JPH0311191A - Fuel supply pump - Google Patents

Fuel supply pump

Info

Publication number
JPH0311191A
JPH0311191A JP14769789A JP14769789A JPH0311191A JP H0311191 A JPH0311191 A JP H0311191A JP 14769789 A JP14769789 A JP 14769789A JP 14769789 A JP14769789 A JP 14769789A JP H0311191 A JPH0311191 A JP H0311191A
Authority
JP
Japan
Prior art keywords
flow path
channel
inlet
pump
inlet hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14769789A
Other languages
Japanese (ja)
Inventor
Koichi Mine
功一 峯
Hikari Kikuta
光 菊田
Hitoshi Takeuchi
仁司 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP14769789A priority Critical patent/JPH0311191A/en
Publication of JPH0311191A publication Critical patent/JPH0311191A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/007Details of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/503Inlet or outlet of regenerative pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To enhance efficiency of a pump by setting an area of an inlet portion in a suitable range of a channel connected to an inlet hole in the most upstream larger than that of a channel in the downstream of the inlet portion in such a manner as to gradually become smaller toward the downstream. CONSTITUTION:When the first and second impellers 11, 12 of a pump 10 are rotated by the drive of a motor 2, fuel flows into a casing 1 through an inlet hole 25, a first channel 15, a communication hole, a second channel 16 and an outlet hole 30 via a fuel filter 31 so as to be discharged outside from a discharge port 32. There is provided an inlet portion 15a where a channel area gradually becomes larger toward the inlet hole 25 with the variation of a depth of channel grooves 23, 24. A connecting portion 33 of a pump body 17 to the channel groove 23 is formed in a gently curved surface. Therefore, the fuel flowing from the inlet hole 25 into the channel 15 is gradually increased in its pressure without any sharp change in the inlet portion 15a so as to be introduced to the channel on the downstream, thus restraining any generation of cavitation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は燃料供給ポンプに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a fuel supply pump.

(従来技術) 燃料供給ポンプとしては回転駆動され、外周部にIJ@
の羽根溝を0する少なくとも1つのインペラと、該イン
ペラの各々を羽根溝周囲において取囲んで羽根溝との間
に円周方向の流路を形成するポンプケーシングと、該ポ
ンプケーシングに前記流路の各々に対応してその上下に
設けられ、互いに円周方向に適宜間隔を隔てて配置され
た入口穴及び出口穴とを有して構成されたウェス]型の
ポンプ部を―えたものが知られており、例えば複数のイ
ンペラを備えた多段式のものでは一段目の入口穴から流
入した燃料は対応するインペラの円周方向の流路を通っ
て昇圧された後−段目の出口穴すなわち二段目の入口穴
を経て同様に対応するインペラの円周方向の流路を通っ
てさらにI11圧された後二段目の出口穴すなわち三段
目の入口穴に至り、このように燃料が次々に昇圧されて
最終段の出口穴より吐出される。
(Prior art) The fuel supply pump is rotatably driven and has an IJ@
at least one impeller having a blade groove of 0; a pump casing surrounding each of the impellers around the blade groove to form a circumferential flow path between the impeller and the blade groove; It is known that the pump part has a rag-type pump part, which has an inlet hole and an outlet hole, which are provided above and below each corresponding to each other, and are arranged at appropriate intervals in the circumferential direction. For example, in a multi-stage type with multiple impellers, the fuel that flows in from the inlet hole of the first stage is pressurized through the circumferential passage of the corresponding impeller, and then passes through the outlet hole of the second stage, i.e. The fuel passes through the second-stage inlet hole, passes through the circumferential flow path of the corresponding impeller, is further pressurized by I11, and then reaches the second-stage outlet hole, that is, the third-stage inlet hole. The pressure is increased one after another and discharged from the exit hole of the final stage.

従来、この種のポンプにおいて流路面積は各流路におい
て入口穴から出口穴に至り常に一定に設定されており、
また燃料の吸入口である1段目の入口穴は流路面積より
もかなり大きく設定されでいる。
Conventionally, in this type of pump, the flow path area is always set constant from the inlet hole to the outlet hole in each flow path.
Furthermore, the first-stage inlet hole, which is the fuel intake port, is set to be considerably larger than the flow path area.

