apparatus of the present invention. In the present invention, a lens barrel 11 for incorporating a lens 12 is provided with a step inside thereof for holding a lens. The inner periphery of this lens barrel 11 is configured so that it can fit with the outer periphery of the nozzle 12 with a suitable clearance. Further, this lens barrel 11 is held by a lens barrel holding device 13 so that the center axis of the outer diameter of the lens barrel 11 and the rotational axis of the spindle 14 substantially coincide with each other. The lens barrel 11 and lens barrel holding device 13 are rotatably held by a precision spindle 14 and can be rotated in any direction and position by a motor 16 via a belt 15. Further, 17 is a rotation angle detection device. Furthermore, the constituent members 11 to 17 are integrally constructed and placed on a stage 25 that is movable in the direction of the rotation axis of the spindle 14. The stage 25 is connected to a motor 28 via a lead screw 26 and a belt 27, and rotation of the motor 28 allows the spindle to move in the axial direction. The hole in the lens barrel 11 can be automatically detected by the motor 16, the rotation angle detection device 17, and the hole detection sensor 20. The pin drive unit 18 (described in detail later) is connected to the spindle 1
It is possible to move in a direction perpendicular to the rotation axis of No. 4, and the position at which it stops when it approaches the spindle rotation axis (hereinafter referred to as the "advance position") can be finely adjusted. A pin 19 is mounted on the pin drive unit 18 via a fine movement mechanism (described in detail later).
is provided so that this pin 19 can be drawn out minute by minute. The hole detection sensor 20 is of a light reflection type or a stylus type, so that the position of the hole on the side surface of the lens barrel 11 can be detected. This hole detection sensor 20 is also movable in a direction perpendicular to the spindle rotation axis, but does not need to be movable if the outer diameter of the lens barrel 11 is constant. A lens holding unit (described in detail later) 21 is used to prevent the lens 12 from lifting off the stepped portion of the lens barrel 11, but this is necessary if the lens's own weight is large enough to prevent it from lifting. do not have. This lens holding unit 21 is movable in the direction of the spindle rotation axis and in a direction perpendicular thereto in order to move it to a place where it will not become an obstacle when attaching and detaching the lens frame 11 and inserting the lens 12. The lens 12 and the lens barrel 11 are bonded together by an adhesive coating device 22. The eccentricity measuring device 23 observes the center of curvature of the lens and detects the amount of eccentricity. The ultraviolet curing adhesive for fixing the lens centered and held by the ultraviolet irradiation device 24 is cured. FIG. 3 shows the configuration of the pin drive unit 18 in detail. The pin 19 is held movably in the axial direction by a stage 30, and is biased by a spring 31 in a direction in which the pin 19 is retracted. The feed screw 32 is connected to a motor 36 via pulleys 33 and 34 and a belt 35, so that the rotation of the motor 36 allows the pin 19 to move slightly back and forth. The stage 37 supports the entire pin fine movement mechanism so as to be movable in the axial direction of the pin, and is moved by an air cylinder or a motor (not shown). Further, the stopper 38 determines the stop position of the stage 37 on the spindle side, and allows this stop position to be adjusted with high precision. FIG. 4a shows the structure of the lens holding unit 21 in detail. In this example as well, 11 is a lens barrel, and 12 is a lens. In this example, the hollow cylinder 40 has an outer diameter slightly smaller than the inner diameter of the lens barrel 11, and is fixed to the ring 42 by three pins 41. FIG. 4b shows a perspective view of the structure of a lens holding portion consisting of a cylinder 40, a pin 41 and a ring 42. As is clear from this figure, the cylinder 40 is hollow so as to hold the lens while not interfering with the optical path for measuring the eccentricity of the lens. Further, the ring 42 is configured to press the lens with its own weight. Further, the arm 43 is configured to be movable in the vertical direction by a cylinder 44. The stage 45 is movable in the direction of the arrow by an air cylinder or a motor (not shown). When the lens holder becomes an obstacle for inserting a lens, etc., the lens holder can be lifted by a cylinder 44, and the stage 45 is lowered rearward, so that the lens holder can be retracted. When the lens is held down by the lens holder (Fig. 4a), the ring 42 and the arm 43 are separated,
The lens holding parts 40 to 42 are configured to be able to rotate together with the lens 12. FIG. 5 is a block diagram of a control system for controlling the overall operation of the lens centering and assembly apparatus of the present invention. In the present invention, a combi coater (CPU) 48 is used as a controller and a controller for automatically performing the entire centering and assembling process of the 1 nons centering 12 assembly apparatus. The operation of the lens centering 15 assembly apparatus of the present invention will be described below with reference to the apparatus shown in FIG. First, the lens barrel 11 is attached to the lens barrel holding device 13. Next, the motor 28 is rotated to move the spindle 14 in the vertical direction, and the vertical position is adjusted so that the height of the hole detection sensor 20 matches the height of the hole in the lens barrel 11, and the spindle is rotated by the motor 1G. ;-1 The position of the hole in the lens barrel 11 is detected by the hole detection sensor 20 and the rotation angle detection device 17. Next, an ultraviolet curable adhesive is applied to the lens holding portion of the lens barrel 11 by the adhesive coating device 22, avoiding the position of the detected hole in the lens barrel 11. The lens 12 is dropped into the lens barrel 11, and then the lens is held down from the bottom by the lens holding unit 21. The spindle 14 is rotated by the motor IG, and the eccentricity measuring device 23 measures the amount and direction of eccentricity of the lens with respect to the axis of rotation of the spindle. Next, the spindle 14 is rotated by the motor 16 to match the already detected hole in the lens barrel 1 with the position of the pin 19, so that the pin 19 can be inserted into the hole. In this state, the spindle 37 (FIG. 3) of the pin drive unit 18 is moved forward until it is stopped just before the pin 19 touches the lens 12. Next, while observing the optical axis position of 1/lens using the eccentricity measuring device 23, the pin 19 is
