JPH0311197A - Fluid machine - Google Patents

Fluid machine

Info

Publication number
JPH0311197A
JPH0311197A JP14538089A JP14538089A JPH0311197A JP H0311197 A JPH0311197 A JP H0311197A JP 14538089 A JP14538089 A JP 14538089A JP 14538089 A JP14538089 A JP 14538089A JP H0311197 A JPH0311197 A JP H0311197A
Authority
JP
Japan
Prior art keywords
suction
blowout
flow
fluid
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14538089A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nagaoka
嘉浩 長岡
Tomoyoshi Okamura
共由 岡村
Takeo Takagi
高木 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14538089A priority Critical patent/JPH0311197A/en
Publication of JPH0311197A publication Critical patent/JPH0311197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the disc friction loss of fluid machines by installing a blowout construction in a low pressure part as against a suction construction, and a suction construction in a high pressure part as against a blowout construction, and installing ducts leading fluid from blowout to suction constructions. CONSTITUTION:Chambers 6a, 6b are formed inside casings 2a, 2b, and communicated with gaps 9a, 9b between an impeller 1 and the casings 2a, 2b through small holes and grooves 8a, 8b opened in surface materials 7a, 7b on inner walls of the casings 2a, 2b. Furthermore, ducts 10a, 10b are communicated from the chambers 6a, 6b to blowout ports 11a upstream of the inlet of the impeller 1. Since the blowout ports 11a have pressure lower than the gaps 9a, 9b, the fluid in the gaps 9a, 9b blows into the chambers 6a, 6b through small holes and grooves 8a, 8b opened in the surface materials 7a, 7b, and blows out to the blowout ports 11a through the ducts 10a, 10b. Suction and blowout are made using a small pressure difference existing in the channel to reduce disc friction of fluid machines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はケーシング内に羽根車を回転可能に収納した流
体機械に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluid machine in which an impeller is rotatably housed in a casing.

〔従来の技術〕[Conventional technology]

従来、吸込みを利用して円板摩擦の低減を行う場合には
、第20回乱流シンポジウム講演論文集(1988年)
第130頁から第137頁において論じられているよう
に、回転円板表面から吸込みを行う構造であった。
Conventionally, when reducing disk friction using suction, the Proceedings of the 20th Turbulence Symposium (1988)
As discussed on pages 130 to 137, the structure was such that suction was carried out from the surface of the rotating disk.

〔発明が解決しようとする1lifり 上記従来技術は、回転円板表面から吸込みを行い1回転
軸から外部に吐出す構造であったため。
[This is because the above-mentioned conventional technology has a structure in which suction is performed from the surface of the rotating disk and discharged to the outside from the rotating shaft.

円板内部に吸込まれた流体には遠心力が作用し、円板表
面の吸込み部と回転軸の吐出し部との間には大きな圧力
差が必要であった6また。外周側はど遠心力が大きいた
め、吸込み構造によっては吸込んだ流体が外周側に吹出
すことがあり、上記従来技術においても外周側からの一
吹出しによる乱れの発生が問題となった。更に、吸込ん
だ流体を回転軸から静止側に吐出す場合、軸封が必要と
なり摺動摩擦等の損失が生じた。
Centrifugal force acts on the fluid sucked into the disk, and a large pressure difference is required between the suction section on the disk surface and the discharge section of the rotating shaft6. Since the centrifugal force is large on the outer circumferential side, depending on the suction structure, the sucked fluid may be blown out to the outer circumferential side, and even in the above-mentioned conventional technology, turbulence caused by one blowout from the outer circumferential side has been a problem. Furthermore, when the sucked fluid is discharged from the rotating shaft to the stationary side, a shaft seal is required, resulting in losses such as sliding friction.

本発明の目的は、吸込み及び吐出し構造を回転体に設け
ることなしに円板摩擦損失を低減する流体機械を提供す
ることにある。
An object of the present invention is to provide a fluid machine that reduces disk friction loss without providing a suction and discharge structure on a rotating body.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は1羽根車を収納したケーシング内壁面に穴、
溝等の吸込み及び吹出し構造を設け、前記吸込み構造に
対しては吹出し構造を低圧部に。
The above purpose is to create a hole in the inner wall of the casing that houses the impeller.
A suction and blowout structure such as a groove is provided, and the blowout structure is provided in a low pressure section for the suction structure.

