JPH03112831A - Fluoride optical fiber and its production - Google Patents

Fluoride optical fiber and its production

Info

Publication number
JPH03112831A
JPH03112831A JP1246572A JP24657289A JPH03112831A JP H03112831 A JPH03112831 A JP H03112831A JP 1246572 A JP1246572 A JP 1246572A JP 24657289 A JP24657289 A JP 24657289A JP H03112831 A JPH03112831 A JP H03112831A
Authority
JP
Japan
Prior art keywords
glass
fluoride
oxide
pbo
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1246572A
Other languages
Japanese (ja)
Other versions
JP2815924B2 (en
Inventor
Yasutake Oishi
泰丈 大石
Shiro Takahashi
志郎 高橋
Kazuo Fujiura
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1246572A priority Critical patent/JP2815924B2/en
Publication of JPH03112831A publication Critical patent/JPH03112831A/en
Application granted granted Critical
Publication of JP2815924B2 publication Critical patent/JP2815924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an optical fiber of fluoride glass having excellent weather resistance by applying a coating layer consisting of an oxide glass on the outside of fluoride glass clad layer. CONSTITUTION:The objective glass fiber is provided with a coating layer consisting of an oxide glass on the outside of fluoride glass clad layer. As the coating layer, an oxide glass containing at least one oxide among SiO2, B2O3, PbO, Tl2O, Bi2O3, CdO, ZnO, BaO, Li2O, Na2O, K2O, V2O5, Al2O3 or TeO2 is preferably used. In the production of the above-mentioned optical glass of fluoride, fluoride glass preform having guided wave is inserted into an oxide glass tube and integrally drawn at a temperature (about 250-450 deg.C) between glass transition temperature and crystallization temperature. Then, when especially drawn, a dehydration treatment by halogen-containing gas is applied in the oxide glass tube.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐候性に優れたフッ化物ガラス光ファイバお
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fluoride glass optical fiber with excellent weather resistance and a method for manufacturing the same.

(従来の技術) フッ化物ガラス光ファイバは、赤外領域の透過特性に優
れているので、赤外光の伝送媒体、赤外イメージ導波媒
体、高出力赤外レーザのパワー伝送媒体、赤外光を利用
した各種光センシングシステム内の伝送媒体、またはそ
の超低損失性に着目して次世代の光通信伝送路としての
応用が期待されている。
(Prior art) Fluoride glass optical fiber has excellent transmission characteristics in the infrared region, so it can be used as an infrared light transmission medium, an infrared image waveguide medium, a power transmission medium for high-output infrared lasers, and an infrared light transmission medium. It is expected to be applied as a transmission medium in various optical sensing systems that utilize light, or as a next-generation optical communication transmission line, focusing on its ultra-low loss property.

しかしながら、フッ化物ガラスを応用するうえで、耐候
性、特に耐水性が、酸化物ガラスより著しく劣ることが
問題となっている。このため、フッ化物ガラス光ファイ
バを空気中に放置するとファイバ表面が空気中の水分に
より加水分解し、伝送媒体の水酸基による吸収損失の増
大や、ファイバの機械的強度の劣化を引き起こすことが
知られている。特にフッ化物ガラス光ファイバを光通信
媒体として利用する場合、その通信媒体としての信頼性
を確保するうえから、耐候性を改善することが不可欠に
なる。
However, when applying fluoride glass, there is a problem that its weather resistance, particularly water resistance, is significantly inferior to that of oxide glass. For this reason, it is known that if a fluoride glass optical fiber is left in the air, the fiber surface will be hydrolyzed by moisture in the air, causing an increase in absorption loss due to hydroxyl groups in the transmission medium and a deterioration in the mechanical strength of the fiber. ing. In particular, when fluoride glass optical fiber is used as an optical communication medium, it is essential to improve its weather resistance in order to ensure its reliability as a communication medium.

従来、フッ化物ガラス光ファイバにカルコゲナイドガラ
スを被覆したもの(特願昭58−230555)は知ら
れているが、フッ化物と酸化物ガラスとを接触させると
酸化物ガラスが腐食されることから、フッ化物ガラス光
ファイバに酸化物ガラスを被覆することは試みられなか
った。しかし酸化物ガラスは、一般にフン化物ガラスよ
り格段に耐候性に優れているので、酸化物ガラスがフッ
化物ガラス光ファイバに被覆できれば、フッ化物ガラス
光ファイバの欠点は解決され、十分実用に耐えられるこ
とになる。
Conventionally, a fluoride glass optical fiber coated with chalcogenide glass (Japanese Patent Application No. 58-230555) has been known, but since the oxide glass is corroded when the fluoride and oxide glass come into contact, No attempt has been made to coat fluoride glass optical fibers with oxide glasses. However, oxide glass generally has much better weather resistance than fluoride glass, so if oxide glass can be coated on fluoride glass optical fiber, the disadvantages of fluoride glass optical fiber will be solved and it will be suitable for practical use. It turns out.

