JPH0311318A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0311318A
JPH0311318A JP1147260A JP14726089A JPH0311318A JP H0311318 A JPH0311318 A JP H0311318A JP 1147260 A JP1147260 A JP 1147260A JP 14726089 A JP14726089 A JP 14726089A JP H0311318 A JPH0311318 A JP H0311318A
Authority
JP
Japan
Prior art keywords
electrode
picture element
thin film
liquid crystal
lead electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1147260A
Other languages
Japanese (ja)
Inventor
Eiji Mizobata
英司 溝端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1147260A priority Critical patent/JPH0311318A/en
Publication of JPH0311318A publication Critical patent/JPH0311318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enlarge a picture element electrode to raise the aperture rate of the picture element electrode by producing a nonlinear resistance layer on or under a lead electrode and providing a picture element connection electrode on the face opposite to the lead electrode of the nonlinear resistance layer and connecting the picture element connection electrode and the picture element electrode. CONSTITUTION:A thin film two-terminal element is arranged on a lead electrode 2. With respect to the structure of the thin film two-terminal element, the lead electrode 2 is used as the lower electrode and a nonlinear resistance layer 3 is so formed that the lead electrode 2 is covered with it. A picture element connection electrode 4 is formed as the upper electrode so as to intersect orthogonally with the lead electrode and connected to a picture element elec trode 5. Since the thin film two-terminal element and the picture element elec trode are connected in series and the thin film two-terminal element is provided on the lead electrode 2, the part where the thin film two-terminal element con ventionally occupies can be used for the picture element electrode, as well and the picture element electrode 5 is enlarged. Thus, the numerical aperture of the picture element electrode is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非線形抵抗素子を用いた薄膜二端子素子型ア
クティブマトリクス液晶表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film two-terminal element type active matrix liquid crystal display element using a nonlinear resistance element.

(従来の技術) 近年ツィステッド・ネマチック型(TN型)を中心とし
た液晶表示素子(LCD)の応用が発展し、腕時計や電
卓の分野で大量に用いられている。それに加え、近年、
文字・図形等の任意の表示が可能なマトリクス型も使わ
れ始めている。画素をマトリクス状に配したこのマトリ
クス型LCDの応用分野を広げるためには、表示容量の
増大が必要である。しかし、従来のLCDの電圧−透過
率変化特性の立ち上がりはあまり急峻ではないので、表
示容量を増加させるためにマルチプレックス駆動の走査
本数を増加させると、選択画素と非選択画素との各々に
かかる実効電圧比は低下し、選択画素の透過率低下と非
選択画素の透過率増加というクロス)−りが生じる。(
偏光板をパラレルに配置したノーマノプラックの場合)
。その結果、表示コントラストが著しく低下し、ある程
度のコントラストが得られる視野角も狭くなり、従来の
LCDでは、走査本数は60本ぐらいが高画質の限界で
ある。最近、スーパー・ツィステッド・ネマチック型(
STN型)といわれるものがあるが、コントラストはT
N型よりも優れているものの応答が遅いという大きな欠
点かある。
(Prior Art) In recent years, applications of liquid crystal display devices (LCDs), mainly twisted nematic type (TN type), have been developed and are being used in large quantities in the fields of wristwatches and calculators. In addition, in recent years,
Matrix types, which can display arbitrary characters, figures, etc., are also beginning to be used. In order to expand the field of application of this matrix type LCD in which pixels are arranged in a matrix, it is necessary to increase the display capacity. However, since the rise of the voltage-transmittance change characteristic of conventional LCDs is not very steep, when the number of scans in multiplex drive is increased to increase the display capacity, the The effective voltage ratio decreases, resulting in a cross-reaction between a decrease in the transmittance of the selected pixel and an increase in the transmittance of the non-selected pixels. (
(In case of Normanoplac with polarizing plates arranged in parallel)
. As a result, the display contrast is significantly reduced and the viewing angle at which a certain degree of contrast can be obtained is narrowed, and in conventional LCDs, the limit for high image quality is about 60 scanning lines. Recently, super twisted nematic type (
There is a type called STN type), but the contrast is T.
Although it is superior to the N type, it has a major drawback of slow response.

このマトリクス型LCDの表示容量を大幅に増加させる
ために、LCDの各画素にスイッチング素子を直列に配
置したアクティブマトリクスLCDが提案されている。
In order to significantly increase the display capacity of this matrix type LCD, an active matrix LCD has been proposed in which a switching element is arranged in series in each pixel of the LCD.