(発明が解決しようとする課題) 従来のポンプでは燃料の流路面積が1段目の入口穴から
対応する流路に至り急激に狭くなっている。このため燃
料の流速が急激に変化して圧力降下を生じ、キャビテー
ションが発生して昇圧性能の低下及び流Mの低下を引起
こし、ポンプ効率が悪い欠点を有していた。
(Problems to be Solved by the Invention) In conventional pumps, the area of the fuel flow path is rapidly narrowed from the first-stage inlet hole to the corresponding flow path. For this reason, the flow rate of the fuel changes rapidly, causing a pressure drop, and cavitation occurs, resulting in a decrease in pressure raising performance and a decrease in the flow M, resulting in a disadvantage of poor pump efficiency.

また上記のように圧力の低下を生ずることから、ポンプ
をtfA温で再始動さけた場合には多量の燃料ベーパが
発生し、高温再始動性が悪い欠点を有していた。
In addition, since the pressure decreases as described above, a large amount of fuel vapor is generated when the pump is avoided to be restarted at the tfA temperature, which has the drawback of poor high-temperature restartability.

(:1題を解決するための手段) 上記課題を解決するため本発明の燃料供給ポンプは回転
駆動され、外周部に複数の羽根溝を有する少なくとも1
つのインペラと、該インペラの各々を前記羽根溝周囲に
おいて取囲んで前記羽根溝との間に円周方向の流路を形
成するポンプケーシングと、該ポンプケーシングに前記
流路の各々に対応してその上下に設けられ、互いに円周
方向に通官聞隔を隔てて配置された入口穴及び出口穴と
を有する燃料供給ポンプであって、iyJ記入口穴のう
ら最も上流側の入口穴に連続する前記流路の適宜範囲の
人口部の面積を、該入口部の下流側の前記流路の面積よ
りも大きく設定し、かつ前記入口部の面積を下流側に至
り徐々に小さくなるように設定して構成される。
(Means for Solving Problem 1) In order to solve the above problem, the fuel supply pump of the present invention is rotatably driven, and has at least one vane groove on the outer periphery.
a pump casing surrounding each of the impellers around the blade grooves to form a circumferential passage between the impeller and the blade groove; A fuel supply pump having an inlet hole and an outlet hole provided above and below and spaced apart from each other in the circumferential direction, the fuel supply pump being continuous with the inlet hole on the most upstream side behind the iyJ inlet hole. The area of the population section in an appropriate range of the flow path is set to be larger than the area of the flow path on the downstream side of the inlet portion, and the area of the inlet portion is set so that it gradually becomes smaller toward the downstream side. It is composed of

(作用) 本発明の燃料供給ポンプにおいて、入口穴のうち最も上
流側の入口穴1なわち燃料の吸込口から対応する流路内
に流入した燃料は該流路の入口部において急激な変化を
伴うことなく徐々に界圧しU’F流鱈の流路に導かれる
(Function) In the fuel supply pump of the present invention, the fuel that flows into the corresponding flow path from the most upstream inlet hole 1 of the inlet holes, that is, the fuel suction port undergoes a rapid change at the inlet of the flow path. The surface pressure gradually builds up without any accompanying movement, and the cod is guided into the flow path of the U'F cod.

(実施例) 次に本発明の第1実施例による燃料供給ポンプを第1図
〜第7図を参照して説明する。
(Embodiment) Next, a fuel supply pump according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7.

第1図において、円筒状のケーシング1の内部には一部
のみを図示したモータ部2が設置jられ(いる。本実7
1Ji@においてモータ部2はアーマチ」−ア3とケー
シング1の内周面に取付けられたマグネット4とを有し
ており、ケーシング1の上端部に取付けられた図示しな
いカバーに設けられた端子5.5を介してアーマチュア
3に通電することで7−マチ1ア3をケーシング1と同
軸で回転させるように構成されている。なお、このよう
なモータ部2の構成は周知であり、詳しい説明は省略す
る。またモータ部2としては図示した以外の他の形式の
ものも利用できる。モータ部2のアーマチュア3のシャ
フト7の下部はケーシング1の下端にかしめつけられた
ポンプカバー8(後述するポンプケーシング14の一部
を構成している)にベアリング9を介して支承されてお
り、シャフト7はベアリング9を^通してさらに下方に
延出している。
In FIG. 1, a motor section 2, only a part of which is shown, is installed inside a cylindrical casing 1.
In 1Ji@, the motor section 2 has an armature 3 and a magnet 4 attached to the inner peripheral surface of the casing 1, and a terminal 5 provided on a cover (not shown) attached to the upper end of the casing 1. The structure is such that the armature 3 is rotated coaxially with the casing 1 by energizing the armature 3 through the casing 1. It should be noted that the configuration of such a motor section 2 is well known, and detailed explanation will be omitted. Further, as the motor section 2, other types than those shown can also be used. The lower part of the shaft 7 of the armature 3 of the motor section 2 is supported via a bearing 9 on a pump cover 8 (constituting a part of a pump casing 14 to be described later) which is caulked to the lower end of the casing 1. The shaft 7 passes through the bearing 9 and extends further downward.