また、酸化物ガラスグランド中でコアガラスを溶融しフ
ァイバ化する方法も知られているが(特願昭54−12
6821)、第1図に示す熱分析結果でもわかるように
、酸化物ガラスはフッ化物ガラスの融点で反応するので
、特願昭54−126821に記載されている手法で、
フッ化物ガラス光ファイバに酸化物ガラスの被覆を施す
ことはできない。
Additionally, a method is known in which core glass is melted in an oxide glass gland to form a fiber (Japanese Patent Application No. 54-12
6821), as can be seen from the thermal analysis results shown in Figure 1, oxide glass reacts at the melting point of fluoride glass.
Oxide glass coatings cannot be applied to fluoride glass optical fibers.

(発明が解決しようとする課題) 本発明は、従来、不可能であったフッ化物ガラス光ファ
イバへの酸化物ガラスの被覆を可能とし、耐候性の優れ
たフッ化物ガラス光ファイバを提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a fluoride glass optical fiber with excellent weather resistance by making it possible to coat a fluoride glass optical fiber with oxide glass, which was previously impossible. It is in.

(課題を解決するための手段) 第1図は、ZrF2− BaF2− LaF3− YF
、−A fF3− LiF系フッ化物ガラスの粉末とB
2O3− PbO−B2O3TeO2− ZnO系酸化
物ガラスの粉末とを混合し、脱水処理を施したもののT
O(熱重量)曲線■とDTA (示差熱分析)曲線■お
よび2rF、−BaF2LaF3− YF3−^βF3
−hF系フッ化物ガラス単体のDTA曲線曲線水す図で
ある。
(Means for solving the problem) Figure 1 shows ZrF2-BaF2-LaF3-YF
, -A fF3- LiF-based fluoride glass powder and B
2O3- PbO-B2O3TeO2- T
O (thermogravimetric) curve ■ and DTA (differential thermal analysis) curve ■ and 2rF, -BaF2LaF3- YF3-^βF3
- It is a DTA curve curve water diagram of hF type|system|group fluoride glass single substance.

第1図から明らかなように、500℃のフッ化物ガラス
の融点で資料重量の減少の開始と吸熱反応の開始が観測
され、フッ化物ガラスと酸化物ガラスとが反応し始める
ことがわかる。
As is clear from FIG. 1, the beginning of a decrease in the weight of the material and the start of an endothermic reaction were observed at the melting point of the fluoride glass of 500° C., indicating that the fluoride glass and the oxide glass begin to react.

しかし、フッ化物ガラス単体のDTA曲線曲線前記DT
A曲線Oとを比べると、結晶化温度以下の温度で(線引
きはガラス転移温度と結晶化温度の間で行う>DTA曲
線の変化の差は見られず、フッ化物ガラスと酸化物ガラ
スとの反応は起こっていないことがわかる。一般にフッ
化物と酸化物の反応では、反応系に水分が存在すると両
者の反応は促進されるが、(K、Fujiura、 e
tal、 J、 Ame。
However, the DTA curve of the fluoride glass alone
Comparing curve A with curve O, there is no difference in change in the DTA curve observed at temperatures below the crystallization temperature (drawing is done between the glass transition temperature and crystallization temperature), indicating that the difference between fluoride glass and oxide glass It can be seen that no reaction occurs.Generally, in the reaction between fluoride and oxide, the presence of water in the reaction system accelerates the reaction between the two.
tal, J., Ame.

Cera、Soc、Vol、71.460.(1988
))  この実験でフッ化物ガラスと酸化物ガラスとの
反応が認められなかったのは、混合粉末体に脱水処理を
施したためである。
Cera, Soc, Vol, 71.460. (1988
)) The reason why no reaction between fluoride glass and oxide glass was observed in this experiment was because the mixed powder was subjected to dehydration treatment.

本発明のフッ化物ガラス光ファイバはその耐候性を向上
させるため、クラッド層の外側に酸化物ガラス被覆層を
設け、酸化物ガラス被覆はフッ化物ガラスプリフォーム
を酸化物ガラスチューブに挿入し、一体として線引きす
る。特に線引きする際に、酸化物ガラスチューブ内に脱
水処理を施しフッ化物ガラスと酸化物ガラスとの反応を
抑える。
In order to improve the weather resistance of the fluoride glass optical fiber of the present invention, an oxide glass coating layer is provided on the outside of the cladding layer, and the oxide glass coating is made by inserting a fluoride glass preform into an oxide glass tube and integrally Draw a line as Particularly during wire drawing, dehydration treatment is performed inside the oxide glass tube to suppress the reaction between the fluoride glass and the oxide glass.