これまでに発表された7アクテイブマトリクスLCDの
試作品のスイッチング素子には、アモルファスSiやポ
リSiを半導体材料とした薄膜トランジスタ素子(TP
T)が多く用いられている。
The switching elements of the 7 active matrix LCD prototypes announced so far are thin film transistor elements (TP) using amorphous Si or polySi as semiconductor materials.
T) is often used.

また一方では、製造及び構造が比較的簡単であるため、
製造工程が簡略化でき、高歩留まり、低コストが期待さ
れる薄膜二端子素子(以下TFDと略す)を用いたアク
ティブマトリクスLCDも注目されている。このTFD
は回路的には非線形抵抗素子である。
On the other hand, because the manufacturing and structure are relatively simple,
Active matrix LCDs using thin film two-terminal devices (hereinafter abbreviated as TFDs) are also attracting attention because they can simplify the manufacturing process and are expected to have high yields and low costs. This TFD
is a nonlinear resistance element in circuit terms.

このような薄膜二端子素子型アクティブマトリクスLC
D(以下TFD−LCDと略す)において−香臭用化に
近いと考えられているLCDはTFDに金属−非線形抵
抗−金属構造を有する素子(以下MIM素子またはMI
Mと略す)を用いたLCD(以下MIM−LCDと略す
)である。MIMのようなTFDを液晶と直列に接続す
ることにより、TFDの電圧特性の高非線形性により、
TFD−液晶の電圧−透過率変化特性の立ち」二がりは
急峻になり、液晶表示の走査本数を大幅に増やすことが
可能になる。このTFD−LCDの等価回路を第3図に
示す。
Such a thin film two-terminal element type active matrix LC
In D (hereinafter abbreviated as TFD-LCD), an LCD that is considered to be close to the one used for fragrances uses a TFD with a metal-nonlinear resistance-metal structure element (hereinafter referred to as MIM element or MI
This is an LCD (hereinafter abbreviated as MIM-LCD) using MIM-LCD (abbreviated as MIM-LCD). By connecting a TFD such as MIM in series with a liquid crystal, due to the highly nonlinear voltage characteristics of the TFD,
The voltage-transmittance change characteristic of the TFD-liquid crystal becomes steeper, making it possible to greatly increase the number of scans of the liquid crystal display. FIG. 3 shows an equivalent circuit of this TFD-LCD.

MIM素子において、最も重要な材料は絶縁体層の材料
である。最も知られている絶縁体材料としては酸化タン
タルが知られている。このようなMIMをもちいたLC
Dの従来例は、論文では、例えば、D、R,Baraf
f、et al、、The Opimization 
of Metal−Insulator−Metal 
Mon−1inear Devices for Us
e inMultiplexed Liquid Cr
ystal Displays ”IEEE Tran
s。
In an MIM device, the most important material is the material of the insulator layer. Tantalum oxide is the most well-known insulator material. LC using such MIM
Conventional examples of D are, for example, D, R, Baraf in the paper.
f,et al,,The Opimization
of Metal-Insulator-Metal
Mon-1inear Devices for Us
e inMultiplexed Liquid Cr
ystal Displays “IEEE Tran
s.

Electron Devices、vol、ED−2
8,pp736−739(1981)、及び、両角伸治
、他、著250 X 240画素のラテラルMIM−L
CDテレビジョン学会技術報告(IPD83−8)、p
39−44.1983年12月発行)は代表的に示され
る。
Electron Devices, vol, ED-2
8, pp736-739 (1981) and Shinji Morikaku et al. 250 x 240 pixel lateral MIM-L
CD Television Society Technical Report (IPD83-8), p.
39-44. Published December 1983) is shown as a representative.

このようなMIM素子を大容量のデイスプレィに適用す
るときに要求される特性は、素子を流れる電流(I)と
印加電圧(V)をI=A・Va(Aは定数)と表したと
きの非線形係数aが大きいこと、電it電圧特性が印加
電圧の極性に無関係に正負対称であること及びMIM素
子の容量が小さいことである。ところが、非線形抵抗体
として、酸化タンタルを用いたMIM素子は対称性はよ
いが非線形係数が5〜6とそれほど大きくなく、また誘
電率も大きいため素子容量が大きい等の欠点を有してし
、喝。
The characteristics required when applying such an MIM element to a large-capacity display are as follows, when the current (I) flowing through the element and the applied voltage (V) are expressed as I=A・Va (A is a constant). The nonlinear coefficient a is large, the voltage characteristics are symmetrical in positive and negative directions regardless of the polarity of the applied voltage, and the capacitance of the MIM element is small. However, MIM elements using tantalum oxide as a nonlinear resistor have good symmetry, but the nonlinear coefficient is not very large at 5 to 6, and the dielectric constant is high, so the element capacitance is large. Drink.