The lens is moved forward one by one by a fine movement mechanism to detect movement of the spot image on the optical axis, and after detecting 17 the position where the pin 19 touches the side surface of the lens 1-2, the fine movement of the pin is stopped. The rotation axis of the spindle 14 and the central axis of the lens barrel 11 are held so that they coincide with each other.1. Therefore, by simply slightly moving each pin 19 back and forth, the optical axis of the lens 12 can be aligned with the spindle 1.
The position of the lens can be adjusted to match the rotation axis of 4. Contact between the pin 19 and the lens 12 can also be detected by installing a pressure sensor such as a voltage element or a strain gauge on the pin 19 side. Furthermore, if the central axis of the lens frame 11 and the rotational axis of the spindle 14 cannot be held in alignment, the center of curvature of the back surface of the lens 12 is on the central axis of the lens frame due to the Bell effect, so Measurement can also be performed by observing the 12 optical axis spots with the eccentricity measuring device 23 and matching the spot position on the surface with the spot position. In this way, the adhesive is applied while the optical axis of the lens 12 is held in alignment with the central axis of the lens frame 11 by the pin 19, and then the adhesive is cured by irradiation with ultraviolet rays by the ultraviolet irradiation device 24. to fix the lens 12. Finally, remove the pin 19 from the lens barrel and release the lens holder 21 from the lens. By repeating this procedure for the number of lenses to be assembled into the lens barrel, the optical axis of the lens is accurately aligned with the center axis of the lens barrel.
- It is possible to assemble a lens group. (Second Embodiment) Next, a second embodiment of the lens centering and assembly apparatus of the present invention will be described with reference to FIG. In this example, in addition to the configuration of the first example shown in FIG. 2, means for measuring the eccentricity of the lens barrel with respect to the rotation axis of the spindle is provided. First mentioned above. In the example, the position where the optical axis of the lens should match was determined based on the spindle rotation axis, but instead, in this example, the deflection of the outer diameter of the lens barrel was measured by contact or non-contact means. The center of the lens barrel is determined from the measured value. A contact type outer diameter runout measuring device is shown in FIG. 6a, and a non-contact type (that is, a light amount detection type) outer diameter runout measuring device is shown in FIG. 6b. In this example, 61 is a contact type minute displacement measuring means, 62
indicates an amplifier for signal conversion, 63 is a light emitter of a non-contact shake detection device, 64 is a light receiver thereof, and 62 is the same (indicates an amplifier for signal conversion, and these are configured and arranged as shown in the figure). The output from this amplifier 62 is supplied to the control device as described above, thereby measuring the amount and direction of eccentricity of the central axis of the lens barrel with respect to the spindle rotation axis, and aligning the optical axis of the lens with the central axis of the lens barrel. In the second embodiment configured as described above, even if the axis of rotation of the spindle and the center axis of the lens barrel are misaligned, the light of the lens is aligned with the center axis of the lens barrel. There is an advantage that the axes can be aligned accurately. (Effects of the Invention) As is clear from the above, according to the present invention, the optical axes of the lenses can be aligned with each other with a simple mechanism. It is extremely easy to assemble.Also, since the clearance between the lens and the lens barrel can be large, it is extremely suitable for automatic assembly, etc.In addition, the lens is held in a state where the optical axes are aligned. Since the adhesive is applied and cured while the adhesive is still in place, it is not affected by shrinkage when the adhesive hardens, and therefore, highly accurate centering and assembly can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明レンズの心出し組立て装置の概念的構成
を示す説明図、 第2図は本発明レンズの心出し組立て装置の第1実施例
の構成を示す斜視図、 第3図は本発明レンズの心出し組立て装置のびん駆動装
置の構成を示す側面図、 第4a図は同じくレンズ押え装置の構成を示す側面図、 第4b図はレンズ押え部材を示す斜視図、第5図は本発
明レンズの心出し組立て装置の動作の制御を示すブロッ
ク図、 第6a図は接触式外径振れ測定装置の構成を示す斜視図
、 第6b図は非接触式外径振れ測定装置の構成を示す斜視
図である。 鏡筒 レンズ 鏡筒保持装置 ピン 孔検出手段 接着剤塗布手段 偏心測定装置 鏡筒 レンズ 鏡筒保持装置 スピンドル ベルト モータ 回転角検出装置 ピン駆動ユニット ピン 孔検出センサ レンズ押すエユニツ 接着剤塗付装置 偏心測定装置 紫外線照射装置 ステージ 送りネジ ベルト モータ ステージ バネ 送りネジ プーリ プーリ ベルト モータ ステージ ストッパ 円筒 ピン リング アーム シリンダ ステージ PU 接触式微小変位測定手段 アンプ 投光器 受光器 第3図 第4図 ar 第4図 (b) 第5図 第6図 ( ) ( ) 平成2年6月26日
FIG. 1 is an explanatory diagram showing the conceptual configuration of the lens centering and assembling device of the present invention, FIG. 2 is a perspective view showing the configuration of the first embodiment of the lens centering and assembling device of the present invention, and FIG. Fig. 4a is a side view showing the structure of the bottle drive device of the invention lens centering and assembling device; Fig. 4a is a side view showing the structure of the lens holding device; Fig. 4b is a perspective view showing the lens holding member; Fig. 5 is the main body. A block diagram showing the control of the operation of the inventive lens centering and assembling device, Fig. 6a is a perspective view showing the configuration of the contact type outer diameter runout measuring device, and Fig. 6b shows the configuration of the non-contact type outer diameter runout measuring device. FIG. Lens barrel holding device Pin hole detection means Adhesive application means Eccentricity measuring device Lens barrel holding device Spindle belt motor rotation angle detection device Pin drive unit Pin hole detection sensor Lens pressing unit Adhesive application device Eccentricity measuring device Ultraviolet irradiation device stage feed screw belt motor stage spring feed screw pulley pulley belt motor stage stopper cylindrical pin ring arm cylinder stage PU contact type minute displacement measuring means amplifier emitter light receiver Fig. 3 Fig. 4 ar Fig. 4 (b) Fig. 5 Figure 6 ( ) ( ) June 26, 1990