従来、フッ化物ガラスが酸化物ガラスと反応すると考え
られてきたのは、両者の接触が水分存在下で行われたた
めである。今回、水分を除去した系ではフッ化物ガラス
と酸化物ガラスはフッ化物ガラスの少なくとも線引き温
度(結晶化温度以下)では起こらないことを見出し、線
引きを無水系で行うことにより、フッ化物ガラスと酸化
物ガラスの一体線引きを可能とした。
Conventionally, it has been thought that fluoride glass reacts with oxide glass because the two were brought into contact in the presence of moisture. This time, we discovered that fluoride glass and oxide glass do not form in a water-removed system, at least at the drawing temperature (lower than the crystallization temperature) of fluoride glass, and by performing drawing in an anhydrous system, fluoride glass and oxide glass This made it possible to draw lines on glass as one piece.

フッ化物光ファイバの線引き温度は、光フアイバ作製に
用いるフッ化物ガラスの組成により250℃から450
℃程度まで変化する(例えば1,1.G。
The drawing temperature of fluoride optical fiber varies from 250°C to 450°C depending on the composition of the fluoride glass used to make the optical fiber.
It changes to about ℃ (for example, 1.1.G).

Drexhage ”Treatise on Mat
erials 5cience andTechnol
gy” Vol、26 Glass IV P、 15
1〜P、243)。
Drexhage ”Treatise on Mat
erials 5science and Technology
gy” Vol, 26 Glass IV P, 15
1-P, 243).

したがってプリフォームにより、被覆する酸化物ガラス
の軟化温度も変化させる必要がある。上記、線引き温度
をカバーするため、以下の系の酸化物ガラスを被覆材と
した。
Therefore, it is necessary to change the softening temperature of the oxide glass to be coated depending on the preform. In order to cover the above-mentioned drawing temperature, the following oxide glass was used as a coating material.

B2O3−2:no−V2O,系、B2O3 PbO系
、B2O3−PbO−TN2O−V2O5系、B2O3
PbOT j22O−A j! 2O3 系、B2O3
−Pb[1−Li2[]系、B2O3イ1□[1−Cd
[l系、B2O゜TE01−B2O3系、B2O3−P
bO−T R2O系、B2O3−PbOZnO系、B2
O.−PbO−C60系、B2O3−PbO−Na2O
系、B2O3−Bi、03−Cd0系、B2O3−TE
01−ZnO系、B2O3−TE01−L2O系、B2
O3−PbO−に2O系、BJ3−PbOBaO系、B
2O.−PbO−B2O.系、B2O3TE01−Ba
O系、B2O3−T 472O−ZnO−3in□系、
B2O3−PbO−TeO□−B2O3ZnO系 これら酸化物ガラス製のガラスチューブを作製すること
により、線引き温度が250℃〜450 ℃にあるフン
化物ガラスプリフォームを一体線引きできた。また、線
引き温度の上記温度域内での任意の変化は、上記酸化物
ガラス系のうち少なくとも二つの系を混合してガラスチ
ューブを作製することにより対応できた。
B2O3-2: no-V2O, system, B2O3 PbO system, B2O3-PbO-TN2O-V2O5 system, B2O3
PbOT j22O-A j! 2O3 series, B2O3
-Pb[1-Li2[] system, B2O3i1□[1-Cd
[l series, B2O゜TE01-B2O3 series, B2O3-P
bO-T R2O system, B2O3-PbOZnO system, B2
O. -PbO-C60 system, B2O3-PbO-Na2O
system, B2O3-Bi, 03-Cd0 system, B2O3-TE
01-ZnO system, B2O3-TE01-L2O system, B2
O3-PbO- to 2O system, BJ3-PbOBaO system, B
2O. -PbO-B2O. system, B2O3TE01-Ba
O system, B2O3-T 472O-ZnO-3in□ system,
By producing a glass tube made of these oxide glasses of the B2O3-PbO-TeO□-B2O3ZnO system, it was possible to integrally draw a fluoride glass preform at a drawing temperature of 250°C to 450°C. Furthermore, arbitrary changes in the drawing temperature within the above-mentioned temperature range could be accommodated by mixing at least two of the above-mentioned oxide glass systems to prepare a glass tube.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
が、本発明はもとより実施例により限定されるものでは
ない。
(Example) Hereinafter, examples of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the examples.

実施例1 フッ化物ガラスプリフォームのガラスとして、ZrF4
− BaF2− YF3− A nF3系ガラスを用い
た。コアガラス組成はZrF、(45mo1%)−Ba
F2(38ma1%)YF3(llmol%)−八j!
P、(5mo1%)、タララドガラス組成はZrFa(
45mo1%)−BaFa(36mo1%)−YF。
Example 1 ZrF4 as glass for fluoride glass preform
- BaF2- YF3- AnF3-based glass was used. Core glass composition is ZrF, (45 mo1%)-Ba
F2 (38ma1%) YF3 (llmol%) - 8j!
P, (5 mo1%), Talarado glass composition is ZrFa (
45 mo1%)-BaFa (36 mo1%)-YF.