そこで、誘電率の小さい、窒化シリコンが、MIM素子
用非線形抵抗体として、開発されている。例えばM、 
5uzuki et al ”A New Activ
e DiodeMatrix LCD using O
ff−stoichiometric SiNx La
yer”Proceedings of the SI
D、 Vol、 28 plol−104,1987を
参照。
Therefore, silicon nitride, which has a low dielectric constant, has been developed as a nonlinear resistor for MIM elements. For example, M.
5uzuki et al “A New Activ
e DiodeMatrix LCD using O
ff-stoichiometric SiNx La
yer”Proceedings of the SI
D, Vol. 28 plol-104, 1987.

これらの文献に示された従来型のMIM−LCDの構造
を次に示す。窒化シリコン系MIM素子を用いた構造の
断面図を第4図に示し、MIM素子が形成されている基
板の平面図を第5図に示し、MIM−LCDの一部の透
視構造平面図を第6図に示す。
The structure of the conventional MIM-LCD shown in these documents is shown below. FIG. 4 shows a cross-sectional view of a structure using silicon nitride-based MIM elements, FIG. 5 shows a plan view of the substrate on which the MIM elements are formed, and FIG. It is shown in Figure 6.

第4図は、非線形抵抗層3に窒化シリコンを用いた例で
あり、窒化シリコンは成膜後、エツチングにより所定の
形にパターン化しである。第6図に示すように、リード
電極2は液晶セルの外まで引き出され、駆動回路に接続
される。対向透明電極8は、リード電極2と直交し、画
素電極にほぼ対応する幅でストライプ状にパターン化さ
れ、駆動回路に接続される。リード電極2は第3図に示
すデータ電極10または走査電極13のいずれか一方に
対応し、対向透明電極8はデータ電極8または走査電極
13の残りに対応する。詳細は上記の文献に記載されて
いる。
FIG. 4 shows an example in which silicon nitride is used for the nonlinear resistance layer 3. After the silicon nitride is formed, it is patterned into a predetermined shape by etching. As shown in FIG. 6, the lead electrode 2 is led out of the liquid crystal cell and connected to a drive circuit. The counter transparent electrode 8 is perpendicular to the lead electrode 2, is patterned into a stripe shape with a width approximately corresponding to the pixel electrode, and is connected to a drive circuit. Lead electrode 2 corresponds to either data electrode 10 or scan electrode 13 shown in FIG. 3, and opposing transparent electrode 8 corresponds to the rest of data electrode 8 or scan electrode 13. Details are given in the above-mentioned document.

(発明が解決しようとする課題) 本発明の分野である薄膜二端子素子型アクティブマトリ
クス液晶表示素子はTFT形アクティブマトリクス液晶
表示素子に比べ構造が単純なため作製が容易であり、さ
らに単純マトリクス液晶表示素子に比べ大容量の表示が
できることで注目されている。
(Problems to be Solved by the Invention) Thin-film two-terminal active matrix liquid crystal display devices, which are the field of the present invention, have a simpler structure than TFT active matrix liquid crystal display devices and are easier to manufacture. It is attracting attention because it can display a larger capacity than display elements.

しかし、画素部分に薄膜二端子素子を作製しなければな
らないので単純マトリクス液晶表示素子に比べ画素電極
の開口率が低下してしまう。
However, since a thin film two-terminal element must be fabricated in the pixel portion, the aperture ratio of the pixel electrode is lower than that of a simple matrix liquid crystal display element.

本発明の目的は、薄膜二端子素子による開口率の低下を
最小限におさえた薄膜二端子素子型液晶表示素子を提供
することにある。
An object of the present invention is to provide a thin-film two-terminal element type liquid crystal display element that minimizes the decrease in aperture ratio due to the thin-film two-terminal element.