吹出し構造に対しては吸込み構造を高圧部に設け。In contrast to the blowout structure, a suction structure is provided in the high pressure section.

されぞれ吸込み構造から吹出し構造へ流体を導びくため
のダクトをケーシング内部に設けることにより、達成さ
れる。
This is accomplished by providing a duct inside the casing for conducting fluid from the suction structure to the discharge structure, respectively.

〔作用〕[Effect]

一般に羽根車側面とケーシング内壁との間の隙間が大き
い場合には、その隙間における流れは。
Generally, if the gap between the side surface of the impeller and the inner wall of the casing is large, the flow in that gap will be

羽根車側面付近の高速旋回速度成分と径方向外向速度成
分をもつ回転側境界層、ケーシング内壁付近の低速旋回
速度成分と径方向内向き速度成分をもつ静止側境界層、
及び画境界層に挾まれた径方向速度成分髪もたずに旋回
するコア層とによって構成される。コア層では遠心力と
圧力が釣合うため、径方向の流れは存在しないが5回転
側境界層では回転円板に引きずられて旋回速度を大きく
、遠心力が圧力を上回るため、径方向外向き流れが生じ
、逆に静止側境界層では旋回速度が小さく内向き流れと
なる。この径方向流れの速度分布は変曲点をもち、平板
に沿う流れ等に比べ不安定である。更に、静止側境界層
の流れは減速流で不安定なだめ、回転側境界層の加速流
に比べ乱流への遷移が早い。
A rotating boundary layer near the side of the impeller with a high-speed rotational velocity component and a radially outward velocity component; a stationary boundary layer near the inner wall of the casing with a low-speed rotational velocity component and a radial inward velocity component;
and a core layer which rotates without any radial velocity component between the image boundary layers. In the core layer, centrifugal force and pressure balance, so there is no radial flow, but in the boundary layer on the 5th rotation side, the rotating speed increases due to being dragged by the rotating disk, and as the centrifugal force exceeds the pressure, the flow flows outward in the radial direction. On the other hand, in the stationary boundary layer, the swirling speed is small and the flow is inward. The velocity distribution of this radial flow has an inflection point and is unstable compared to a flow along a flat plate. Furthermore, the flow in the stationary boundary layer is decelerated and unstable, and transitions to turbulence faster than the accelerated flow in the rotating boundary layer.

そこで、ケーシング内壁に穴、溝等の吸込み構造を設け
、静止側境界層の不安定な減速流を吸込み、コア層の高
速旋回流を静止壁近くまで流入させ、静止側境界層の流
れを安定化することにより、乱流への遷移を防ぐ。
Therefore, suction structures such as holes and grooves are provided on the inner wall of the casing to suck in the unstable decelerated flow of the stationary side boundary layer, and to allow the high-speed swirling flow of the core layer to flow close to the stationary wall, thereby stabilizing the flow of the stationary side boundary layer. This prevents the transition to turbulence.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、羽根車1はケーシング2a。In FIG. 1, the impeller 1 has a casing 2a.

2b内で回転軸3の回りに回転可能であるよう収納され
ており、数枚の羽根4とその両側の側板5a、5bから
構成されている。ケーシング2、]。
It is housed so as to be rotatable around a rotating shaft 3 within the blade 2b, and is composed of several blades 4 and side plates 5a and 5b on both sides thereof. Casing 2, ].

2bの内部にはチャンバ6a、6bが設けられ、ケーシ
ング2a、2b内壁の表面材?a、7bに開けられた小
穴や溝8a、8bを通して1羽根車とケーシングとの間
の隙間9a、9bに通じている。更にチャンバ6a、6
bからはダクト10a。
Chambers 6a and 6b are provided inside the casings 2b, and the surface material of the inner walls of the casings 2a and 2b is provided with chambers 6a and 6b. It communicates with gaps 9a and 9b between one impeller and the casing through small holes and grooves 8a and 8b made in holes a and 7b. Furthermore, chambers 6a, 6
From b is the duct 10a.

10bが、羽根車入口上流の吹出し口11aへと通じて
いる。
10b communicates with the air outlet 11a upstream of the impeller inlet.