(llmol%)−Aj!F3(8mo1%)である。(llmol%)-Aj! F3 (8mol%).

酸化物ガラスとしてB2O3− PbO−TeO□−B
i□0.−2nO系ガラスまたはB2O3−Bi2O,
−CdO系ガラスを用いた。
B2O3-PbO-TeO□-B as oxide glass
i□0. -2nO glass or B2O3-Bi2O,
-CdO glass was used.

第2図は本発明のフッ化物ガラス光ファイバを製造する
装置の構成を示す概略図であって、■はガス導入管、2
はガス排出管、3は支持管本体、4はコネクタ、5は炉
芯管、6は線引き炉、7は酸化物ガラスチューブ、8は
フッ化物ガラスプリフォーム、9はノズル、10・・・
はシーリング、11は酸化物ガラス被覆フッ化物光ファ
イバを示す。
FIG. 2 is a schematic diagram showing the configuration of an apparatus for producing a fluoride glass optical fiber of the present invention, in which ■ is a gas introduction tube;
3 is a gas discharge pipe, 3 is a support tube body, 4 is a connector, 5 is a furnace core tube, 6 is a drawing furnace, 7 is an oxide glass tube, 8 is a fluoride glass preform, 9 is a nozzle, 10...
11 indicates a sealing, and 11 indicates an oxide glass coated fluoride optical fiber.

まず酸化物ガラスを900℃で溶融し、得られたガラス
溶液を予加熱した金属鋳型(図を省略)に流し込み、そ
の直後にその金属鋳型をその中心軸の回りに2O0Or
pmの速度で回転させ、酸化物ガラスチューブを作製し
た。以上の工程は、乾燥N2ガス雰囲気で行われた。
First, oxide glass is melted at 900°C, and the resulting glass solution is poured into a preheated metal mold (not shown).
The tube was rotated at a speed of pm to produce an oxide glass tube. The above steps were performed in a dry N2 gas atmosphere.

次に、Zr0CI! 2の塩酸水溶液でフフ化物ガラス
プリフォームの表面をエツチングした後、第2図に示す
ように酸化物ガラスチューブ7に挿入し、酸化物ガラス
チューブ7を支持管本体3に接続した。ガス導入管1か
ら^rガスで希釈した塩素ガスを導入しつつ、線引き炉
6により、300℃で3時間酸化物ガラスチューブ内を
脱水処理した。この後、線引き炉を380℃に昇温し、
酸化物ガラスチューブ内を除圧に保ちつつ、フッ化物ガ
ラスプリフォームと酸化物ガラスチューブとを一体とし
て線引きした。線引き速度は10m/分であり、ファイ
バ外径125μmであった。また線引き中、炉芯管5内
はノズル9からAr−4ieガスを導入し、不活性ガス
雰囲気とした。線引き中、フッ化物ガラスプリフォーム
と酸化物ガラスチューブとは反応することなく平滑に接
触し、界面での不整は発生しなかった。
Next, Zr0CI! After etching the surface of the fluoride glass preform with an aqueous hydrochloric acid solution in step 2, it was inserted into an oxide glass tube 7 as shown in FIG. 2, and the oxide glass tube 7 was connected to the support tube body 3. While introducing chlorine gas diluted with ^r gas through the gas introduction pipe 1, the inside of the oxide glass tube was subjected to dehydration treatment at 300° C. for 3 hours in the drawing furnace 6. After this, the temperature of the drawing furnace was raised to 380°C,
The fluoride glass preform and the oxide glass tube were drawn as one body while keeping the inside of the oxide glass tube at a reduced pressure. The drawing speed was 10 m/min, and the fiber outer diameter was 125 μm. During wire drawing, Ar-4ie gas was introduced into the furnace core tube 5 through the nozzle 9 to create an inert gas atmosphere. During wire drawing, the fluoride glass preform and the oxide glass tube were in smooth contact without any reaction, and no irregularities occurred at the interface.

得られたいずれのファイバを水の中に長時間放置しても
、叶基による吸収損失の増大、およびファイバ強度の劣
化は認められなかった。
Even when any of the obtained fibers was left in water for a long time, no increase in absorption loss due to leaf bases or deterioration of fiber strength was observed.

実施例2 コアガラスとしてZrF4(49mo1%)−BaF2
(25mo1%)−LiF3(3,5mo1%)−YF
、 (2mo1%)−1F。
Example 2 ZrF4 (49 mo1%)-BaF2 as core glass
(25mo1%)-LiF3 (3,5mo1%)-YF
, (2mo1%)-1F.