次に上記モータ部2により駆動されるポンプ部10の構
成を説明すると、ポンプ部10はウェスコ型のもので、
上記ロータ2のシャフト7の下端に該シャフト7に対し
直角に取付けられた円板状の第1インペラ11及び第2
インペラ12とを右している。第1インペラ11及び第
2インペラ12は同一構成のもので、上下面の外周部に
複数の羽根溝13をそれぞれ籠えている。ここでシャフ
ト7の下端はD型断面を有し、第1インペラ11及び第
2インペラ12は中心部に対応するD型の穴を有してシ
せフト7にT!tiiI!されており、第1インペラ1
1及び第2インペラ12はシャフト7に対し追従回転可
能及び軸方向に移動可能となつCいる。
Next, the configuration of the pump section 10 driven by the motor section 2 will be explained. The pump section 10 is of a Wesco type.
A first impeller 11 and a second impeller each having a disc shape are attached to the lower end of the shaft 7 of the rotor 2 at right angles to the shaft 7.
The impeller 12 is on the right. The first impeller 11 and the second impeller 12 have the same configuration, and each has a plurality of blade grooves 13 in the outer periphery of the upper and lower surfaces. Here, the lower end of the shaft 7 has a D-shaped cross section, and the first impeller 11 and the second impeller 12 have corresponding D-shaped holes in their centers so that the shaft 7 has a T! tiii! and the first impeller 1
The first and second impellers 12 are capable of following rotation with respect to the shaft 7 and are movable in the axial direction.

14は第1インペラ11及び第2インペラ12を取凹ん
でこれらの羽m溝13の周囲に円周方向の第11%i路
15及び第21路16をそれぞれ形成するポンプケーシ
ングで、図中下方よりポンプボデー17.第1スペーサ
18.センタープレート19、第2スペーサ20及び上
記で説明したポンプカバー8とから構成されており、こ
れらはポンプカバー8に螺合する4本のスクリュ21(
図1よ一本のみを示す)により相互に重ね合わせ状態で
固定されている。
14 is a pump casing that recesses the first impeller 11 and the second impeller 12 to form circumferential 11% i passages 15 and 21st passages 16 around the blade m grooves 13, respectively; More pump body 17. First spacer 18. It is composed of a center plate 19, a second spacer 20, and the pump cover 8 described above, and these are connected to four screws 21 (
(Only one is shown in FIG. 1) are fixed to each other in an overlapping state.

ここで、ポンプボデー17とセンタープレート19とは
相対する側に上記第1流路15の1下方向の壁面をそれ
ぞれ形成する流路1f123.24を有しており、第1
スペーサ18は第1流路15の半径方向の壁面を形成し
ている。またポンプボデー17には第11路15への入
口穴25すなわち燃料の吸込み口が、またセンタープレ
ート19に第1′FN路15からの出口穴と第2流路1
6への入口穴を兼用する図示しない連通穴がそれぞれ設
けられており、第2図に示すように第1スベーリ18に
は第1流路15を入口穴25と連通穴との間で仕切る隔
壁27が形成されている。
Here, the pump body 17 and the center plate 19 have flow passages 1f 123 and 24, respectively, which form a downward wall surface of the first flow passage 15 on opposing sides.
The spacer 18 forms a wall surface of the first flow path 15 in the radial direction. The pump body 17 also has an inlet hole 25 to the 11th passage 15, that is, a fuel suction port, and the center plate 19 has an outlet hole 25 from the 1'FN passage 15 and a second passage 1.
Communication holes (not shown) which also serve as inlet holes to the inlet holes 6 and 6 are respectively provided, and as shown in FIG. 27 is formed.