吹出し口11aは隙間9a、9bより低圧であるため、
隙間9a、9bの流体は表面材7a。
Since the air outlet 11a has a lower pressure than the gaps 9a and 9b,
The fluid in the gaps 9a and 9b is the surface material 7a.

7bに開けられた小穴や溝8a、8bを通してチャンバ
6a、6b内に吸込まれ、ダクト10a。
The duct 10a is sucked into the chambers 6a, 6b through small holes and grooves 8a, 8b made in the duct 7b.

10bを通って吹出し口11aに吹出される。The air is blown out through the air outlet 11a through the air outlet 10b.

吸込みが無い時の隙間9a、9bの流れは、第9図に示
す速度分布をもつ、すなわち、流れは全体として羽根車
に引きづられて旋回し、特に中央部では遠心力と圧力が
釣り合っているため、径方向の速度成分を持たず剛体の
ように回転しているコア層が存在する。一方、壁付近で
は境界層が形成されるため、コア層での圧力が印加され
るが。
The flow in the gaps 9a and 9b when there is no suction has the velocity distribution shown in Fig. 9. In other words, the flow as a whole is dragged by the impeller and turns, and especially in the center, the centrifugal force and pressure are balanced. Therefore, there is a core layer that rotates like a rigid body without a radial velocity component. On the other hand, because a boundary layer is formed near the wall, pressure is applied in the core layer.

羽根車付近の回転側境界層内では旋回速度が大きく、従
って遠心力が圧力を上回り径方向外向き流れとなる。逆
にケーシング付近の静止側境界層では旋回速度が小さく
、径方向内向き流れとなる。
The swirling speed is high in the rotating boundary layer near the impeller, so the centrifugal force exceeds the pressure, resulting in a radially outward flow. Conversely, in the stationary boundary layer near the casing, the swirling speed is low, resulting in a radially inward flow.

従ってケーシング付近では、螺旋状に内向きに流れてい
る。吸込みを行ったときの静止側境界層の旋回速度成分
の変化を第2図に、径方向速度成分の変化を第3図に示
す、旋回速度分布は、下流に進むほど内径側になるため
、羽根車の周速は小さく、従って流速も小さくなる。そ
のため速度分布は第2図に示すように、壁付近で壁に垂
直な方向の変化が小さく、擾乱に対して不安定な形とな
る。
Therefore, near the casing, it flows inward in a spiral manner. Figure 2 shows the change in the swirling velocity component of the stationary boundary layer when suction is performed, and Figure 3 shows the change in the radial velocity component.The swirling velocity distribution becomes closer to the inner diameter as it moves downstream, so The circumferential speed of the impeller is small, and therefore the flow velocity is also small. Therefore, as shown in Figure 2, the velocity distribution has a small change in the direction perpendicular to the wall near the wall, making it unstable against disturbances.

ここで吸込みを行うと5壁近くの低速流が吸込まれ、コ
ア層の高速流が壁近くに降りてくるため、安定な旋回速
度分布が得られる。径方向速度成分は、壁とコア層で流
速が零であるため変曲点を持ち、不安定な分布となる。
If suction is performed here, the low-speed flow near the 5th wall will be sucked in, and the high-speed flow in the core layer will descend near the wall, resulting in a stable swirling speed distribution. The radial velocity component has an inflection point because the flow velocity is zero in the wall and core layer, resulting in an unstable distribution.

ここでは吸込みを行っても変曲点はなくならないが、流
速を小さくすることができ、旋回成分と径方向成分の合
成速度に対する不安定性の影響を小さくすることになる
Although the inflection point does not disappear even if suction is performed here, the flow velocity can be reduced, and the influence of instability on the combined velocity of the swirling component and the radial component can be reduced.

静止側境界層の吸込みにより安定な速度分布が得られる
ため、流れは層流を保つ、第4図に示すように、回転す
る円板の摩擦は乱流の方が層流に比べ大きく、レイノル
ズ数が10’付近で3倍以上にもなる。そのため、境界
層吸込みは大幅に摩擦損失を低減する。
Because a stable velocity distribution is obtained by the suction of the stationary boundary layer, the flow remains laminar.As shown in Figure 4, the friction of the rotating disk is greater in turbulent flow than in laminar flow, and Reynolds The number increases by more than three times around 10'. Therefore, boundary layer suction significantly reduces friction losses.