(2,5mo1%)−LiF (18mo1%)、タラ
ラドガラスとしてZrF、(47,5mo1%)−Ba
Fz(23,5mo1%) LiF3(2,5mo1%
) YFz(2mo1%)−A 12 F3 (4,4
mo1%)−NaF (2Omo1%)を用いたフッ化
物ガラスプリフォームを8.0.− PbO−Li2O
系ガラスまたはB2O3Tl2O− B;2O3系ガラ
スまたはB2O3− PbO系ガラスで作製された酸化
物ガラスチューブに挿入し、290℃で線引きしても界
面の不整発生は認められず、耐候性の優れたフッ化物ガ
ラス光ファイバが得られた。
(2,5 mo1%)-LiF (18 mo1%), ZrF as Talarado glass, (47,5 mo1%)-Ba
Fz (23,5mo1%) LiF3 (2,5mo1%
) YFz (2mo1%)-A 12 F3 (4,4
Fluoride glass preform using mo1%)-NaF (2Omo1%) was prepared at 8.0%. -PbO-Li2O
Even when inserted into an oxide glass tube made of 2O3 series glass or B2O3Tl2O- B;2O3 series glass or B2O3-PbO series glass and drawn at 290°C, no irregularities were observed at the interface, making it a highly weather resistant fluorocarbon tube. A compound glass optical fiber was obtained.

また、曲げ法により強度を測定したところ、いずれのフ
ァイバもI GPa以上の強度があることが確δ忍でき
た。
Furthermore, when the strength was measured by the bending method, it was confirmed that all fibers had a strength of IGPa or higher.

実施例3 塩素ガスの代わりにHCE、 Br2. I2. HB
r、旧。
Example 3 HCE, Br2. instead of chlorine gas. I2. H.B.
r, old.

CCR4,5OCL、 F2. HF、 CF4. N
F3またはSF6のガスを不活性ガス(例えば后ガス)
で希釈したものをガス導入管1から導入し、脱水処理を
施した後、線引きしても界面の不整発生は見られず、フ
ァイバ化することができた。
CCR4,5OCL, F2. HF, CF4. N
Convert F3 or SF6 gas to inert gas (e.g. post gas)
After the diluted material was introduced through the gas introduction pipe 1, dehydrated, and then drawn, no irregularities were observed at the interface, and it was possible to form a fiber.

実施例4 コアガラスとしてZrF<(45mo1%)  BaF
z(38mo1%)−YF+(llmol%)−A I
 F 3 (6mo1%)、タララドガラスとしてZr
F4(47,5mo1%)−BaF2(23,5mo1
%) YF3(llmol%E A I F3 (8m
o1%)  LiP(10mo1%)を用いたフッ化物
ガラスプリフォームをB2O.− PbO−T f 、
0− A f 2O系ガラスまたはB2O3−TE01
− CdO系ガラスまたはB2O3− PbOCd0系
ガラスまたはB2O3− PbO−ZnO系ガラスまた
はB、03− PbO−Bi2O3系ガラスで作製され
た酸化物ガラスチューブに挿入し、380℃で線引きし
ても界面の不整発生は認められず、耐候性の優れたフッ
化物ガラス光ファイバが得られた。
Example 4 ZrF < (45 mo1%) BaF as core glass
z(38mol%)-YF+(llmol%)-A I
F3 (6mo1%), Zr as Talarado glass
F4 (47,5 mo1%)-BaF2 (23,5 mo1
%) YF3(llmol%E A I F3 (8m
o1%) A fluoride glass preform using LiP (10mo1%) was heated in B2O. - PbO-T f ,
0- A f 2O glass or B2O3-TE01
- Even if it is inserted into an oxide glass tube made of CdO-based glass, B2O3- PbOCd0-based glass, B2O3- PbO-ZnO-based glass, or B,03- PbO-Bi2O3-based glass and drawn at 380°C, there will be no irregularity at the interface. No generation was observed, and a fluoride glass optical fiber with excellent weather resistance was obtained.

また、曲げ法により強度を測定したところ、いずれのフ
ァイバもIGPa以上の強度があることがTifi認で
きた。
Furthermore, when the strength was measured by a bending method, it was confirmed that all fibers had a strength of IGPa or higher.