(課題を解決するための手段) 本発明によれば、非線形抵抗素子を介してリード電極と
画素電極とが接続されてなる下部基板と、前記画素電極
と対応して対向透明電極を設けた上部基板と、この上下
部基板に挾まれた液晶とからなる液晶表示素子において
、前記リード電極の上または下に非線形抵抗層を作製し
この非線形抵抗層のリード電極と反対側の面に画素接続
電極を設け、この画素接続電極と前記画素電極とを接続
し液晶表示素子が得られる。
(Means for Solving the Problems) According to the present invention, there is provided a lower substrate in which a lead electrode and a pixel electrode are connected via a nonlinear resistance element, and an upper substrate in which a counter transparent electrode is provided in correspondence with the pixel electrode. In a liquid crystal display element consisting of a substrate and a liquid crystal sandwiched between the upper and lower substrates, a nonlinear resistance layer is formed above or below the lead electrode, and a pixel connection electrode is formed on the surface of the nonlinear resistance layer opposite to the lead electrode. A liquid crystal display element is obtained by connecting this pixel connection electrode and the pixel electrode.

(作用) 本発明における薄膜二端子素子型アクティブマトリクス
液晶素子の1画素の一例を第1図に示す。
(Function) FIG. 1 shows an example of one pixel of a thin film two-terminal active matrix liquid crystal device according to the present invention.

この例では、リード電極2の上に薄膜二端子素子が配置
されている。
In this example, a thin film two-terminal element is placed on the lead electrode 2 .

薄膜二端子素子の構造は、下部電極としてリード電極2
を用いている。次に非線形抵抗層3がり一ド電極2上を
覆う形で形成される。次に上部電極として画素接続電極
4がリード電極と直交する形で形成され、画素電極5と
接続している。
The structure of the thin film two-terminal element is that the lead electrode 2 is used as the lower electrode.
is used. Next, a nonlinear resistance layer 3 is formed to cover the straight electrode 2. Next, a pixel connection electrode 4 as an upper electrode is formed perpendicular to the lead electrode and connected to the pixel electrode 5.

これにより、第3図に示された従来例と同じく、薄膜二
端子素子と画素電極が直列に接続された構造になってい
る。しかも、従来例と違ってリード電極上に薄膜二端子
素子があるので従来薄膜二端子素子があった部分も画素
電極とすることができ、画素電極を大きくすることがで
きる。
This results in a structure in which the thin film two-terminal element and the pixel electrode are connected in series, similar to the conventional example shown in FIG. Moreover, unlike the conventional example, since there is a thin film two-terminal element on the lead electrode, the part where the thin film two-terminal element was conventionally used can also be used as a pixel electrode, and the pixel electrode can be made larger.

このように、本薄膜二端子素子型アクティブマトリクス
液晶素子は画素電極を大きくすることができ、したがっ
て画素電極の開口率を上げることができる。
In this way, the present thin film two-terminal active matrix liquid crystal device allows the pixel electrode to be made larger, and therefore the aperture ratio of the pixel electrode to be increased.

(実施例1) 以下に本発明の実施例を示す。(Example 1) Examples of the present invention are shown below.

本実施例によってえられる薄膜二端子素子を用いたアク
ティブマトリクスLCDの1画素の代表例の平面図を第
1図に示し、断面図を第2図に示す。
FIG. 1 shows a plan view of a representative example of one pixel of an active matrix LCD using a thin film two-terminal device obtained by this example, and FIG. 2 shows a cross-sectional view.

下部ガラス基板1を5i02等のガラス保護層で被覆す
ることも多いが、不可欠なものではないので被覆を省略
することもでき、本実施例では省略している。まず下部
電極としてCrを300から600A程度形成し、通常
のフォトリソグラフィ法により、薄膜二端子素子の下部
電極を兼ねたリード電極2になる。
The lower glass substrate 1 is often coated with a glass protective layer such as 5i02, but since it is not essential, the coating can be omitted, and is omitted in this embodiment. First, a Cr film having a thickness of about 300 to 600 A is formed as a lower electrode, and then a lead electrode 2 which also serves as a lower electrode of a thin film two-terminal element is formed by ordinary photolithography.

次に非線形抵抗層3として、SiH4ガスとN2ガスを
用いてグロー放電分解法により窒化シリコン層を1.2
00Aから2000A程度形成し、フォトリソグラフィ
法によりパターン化する。
Next, as the nonlinear resistance layer 3, a silicon nitride layer of 1.2
A thickness of about 00A to 2000A is formed and patterned by photolithography.

続いて上部電極としてCrを100OA形成し、フォト
リソグラフィ法によりパターン化し、画素接続電極4に
なる。
Subsequently, 100 OA of Cr is formed as an upper electrode, and patterned by photolithography to become the pixel connection electrode 4.