第1図の実施例では、羽根車上流の低圧部との圧力差を
利用して吸込みを行っているが、静止側境界層から吸込
んだ流れを低圧部で有効に吹出す多段式流体機械の実施
例を第5図に示す。静止側境界層から吸込まれた流体は
、ダクト10cを通り吹出し口flbから吹出される。
In the example shown in Fig. 1, suction is performed using the pressure difference between the impeller and the low pressure section upstream of the impeller, but this multistage fluid machine effectively blows out the flow sucked in from the stationary boundary layer at the low pressure section. An example is shown in FIG. The fluid sucked in from the stationary boundary layer passes through the duct 10c and is blown out from the outlet flb.

吹出し口11bは前段のデイフユーザ等の剥離点近傍で
剥離点の上流側に設けてあり、吹出した流れは剥離を抑
制する。剥離は第6図のAに示すように、壁付近の流速
が壁に垂直な方向に変化せず、その大きさが零のときに
発生する。吹出しは、壁付近での低速流の速度を増加さ
せるよう下流側に向けて行ない。
The blowout port 11b is provided near the separation point of the front-stage diff user or the like and on the upstream side of the separation point, and the blown flow suppresses separation. Separation occurs when the flow velocity near the wall does not change in the direction perpendicular to the wall and its magnitude is zero, as shown in A of FIG. The blow is directed downstream to increase the velocity of the slow flow near the wall.

第6図のBに示す安定な速度分布を形成することにより
剥離を防ぐ。
Peeling is prevented by forming a stable velocity distribution shown in FIG. 6B.

静止側境界層を吸込み、流れを層流に保つ場合。When the stationary boundary layer is sucked in and the flow is kept laminar.

コア層の高速流を壁近くまで降下させるためには大量の
吸込みが必要となる。そこで静止側境界層に吹出しと吸
込みを併用した実施例を第7図に示す。吸込み口8cは
上流側の高圧部に設けてあり、吸込まれた流体はケーシ
ング内のダクトlodを通って、吹出し口1.1 cよ
り静止側境界層へ吹出される。また吸込み口8dは、静
止側境界層流れに沿って、吹出し口11cの下流に設け
てあり。
A large amount of suction is required to bring the high-speed flow of the core layer down close to the wall. Therefore, FIG. 7 shows an embodiment in which both blowing and suction are used in the stationary boundary layer. The suction port 8c is provided in the high pressure section on the upstream side, and the sucked fluid passes through the duct lod inside the casing and is blown out from the blowout port 1.1c to the stationary boundary layer. Further, the suction port 8d is provided downstream of the blowout port 11c along the stationary side boundary layer flow.