実施例5 コアガラスとしてZrF4(45mo1%)−BaF2
(38mo1%)−YFs(11mO1%)−Aj!F
、(6mo1%)、タララドガラスとしてZrF4(4
7,5mo1%)−BaF2(23,5mo1%)−Y
h (llmol%)−1F3(8mo1%) −Li
F(lQmo1%)を用いたフッ化物ガラスプリフォー
ムをB2O3−T R2O−ZnO系ガラスまたは[1
2O,−T l 、0−ZnO−3t02系ガラスまた
はB2O3−P bo−BaO系ガラスまたはB2O3
− TE01− BaO系ガラスで作製された酸化物ガ
ラスチューブに挿入し、380℃で線引きしても界面の
不整発生は認められず、耐候性の優れたフッ化物ガラス
光ファイバが得られた。
Example 5 ZrF4 (45 mo1%)-BaF2 as core glass
(38mo1%)-YFs (11mO1%)-Aj! F
, (6mo1%), ZrF4 (4
7,5 mo1%)-BaF2 (23,5 mo1%)-Y
h (llmol%) -1F3 (8mol%) -Li
A fluoride glass preform using F (lQmo 1%) is converted into B2O3-T R2O-ZnO glass or [1
2O, -T l , 0-ZnO-3t02 glass or B2O3-P bo-BaO glass or B2O3
-TE01- Even when inserted into an oxide glass tube made of BaO-based glass and drawn at 380°C, no irregularities were observed at the interface, and a fluoride glass optical fiber with excellent weather resistance was obtained.

また、曲げ法により強度を測定したところ、いずれのフ
ァイバもIGPa以上の強度があることが確S忍できた
Furthermore, when the strength was measured by a bending method, it was confirmed that all fibers had a strength of IGPa or higher.

以上の実施例ではフッ化物ガラスとしてZrF4BaF
2− YF3−へlF3系、ZrF4− BaF2− 
LaFt−YF3−A I! F3NaF系およびZr
F4BaF2LaF、+ YF3−AlF2− LiF
系のものを使用したが、ZrL−BaFzLaF、  
Al1F3− NaF系、HfF4− BaF2− L
aF3A j! F3系、BaF、 CaF、 YF3
−IF5系、CdF2− LiP−AI!P3PbF2
系、等のガラスを用いたプリフォームを使用しても酸化
物ガラスの熱特性をそれらに合わせることは可能となり
、フッ化物ガラスプリフォームの組成によらず、酸化物
ガラス被覆は実施できた。
In the above examples, ZrF4BaF is used as the fluoride glass.
2- YF3- to lF3 system, ZrF4- BaF2-
LaFt-YF3-A I! F3NaF system and Zr
F4BaF2LaF, + YF3-AlF2- LiF
ZrL-BaFzLaF,
Al1F3- NaF system, HfF4- BaF2- L
aF3A j! F3 series, BaF, CaF, YF3
-IF5 series, CdF2- LiP-AI! P3PbF2
It became possible to match the thermal properties of oxide glass to those using preforms using glasses such as fluoride glass, etc., and coating with oxide glass was possible regardless of the composition of the fluoride glass preform.

また本発明は、フッ化物ガラス光ファイバのみに適用可
能だけでなく、塩化物ガラスまたはヨウ化物ガラスまた
はカルコハライドガラス製光ファイバへの適用も可能で
あることを付記する。
It should be noted that the present invention is not only applicable to fluoride glass optical fibers, but also to optical fibers made of chloride glass, iodide glass, or chalcohalide glass.