Claims (1)

【特許請求の範囲】[Claims] 1、レンズ鏡筒内に複数のレンズの光軸を合致させてレ
ンズを組込む装置であって、レンズ鏡筒を回転可能に支
持する鏡筒保持機構と、この鏡筒保持機構全体を上下方
向に移動せしめ得るステージと、鏡筒側面にあけた孔か
ら鏡筒内のレンズの側面を突き得るようにした複数個の
ピンと、このピンを軸方向に移動せしめる移動機構と、
レンズの光軸の偏心を測定する偏心測定手段と、鏡筒の
側面にあけた孔の位置を検出するための孔検出手段と、
レンズを鏡筒に接着するための接着剤塗付装置と、上記
偏心測定手段および上記孔検出手段からの信号を処理し
て上記各機構の位置を制御する制御装置とを備えること
を特徴とするレンズの心出し組立て装置。
1. A device for assembling lenses by aligning the optical axes of multiple lenses in a lens barrel, which includes a lens barrel holding mechanism that rotatably supports the lens barrel, and a lens barrel holding mechanism that supports the entire lens barrel in the vertical direction. a movable stage; a plurality of pins capable of protruding the side surface of a lens in the lens barrel through holes drilled in the side surface of the lens barrel; and a moving mechanism that moves the pins in the axial direction;
an eccentricity measuring means for measuring the eccentricity of the optical axis of the lens; a hole detecting means for detecting the position of the hole drilled in the side surface of the lens barrel;
The present invention is characterized by comprising an adhesive applicator for adhering the lens to the lens barrel, and a control device for processing signals from the eccentricity measuring means and the hole detecting means to control the positions of the respective mechanisms. Lens centering and assembly device.
JP25352889A 1989-09-28 1989-09-28 Centering assembly device for lens Pending JPH03114012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25352889A JPH03114012A (en) 1989-09-28 1989-09-28 Centering assembly device for lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25352889A JPH03114012A (en) 1989-09-28 1989-09-28 Centering assembly device for lens