さらに、画素電極5として酸化インジウム−スズ(通常
ITOとよばれている)をパターン化形成する。
Furthermore, indium-tin oxide (generally called ITO) is patterned and formed as the pixel electrode 5.

上部ガラス基板上にITO膜を形成、パターン化し、対
向透明電極とした。これは第4図に示した従来例の薄膜
二端子素子型アクティブマトリクス液晶パネルと同様で
あり、また通常の単純マトリクスLCDともほとんど同
一である。下部ガラス基板と上部ガラス基板とは配向処
理をほどこした後ガラスファイバ等のスペーサを介して
張合わされ、通常のエポキシ形接着剤によりシールした
。セル厚は5μmとした。
An ITO film was formed and patterned on the upper glass substrate to serve as a counter transparent electrode. This is similar to the conventional thin film two-terminal element type active matrix liquid crystal panel shown in FIG. 4, and is also almost the same as a normal simple matrix LCD. After the lower glass substrate and the upper glass substrate were subjected to orientation treatment, they were pasted together with a spacer such as a glass fiber interposed therebetween, and sealed with a common epoxy adhesive. The cell thickness was 5 μm.

その後TN型液晶を注入し液晶層とした。これを封止し
て薄膜二端子素子型アクティブマトリクス液晶素子を完
成した。
Thereafter, TN type liquid crystal was injected to form a liquid crystal layer. By sealing this, a thin film two-terminal active matrix liquid crystal device was completed.

(実施例2) 第7図の断面図に示したように、始めに画素接続電極4
を形成し、非線形抵抗N3を形成後、リード電極2を形
成すること以外は、実施例1と同様に試作した。
(Example 2) As shown in the cross-sectional view of FIG.
A prototype was produced in the same manner as in Example 1, except that after forming the nonlinear resistor N3, the lead electrode 2 was formed.

これによりリード電極2の下に薄膜二端子素子を作製す
ることができた。
As a result, a thin film two-terminal element could be fabricated under the lead electrode 2.

(実施例3) 第8図の平面図に示したように、リード電極2の材料を
タンタルとし、非線形抵抗層を陽極酸化による酸化タン
タルとした以外は、実施例1と同様に試作した。陽極酸
化は通常通り0.1wt%のクエン酸で行ない、75n
mの酸化タンタルを成長させた。
(Example 3) As shown in the plan view of FIG. 8, a prototype was produced in the same manner as in Example 1, except that the lead electrode 2 was made of tantalum and the nonlinear resistance layer was made of tantalum oxide by anodization. Anodization was carried out as usual with 0.1 wt% citric acid, and 75n
m tantalum oxide was grown.

(実施例4) 第9図の平面図に示したように、薄膜二端子素子部分の
リード電極2を細くし、画素電極の薄膜二端子素子部分
の横の部分を窪ませた以外は、実施例1と同様に試作し
た。このことにより、となりの画素電極5と画素接続電
極4のショートによる欠陥発生の確率を低下させること
ができた。
(Example 4) As shown in the plan view of FIG. 9, the lead electrode 2 in the thin film two-terminal element part was made thinner, and the part of the pixel electrode next to the thin film two-terminal element part was recessed. A prototype was produced in the same manner as Example 1. This made it possible to reduce the probability of a defect occurring due to a short circuit between the adjacent pixel electrode 5 and the pixel connection electrode 4.

(発明の効果) 以上説明したように、本発明によれば、画素電極を大き
くとることができ、画素電極の開口率を上げることがで
きる。
(Effects of the Invention) As described above, according to the present invention, the pixel electrode can be made large and the aperture ratio of the pixel electrode can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜二端子素子型アクティブマト
リクス液晶素子の第1の実施例の平面図であり、第2図
は断面図である。第3図はTFD−LCDの一般的な等
節回路である。第4図、第5図、第6図は従来の薄膜二
端子素子型アクティブマトリクス液晶素子の例を示した
ものである。第7図は本発明の第2の実施例の断面図で
あり、第8図は本発明の第3の実施例、第9図は本発明
の第4の実施例の平面図である。 1・・・下部ガラス基板、2・・・リード電極、3・・
・非線形抵抗層、4・・・画素接続電極、5・・・画素
電極、6・・・配向膜、7・・・液晶層、8・・・対向
透明電極、9・・・上部ガラス電極、10・・・データ
電極、11・・・非線形抵抗素子、12・・・液晶素子
、13・・・走査電極、14・・・端子部。
FIG. 1 is a plan view of a first embodiment of a thin film two-terminal active matrix liquid crystal device according to the present invention, and FIG. 2 is a cross-sectional view. FIG. 3 shows a general isochoric circuit of a TFD-LCD. FIGS. 4, 5, and 6 show examples of conventional thin film two-terminal active matrix liquid crystal devices. FIG. 7 is a sectional view of a second embodiment of the invention, FIG. 8 is a plan view of a third embodiment of the invention, and FIG. 9 is a plan view of a fourth embodiment of the invention. 1... Lower glass substrate, 2... Lead electrode, 3...
- Nonlinear resistance layer, 4... Pixel connection electrode, 5... Pixel electrode, 6... Alignment film, 7... Liquid crystal layer, 8... Opposing transparent electrode, 9... Upper glass electrode, DESCRIPTION OF SYMBOLS 10... Data electrode, 11... Nonlinear resistance element, 12... Liquid crystal element, 13... Scanning electrode, 14... Terminal part.