〈発明の効果〉 以上説明したように、本発明によれば、フッ化物ガラス
光ファイバの耐候性を著しく改善できるとともに、機械
的強度の向上も可能であるので、赤外センシングシステ
ムや長距離光通信システムにおいて実用可能なフッ化物
ガラス光ファイバを供給できるという利点がある。
<Effects of the Invention> As explained above, according to the present invention, it is possible to significantly improve the weather resistance of fluoride glass optical fibers, as well as improve mechanical strength. An advantage is that it provides a fluoride glass optical fiber that can be used in communication systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフン化物ガラス粉末と酸化物ガラス粉末とを混
合し、脱水処理を施した一例のTG曲線■とDTA曲線
曲線上びフッ化物ガラス単体のDTA曲線曲線水す図、 第2図は本発明のフッ化物ガラス光ファイ製造する装置
の構成を示す概略図である。 1・・・ガス導入管    2・・・ガス排気管3・・
・支持管本体    4・・・炉芯管5・・・コネクタ
      6・・・線引き炉7・・・酸化物ガラスチ
ューブ 8・・・フッ化物ガラスプリフォーム 9・・・ノズル 10・・・支持管本体3と炉芯管4のシーリング11・
・・酸化物ガラス被覆フッ化物光ファイババを 特 許 出 願 人 日本電信電話株式会社
Figure 1 shows the TG and DTA curves of an example of a mixture of fluoride glass powder and oxide glass powder subjected to dehydration treatment, and the DTA curve of fluoride glass alone. 1 is a schematic diagram showing the configuration of an apparatus for manufacturing a fluoride glass optical fiber according to the present invention. 1...Gas inlet pipe 2...Gas exhaust pipe 3...
- Support tube body 4... Furnace core tube 5... Connector 6... Wire drawing furnace 7... Oxide glass tube 8... Fluoride glass preform 9... Nozzle 10... Support tube Sealing 11 of main body 3 and furnace core tube 4
...Oxide glass coated fluoride optical fiber fiber patent applicant Nippon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 1.フッ化物ガラス光ファイバにおいて、酸化物ガラス
からなる被覆層をフッ化物ガラスクラッド層の外側に有
することを特徴とするフッ化物ガラス光ファイバ。
1. A fluoride glass optical fiber comprising a coating layer made of oxide glass on the outside of a fluoride glass cladding layer.
2.請求項1記載のフッ化物ガラス光ファイバにおいて
、被覆層がSiO_2、B_2O_3、PbO、Tl_
2OBi_2O_3、CdO、ZnO、BaO、Li_
2O、Na_2O、K_2O、V_2O_5、Al_2
O_3またはTeO_2の内の少なくとも一つを含む酸
化物ガラスであることを特徴とするフッ化物ガラス光フ
ァイバ。
2. The fluoride glass optical fiber according to claim 1, wherein the coating layer is SiO_2, B_2O_3, PbO, Tl_
2OBi_2O_3, CdO, ZnO, BaO, Li_
2O, Na_2O, K_2O, V_2O_5, Al_2
A fluoride glass optical fiber characterized in that it is an oxide glass containing at least one of O_3 and TeO_2.
3.請求項1記載のフッ化物ガラス光ファイバにおいて
、被覆層の酸化物ガラス成分が B_2O_3−ZnO−V_2O_5系ガラスB_2O
_3−PbO系ガラス B_2O_3−PbO−Tl_2O−V_2O_5系ガ
ラスB_2O_3−PbO−Tl_2O−Al_2O_
3系ガラスB_2O_3−PbO−Li_2O系ガラス
B_2O_3−Tl_2O−CdO系ガラスB_2O_
3−Tl_2O−Bi_2O_3系ガラスB_2O_3
−PbO−Tl_2O系ガラスB_2O_3−PbO−
ZnO系ガラス B_2O_3−PbO−CdO系ガラス B_2O_3−PbO−Na_2O系ガラスB_2O_
3−Bi_2O_3−CdO系ガラスB_2O_3−T
l_2O−ZnO系ガラスB_2O_3−Tl_2O−
Li_2O系ガラスB_2O_3−PbO−K_2O系
ガラス B_2O_3−PbO−BaO系ガラス B_2O_3−PbO−Bi_2O_3系ガラスB_2
O_3−Tl_2O−BaO系ガラスB_2O_3−T
l_2O−ZnO−SiO_2系ガラスB_2O_3−
PbO−TeO_2−Bi_2O_3−ZnO系ガラス
の内の一つの系または少なくとも二つの系を混合させた
ガラス系の成分を有することを特徴とするフッ化物ガラ
ス光ファイバ。
3. In the fluoride glass optical fiber according to claim 1, the oxide glass component of the coating layer is B_2O_3-ZnO-V_2O_5-based glass B_2O.
_3-PbO-based glass B_2O_3-PbO-Tl_2O-V_2O_5-based glass B_2O_3-PbO-Tl_2O-Al_2O_
3-based glass B_2O_3-PbO-Li_2O-based glass B_2O_3-Tl_2O-CdO-based glass B_2O_
3-Tl_2O-Bi_2O_3 glass B_2O_3
-PbO-Tl_2O glass B_2O_3-PbO-
ZnO-based glass B_2O_3-PbO-CdO-based glass B_2O_3-PbO-Na_2O-based glass B_2O_
3-Bi_2O_3-CdO glass B_2O_3-T
l_2O-ZnO glass B_2O_3-Tl_2O-
Li_2O-based glass B_2O_3-PbO-K_2O-based glass B_2O_3-PbO-BaO-based glass B_2O_3-PbO-Bi_2O_3-based glass B_2
O_3-Tl_2O-BaO glass B_2O_3-T
l_2O-ZnO-SiO_2-based glass B_2O_3-
A fluoride glass optical fiber characterized by having a glass-based component that is a mixture of one or at least two of PbO-TeO_2-Bi_2O_3-ZnO-based glasses.
4.導波構造を有するフッ化物ガラスプリフォームを酸
化物ガラスチューブに挿入し、一体としてガラス転移温
度と結晶化温度の間の温度で線引きすることを特徴とす
るフッ化物ガラス光ファイバの製造方法。
4. 1. A method for producing a fluoride glass optical fiber, which comprises inserting a fluoride glass preform having a waveguide structure into an oxide glass tube, and drawing the whole body at a temperature between a glass transition temperature and a crystallization temperature.
5.請求項4記載のフッ化物ガラス光ファイバの製造方
法において、フッ化物ガラスプリフォームを酸化物ガラ
スチューブに挿入した後、酸化物ガラスチューブ内に含
ハロゲンガスを流し込み、フッ化物ガラスプリフォーム
および酸化物ガラスチューブの軟化温度領域よりも低温
でフッ化物ガラスプリフォームおよび酸化物ガラスチュ
ーブを加熱した後、一体として線引きすることを特徴と
するフッ化物ガラス光ファイバの製造方法。
5. In the method for manufacturing a fluoride glass optical fiber according to claim 4, after the fluoride glass preform is inserted into the oxide glass tube, a halogen-containing gas is poured into the oxide glass tube, and the fluoride glass preform and the oxide A method for producing a fluoride glass optical fiber, which comprises heating a fluoride glass preform and an oxide glass tube at a temperature lower than the softening temperature range of the glass tube, and then drawing them as one unit.
6.請求項5記載のフッ化物ガラス光ファイバの製造方
法において、含ハロゲンガスとしてCl_2、HCl、
Br_2、I_2、HBr、HI、F_2、HF、CF
_4、NF_3、SF_6、CCl_4、SOCl_2
の少なくとも一つを不活性ガスで希釈したものを使用す
ることを特徴とするフッ化物ガラス光ファイバの製造方
法。
6. In the method for manufacturing a fluoride glass optical fiber according to claim 5, the halogen-containing gas includes Cl_2, HCl,
Br_2, I_2, HBr, HI, F_2, HF, CF
_4, NF_3, SF_6, CCl_4, SOCl_2
1. A method for producing a fluoride glass optical fiber, comprising using at least one of the above diluted with an inert gas.
JP1246572A 1989-09-25 1989-09-25 Manufacturing method of fluoride glass optical fiber Expired - Lifetime JP2815924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246572A JP2815924B2 (en) 1989-09-25 1989-09-25 Manufacturing method of fluoride glass optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246572A JP2815924B2 (en) 1989-09-25 1989-09-25 Manufacturing method of fluoride glass optical fiber