Publications (1)

Publication Number Publication Date
JPH03114012A true JPH03114012A (en) 1991-05-15

Family

ID=17252623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25352889A Pending JPH03114012A (en) 1989-09-28 1989-09-28 Centering assembly device for lens

Country Status (1)

Country Link
JP (1) JPH03114012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250964A (en) * 2005-03-07 2006-09-21 Ricoh Co Ltd Eccentricity adjusting assembly component, eccentricity adjusting assembly method, eccentricity adjusting assembly device and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250964A (en) * 2005-03-07 2006-09-21 Ricoh Co Ltd Eccentricity adjusting assembly component, eccentricity adjusting assembly method, eccentricity adjusting assembly device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2006330210A (en) Method and device for collimating lens
JPH0425014A (en) Marginal aligner
CN110676187B (en) Device and method for accurately measuring center of photosensitive surface of photoelectric detector
US5229811A (en) Apparatus for exposing peripheral portion of substrate
JPH03114012A (en) Centering assembly device for lens
JP3430768B2 (en) Alignment adjustment device and adjustment method
KR20160027327A (en) Device for detecting lens position of camera module
JPH01277731A (en) Method and apparatus for measuring eccentricity of waveguide buried in cylindrical connector pin
JPH06320376A (en) Method and device for centering lens
JP4574831B2 (en) Lens frame centering machine
JPH06347676A (en) Fixing device for lens aligning frame
EP0461932B1 (en) Apparatus for exposing peripheral portion of substrate
US6676303B2 (en) System for assembling WDM filter assembly for optical amplifier
JP3459853B2 (en) Medium thickness measuring device for small diameter lens
JP2000186976A (en) Eccentricity measuring method and eccentricity measuring device for optical lens
CN217846738U (en) Lens aligning device and lens testing equipment
JPS6237322B2 (en)
JPH09311088A (en) Dynamic balance adjuster
CN116659336A (en) Hinge beam earhole detection system of hexahedral top press
JPH05203854A (en) Cemented lens alignment device
JP3288468B2 (en) Automatic eccentricity measurement adjustment device
JPH09318896A (en) Dynamic balance adjustment device
JPH0996703A (en) Joint lens centering device
JP3333245B2 (en) Lens alignment machine and lens alignment method
JP3283184B2 (en) Dynamic balance adjustment device