また、センタープレート19とポンプカバー8とは相対
する側に上記第2流路16の上下方向の壁面をそれぞれ
形成する流路溝28.29を有しており、第2スペーサ
20は第2流路16の半径方向の壁面を形成している。
Furthermore, the center plate 19 and the pump cover 8 have channel grooves 28 and 29 on opposing sides, respectively, which form the vertical wall surfaces of the second flow channel 16, and the second spacer 20 is arranged in the second flow channel 16. It forms the radial wall of the channel 16.

またポンプカバー8には第2流路16の出口穴30が設
けられており、第2スペーサ20には第2流路16を連
通穴と出口穴30との間で仕切る隔壁(図示しない)が
形成されている。
The pump cover 8 is also provided with an outlet hole 30 for the second flow path 16, and the second spacer 20 is provided with a partition wall (not shown) that partitions the second flow path 16 between the communication hole and the outlet hole 30. It is formed.

また、上記第1流路15の入口穴25には燃料フィルタ
31が接続されており、モータ部2の駆IJJによりポ
ンプ部10の第1インペラ11及び第2インペラ12を
回転させると、燃料は燃料フィルタ31を介して入口穴
25より第1流路、連通穴及び第2流路16を経て出口
穴30よりケーシング1内に流入し、ケーシング1の上
端部に設けられた吐出口32より外部に吐出される。
Further, a fuel filter 31 is connected to the inlet hole 25 of the first flow path 15, and when the first impeller 11 and the second impeller 12 of the pump section 10 are rotated by the drive IJJ of the motor section 2, the fuel is removed. The fuel flows into the casing 1 from the inlet hole 25 via the fuel filter 31, through the first flow path, the communication hole, and the second flow path 16, and from the outlet hole 30, and from the discharge port 32 provided at the upper end of the casing 1 to the outside. is discharged.

ここで、第3図に示すように、入口穴25に連続する第
1流路15には、入口穴25を起点とする角度θ(−7
0°) (第2図参照)の範囲において、流路面積が入
口穴25に向かうにつれ徐々に拡大する入口部15aが
設けられている。このような流路面積の拡大は第1流路
15の幅を一定としてその高さを変化させることにより
得られている。このような高さの変化は第11路15を
形成するポンプボデー17の流路溝23とセンタープレ
ート19の流路溝24とをそれぞれ同一の割合で入口穴
25に至り徐々に深くなるように形成することで達成さ
れており、入口部15aにおいCも第1インペラ11上
下の流路の対称性が保たれている。
Here, as shown in FIG. 3, the first flow path 15 continuous to the inlet hole 25 has an angle θ (-7
0°) (see FIG. 2), an inlet portion 15a is provided whose flow path area gradually increases as it approaches the inlet hole 25. Such an expansion of the flow path area is achieved by keeping the width of the first flow path 15 constant and changing its height. Such a change in height is such that the passage grooves 23 of the pump body 17 and the passage grooves 24 of the center plate 19, which form the eleventh passage 15, reach the inlet hole 25 at the same ratio and gradually become deeper. This is achieved by forming the upper and lower flow paths of the first impeller 11 in the inlet portion 15a as well.

上記のように構成された第1流路15の入口部15aか
らその下流側の流路部分に至る流れに直角な方向の断面
形状の変化が第4図、第5図及び第6図に順次示されて
いる。ここで第4図は入口部15aの上流側端部におけ
る流路断面形状を、第5図は人1」部15aの下流側端
部における流路断面形状を、また第6図は入口部15a
の下流の流路断面形状をそれぞれ示しており、流路面積
は入口部15aの下流側において一定の流路面積を保っ
て次段の連通穴に至っている。
Changes in the cross-sectional shape in the direction perpendicular to the flow from the inlet portion 15a of the first flow path 15 configured as described above to the flow path portion on the downstream side are sequentially shown in FIGS. 4, 5, and 6. It is shown. Here, FIG. 4 shows the cross-sectional shape of the flow path at the upstream end of the inlet section 15a, FIG. 5 shows the cross-sectional shape of the flow path at the downstream end of the person 1" section 15a, and FIG.
The cross-sectional shape of the downstream flow path is shown, and the flow path area maintains a constant flow path area on the downstream side of the inlet portion 15a and reaches the next stage communicating hole.