Publications (2)

Publication Number Publication Date
JPH03112831A true JPH03112831A (en) 1991-05-14
JP2815924B2 JP2815924B2 (en) 1998-10-27

Family

ID=17150412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246572A Expired - Lifetime JP2815924B2 (en) 1989-09-25 1989-09-25 Manufacturing method of fluoride glass optical fiber

Country Status (1)

Country Link
JP (1) JP2815924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653575A (en) * 1992-07-28 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
KR101645171B1 (en) * 2015-04-02 2016-08-03 주식회사 이우이엔티 NON-DEGRADABLE HAZARDOUS GAS PURIFICATION SYSTEM GENERATED IN THE SEMICONDUCTOR AND VOCs EMISSION PROCESS
KR20190057940A (en) * 2017-11-21 2019-05-29 (주)옵토네스트 method of manufacturing glass fiber for optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653575A (en) * 1992-07-28 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
KR101645171B1 (en) * 2015-04-02 2016-08-03 주식회사 이우이엔티 NON-DEGRADABLE HAZARDOUS GAS PURIFICATION SYSTEM GENERATED IN THE SEMICONDUCTOR AND VOCs EMISSION PROCESS
KR20190057940A (en) * 2017-11-21 2019-05-29 (주)옵토네스트 method of manufacturing glass fiber for optical fiber

Also Published As

Publication number Publication date
JP2815924B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Poulain Halide glasses
French et al. Low‐loss fused silica optical waveguide with borosilicate cladding
CN102515500B (en) Preparation method for rare earth doped optical fiber preform
US4161505A (en) Process for producing optical transmission fiber
US4610708A (en) Method for making metal halide optical fiber
US4372767A (en) Method of manufacturing optical fibers
US4295869A (en) Process for producing optical transmission fiber
JP3215810B2 (en) Single mode active optical fiber and method of manufacturing the same
JP3524244B2 (en) Optical fiber manufacturing method and apparatus
Saad Fluoride glass fiber: state of the art
CN1350651A (en) glasses containing rare earth fluorides
US5294240A (en) Method of forming waveguides with ion exchange of halogen ions
JPH03112831A (en) Fluoride optical fiber and its production
US4289516A (en) Low loss optical fibers
US4938562A (en) Oxide coatings for fluoride glass
Shibata Sol-gel-derived silica preforms for optical fibers
GB2033372A (en) A Method of Producing an Optical Waveguide
US4883339A (en) Oxide coatings for fluoride glass
Dabby et al. Borosilicate clad fused silica core fiber optical waveguide with low transmission loss prepared by a high‐efficiency process
Kasik et al. Glass materials for optical fibers
US4099834A (en) Low loss glass suitable for optical fiber
JPH0952731A (en) Fluorophosphoric acid glass, optical fiber using the same and its production
JP2002047031A (en) Preform coated with alumina and/or silica and optical fiber
JP3196947B2 (en) Fabrication method of fluoride optical fiber
JPH11343139A (en) Clad glass composition for halide core glass and glass composition for coating halide core glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12