吸込み口11cより吸込まれた流体はケーシング内のダ
クト10sを通って下流側の低圧部に吹出される。吹出
し口lieと吸込み口8dは、第8図に示すようにそれ
ぞれ静止側境界層流れの下流側と上流側を向いており、
吸込み口8dで吸込む流体の大部分は、吹出し口11c
から吹出された流体である。すなわち吹出しと吸込みを
併用することにより、外部の流体による移動する流体の
層が壁面上に形成され、回転する羽根車に引きづられて
発生した流れとの相対速度を減少させ、流れの安定化を
計る。
The fluid sucked in from the suction port 11c passes through the duct 10s in the casing and is blown out to the low pressure section on the downstream side. The blowout port lie and the suction port 8d face the downstream and upstream sides of the stationary boundary layer flow, respectively, as shown in FIG.
Most of the fluid sucked in by the suction port 8d is transferred to the blowout port 11c.
This is the fluid blown out from. In other words, by using blowing and suction together, a layer of moving fluid caused by external fluid is formed on the wall surface, reducing the relative velocity of the flow generated by the rotating impeller, and stabilizing the flow. Measure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ケーシング内部に吸込み、吹出し構造
を設けるため、流路内の小さな圧力差を利用して吸込み
、吹出しが可能となり、流体機械の円板摩擦低減を容易
にする効果がある。
According to the present invention, since the suction and blowout structure is provided inside the casing, suction and blowout can be performed using a small pressure difference within the flow path, and this has the effect of facilitating reduction of disc friction in a fluid machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第5図、第7図はともに本発明の一実施例を備
えた流体機械の縦断面図、第2図及び第3図は吸込みを
適用したときの旋回速度分布及び径方向速度分布図、第
4図は円板摩擦トルクの説明図、第6図は吹出しを適用
したときの速度分布図、第8図は吸込みと吹出しを同時
に適用したときの速度分布図、第9図は従来形流体機械
の羽根車とケーシングとの間の速度分布図である。 1・・羽根車、2a・・ケーシング、6a ・チャンバ
。 7a・・表面材、8a・・・吸込み0.10a・・・ダ
クト、第 図 1・・・羽ルt :a+・−乍−シン2〜− らL・・・′r?71\・・ 7L−表面材 ♂え゛”咀Δ)K。 10良’−?”ヮト 11&−、Qll、@ L 0 609− 蔓 Z 図 ■ 図 舅 図 しイノルス番文 e ■ 図 ′¥;6 図
FIGS. 1, 5, and 7 are longitudinal cross-sectional views of a fluid machine equipped with an embodiment of the present invention, and FIGS. 2 and 3 are swirling velocity distribution and radial velocity when suction is applied. Distribution diagram, Figure 4 is an explanatory diagram of disk friction torque, Figure 6 is a velocity distribution diagram when blowing is applied, Figure 8 is a velocity distribution diagram when suction and blowing are applied simultaneously, Figure 9 is FIG. 2 is a velocity distribution diagram between an impeller and a casing of a conventional fluid machine. 1. Impeller, 2a. Casing, 6a. Chamber. 7a...Surface material, 8a...Suction 0.10a...Duct, Figure 1...Full t:a+・-乍-shin2~-raL...'r? 71\... 7L-Surface material ♂E゛"咀Δ)K. 10Good'-?"ヮ11&-, Qll, @ L 0 609- Vine Z Diagram ■ Diagram and Inolus number pattern e ■ Diagram'¥;6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、ケーシング内に羽根車を回転可能に収納した流体機
械において、羽根車の側板にそれぞれ対向する静止壁面
に吸込み手段を設け、前記吸込み手段より吸込まれた流
体を吹出す手段を低圧部に設け、吸込み手段から吹出し
手段へ流体を導くためのダクトを設けたことを特徴とす
る流体機械。
1. In a fluid machine in which an impeller is rotatably housed in a casing, a suction means is provided on a stationary wall surface facing each side plate of the impeller, and a means for blowing out the fluid sucked from the suction means is provided in a low pressure part. A fluid machine characterized by being provided with a duct for guiding fluid from suction means to blowout means.
JP14538089A 1989-06-09 1989-06-09 Fluid machine Pending JPH0311197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14538089A JPH0311197A (en) 1989-06-09 1989-06-09 Fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14538089A JPH0311197A (en) 1989-06-09 1989-06-09 Fluid machine

Publications (1)

Publication Number Publication Date
JPH0311197A true JPH0311197A (en) 1991-01-18

Family

ID=15383905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14538089A Pending JPH0311197A (en) 1989-06-09 1989-06-09 Fluid machine

Country Status (1)

Country Link
JP (1) JPH0311197A (en)

Similar Documents

Publication Publication Date Title
US7244099B2 (en) Multi-vane centrifugal fan
JP2010261371A (en) Centrifugal fan and air conditioner
JPH11324995A (en) Blowing device
US8038391B2 (en) Vortex blower
JPH07279892A (en) Multi-blade fan
JPH0311197A (en) Fluid machine
JPH074388A (en) Impeller for centrifugal blower
JP2012140881A (en) Multiblade blower
JPS6147999B2 (en)
JPH01182600A (en) Fluid machine for controlling boundary layer
JP2003180051A (en) Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2003056485A (en) Vortex flow fan
JP2001182692A (en) Centrifugal air blower
JPH05296195A (en) Axial fan
JP2662125B2 (en) Axial fan
WO2020100459A1 (en) Centrifugal fan
JP2002364374A (en) Variable capacity turbosupercharger
WO2020158104A1 (en) Rotary machine
WO2023199731A1 (en) Centrifugal fan
JPH02157496A (en) Blower
JP7413973B2 (en) Blower
WO2022014376A1 (en) Turbofan
JP4258929B2 (en) Electric tool
KR102000258B1 (en) 2 step radial blower
JPH06146922A (en) Casing of air compressor