ざらに、第3図に戻り、入口穴25と第1流路15を形
成するポンプボデー17の流路溝23との連続部33は
同図に示すようになだらかな曲面状に形成されている。
Roughly returning to FIG. 3, the continuous portion 33 between the inlet hole 25 and the channel groove 23 of the pump body 17 that forms the first channel 15 is formed into a gently curved shape as shown in the figure. .

また上記第1流路15の入口部15aの好ましい寸法例
として、例えば入口穴25の径が8−で流路溝23.2
4の幅を3.6mg+とじ、第6図に示した入口部15
aの下流の流路断面における流路溝23,24の深さが
0.85鱈で断面積を2゜1jW2 とした場合には、
第4図に示した断面における流路溝23.24の深さは
2taaで断面積は6゜2illl、第5図に示した断
面における流路溝23゜24の深さは1層で断面積は2
.6層m   、にそれぞれ設定され、連続133の曲
面のRは1.5層m+に設定される。
Further, as an example of preferable dimensions of the inlet portion 15a of the first flow path 15, for example, the diameter of the inlet hole 25 is 8- and the flow path groove 23.
The width of 4 is 3.6 mg+, and the entrance part 15 shown in FIG.
When the depth of the channel grooves 23 and 24 in the downstream channel section of a is 0.85 mm and the cross-sectional area is 2°1jW2,
The depth of the channel grooves 23 and 24 in the cross section shown in Fig. 4 is 2 taa and the cross-sectional area is 6°2llll, and the depth of the channel grooves 23 and 24 in the cross section shown in Fig. 5 is 1 layer and the cross-sectional area is 2
.. 6 layers m, respectively, and R of the continuous curved surface 133 is set to 1.5 layers m+.

本実施例の燃料ポンプでは入口穴25を起点とする角度
θ(−70°)の範囲において、流路の高さを変えるこ
とにより、すなわち対応する流路i萬23.24の深さ
を変えることにより流路面積が人口穴25に向かうにつ
れ徐々に拡大する入口M15aが設けられており、かつ
ポンプボデー17の流路溝23との連続部33はなだら
かな曲面状に形成されているので、入口穴25から第1
流路15に流入した燃料は入口部15aにおいて急激な
変化を伴うことなく徐々に昇圧して下流側の流路に導か
れる。
In the fuel pump of this embodiment, the height of the flow path is changed within the range of angle θ (-70°) starting from the inlet hole 25, that is, the depth of the corresponding flow path 23.24 is changed. As a result, an inlet M15a is provided whose flow path area gradually increases toward the artificial hole 25, and a continuous portion 33 with the flow path groove 23 of the pump body 17 is formed in a gently curved shape. From the entrance hole 25, the first
The fuel that has flowed into the flow path 15 gradually increases in pressure at the inlet portion 15a without any sudden changes, and is guided to the downstream flow path.

このため燃料の昇圧能力が向上してキャビテージョンの
発生が抑制され、ポンプff1fllの増加とともにポ
ンプ効率の向上が得られ、ざらには高温始動時における
ベーパの発生が抑v1されて高温始動性が向上する利点
を有する。
As a result, the fuel pressure boosting ability is improved and the occurrence of cavitation is suppressed, and pump efficiency is improved as the pump ff1fll is increased.In addition, vapor generation at high temperature startup is suppressed and high temperature startability is improved. It has the advantage of improving.

第7図には上記第1実施例の燃料供給ポンプにおける角
度(入口穴25を起点と16第1魔路15の流れ方向の
角度>(deQ)−圧力(Kg/ cj!>特性が従来
の燃料ポンプとの比較で示しである。
FIG. 7 shows that the angle (angle in the flow direction of the first magic path 15 starting from the inlet hole 25>(deQ)-pressure (Kg/cj!>) of the fuel supply pump of the first embodiment is different from that of the conventional one. This is shown in comparison with a fuel pump.

図中実線は本実施例の特性を、破線は従来例の特性を示
し、本実施例では入口穴25直後における従来例のよう
な圧力降下部分く図中にハンチングで示す)がなくなり
スムーズな昇圧が得られる。
The solid line in the figure shows the characteristics of this embodiment, and the broken line shows the characteristics of the conventional example. In this embodiment, there is no pressure drop immediately after the inlet hole 25 (as shown by hunting in the figure) in the conventional example, resulting in smooth pressure increase. is obtained.