Claims (1)

【特許請求の範囲】[Claims] 非線形抵抗素子を介してリード電極と画素電極とが接続
されてなる下部基板と前記画素電極と対応して対向透明
電極を設けた上部基板と、この上下部基板に挾まれた液
晶とからなる液晶表示素子において、前記リード電極の
上または下に非線形抵抗層を作製しこの非線形抵抗層の
リード電極と反対側の面に画素接続電極を設け、この画
素接続電極と前記画素電極とを接続したことを特長とす
る液晶表示素子。
A liquid crystal comprising a lower substrate in which a lead electrode and a pixel electrode are connected via a nonlinear resistance element, an upper substrate in which a counter transparent electrode is provided corresponding to the pixel electrode, and a liquid crystal sandwiched between the upper and lower substrates. In the display element, a nonlinear resistance layer is formed above or below the lead electrode, a pixel connection electrode is provided on the surface of the nonlinear resistance layer opposite to the lead electrode, and the pixel connection electrode and the pixel electrode are connected. A liquid crystal display element featuring:
JP1147260A 1989-06-08 1989-06-08 Liquid crystal display element Pending JPH0311318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147260A JPH0311318A (en) 1989-06-08 1989-06-08 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147260A JPH0311318A (en) 1989-06-08 1989-06-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0311318A true JPH0311318A (en) 1991-01-18

Family

ID=15426209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147260A Pending JPH0311318A (en) 1989-06-08 1989-06-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0311318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295008A (en) * 1991-08-07 1994-03-15 Nec Corporation Color LCD panel
US5793460A (en) * 1995-08-22 1998-08-11 Lg Electronics Inc. Liquid crystal display device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295008A (en) * 1991-08-07 1994-03-15 Nec Corporation Color LCD panel
US5793460A (en) * 1995-08-22 1998-08-11 Lg Electronics Inc. Liquid crystal display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7808568B2 (en) In-plane switching LCD device
JP2006330634A (en) Liquid crystal display apparatus
JP2518388B2 (en) Active matrix liquid crystal display device
KR0175023B1 (en) Liquid crystal display and its fabrication method
JP2745880B2 (en) Color liquid crystal display panel
JPH0557569B2 (en)
JPH0311318A (en) Liquid crystal display element
JPS62227130A (en) Active matrix type liquid crystal display device
JPH03122618A (en) Thin film two-terminal type active matrix liquid crystal display device
JP2540957B2 (en) Thin film two-terminal element type active matrix liquid crystal display device and manufacturing method thereof
JP3052361B2 (en) Active matrix liquid crystal display device and manufacturing method thereof
JP2684835B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0445427A (en) Liquid crystal display element
JPS6262333A (en) Production of thin film two-terminal element type active matrix liquid crystal display device
JPH01144022A (en) Active matrix type liquid crystal display device
JP2654661B2 (en) Electro-optical display
JP2871245B2 (en) LCD panel
JPS62134628A (en) Storage capacitor address diode type active matrix liquid crystal display device and its driving method
JPH02168239A (en) Thin-film two-terminal element type active matrix liquid crystal display device
JP2737975B2 (en) Active matrix liquid crystal display device with thin film two-terminal device
JPH03107825A (en) Liquid crystal display element
JPH02168238A (en) Thin-film two-terminal element type active matrix liquid crystal display device
JPH06337437A (en) Liquid crystal display device
JPH05341318A (en) Active matrix type liquid crystal display element
JPS61295529A (en) Active matrix liquid crystal display device of thin film two-terminal element type