次に本発明の第2実施例を第8図〜第14図を参照して
説明づる。
Next, a second embodiment of the present invention will be described with reference to FIGS. 8 to 14.

なお本実施例の燃料供給ポンプの基本的な#4造は上記
第1実施例の燃料供給ポンプと同様であり、同様な部材
には同一符号を付してその説明を省略する。
The basic #4 structure of the fuel supply pump of this embodiment is the same as that of the fuel supply pump of the first embodiment, and similar members are given the same reference numerals and their explanations will be omitted.

第8図に示すように、入口穴25に連続する第1流路1
5には、入口穴25を起点とする上記第1実施例と周様
な角度θ(=70”)(第9図参照)の範囲において、
流路面積が入口穴25に向かうにつれ徐々に拡大する入
口部15bが設けられている。このような流路面積の拡
大は第1流路15の高さを一定としてその幅を変化させ
ることにより得られている。このような幅の変化は第1
流路15を形成するポンプボデー17の流路溝23とセ
ンタープレート19の流路溝24とをそれぞれ同一の割
合で入口穴25に至り徐々に広くなるように形成するこ
とで達成されており、入口部15bにおいて流路溝23
と流路tlt24の半径方向内側の縁部は入口穴25に
向かうにつれw11インペラ11の羽根溝13の半径方
向内側の縁部よりも徐々に内側に移行し、かつ、半径方
向外側の縁部も徐々に外側に移行して形成されている。
As shown in FIG. 8, the first channel 1 is continuous with the inlet hole 25.
5, in the range of the first embodiment and the circumferential angle θ (=70'') (see FIG. 9) starting from the inlet hole 25,
An inlet portion 15b whose flow path area gradually increases toward the inlet hole 25 is provided. This expansion of the flow path area is achieved by keeping the height of the first flow path 15 constant and changing its width. This change in width is the first
This is achieved by forming the flow passage grooves 23 of the pump body 17 and the flow passage grooves 24 of the center plate 19, which form the flow passages 15, at the same ratio so that they gradually become wider as they reach the inlet hole 25. Flow path groove 23 at inlet portion 15b
The radially inner edge of the flow path tlt24 gradually moves inward from the radially inner edge of the blade groove 13 of the w11 impeller 11 as it moves toward the inlet hole 25, and the radially outer edge also moves toward the inlet hole 25. It is formed by gradually moving outward.

上記のように構成された第1流路15の入口部15bか
うその下流側のi路部分に至る流れに1′1角な方向の
断面形状の変化が第10図、第11図。
FIGS. 10 and 11 show changes in the cross-sectional shape in the direction 1'1 angle to the flow from the inlet portion 15b of the first flow path 15 configured as described above to the i-path portion on the downstream side.

第12図及び第13図に順次示されている。ここで第1
0図はΔ口部15bにおける流路断面形状を、第11図
は入口穴25の下流側に近接する部位の流路断面形状を
、第12図は入口部15bの下流側端部における流路断
面形状を、また第13図は入口部15bの下流の流路断
面形状をそれぞれ示しており、流路面積は入口部15b
の下流側において一定の流路面積を保って次段の連通穴
に至っている。
These are sequentially shown in FIGS. 12 and 13. Here the first
Fig. 0 shows the cross-sectional shape of the flow path at the Δ mouth portion 15b, Fig. 11 shows the cross-sectional shape of the flow path at a portion adjacent to the downstream side of the inlet hole 25, and Fig. 12 shows the cross-sectional shape of the flow path at the downstream end of the inlet portion 15b. 13 shows the cross-sectional shape of the flow path downstream of the inlet portion 15b, and the flow path area is the same as that of the inlet portion 15b.
On the downstream side, a constant flow path area is maintained to reach the next stage's communication hole.

以上のように本実施例では第1流路15の入口部15.
bの流路断面積が対応する流路溝23.24の幅を変え
ることにより入口穴15に至り徐々に大きくなってJ3
す、入口穴25から第1流路15に流入した燃料は人口
部15bにおいて急激な変化を伴うことなく徐々に昇圧
して下流側の流路に導かれる。
As described above, in this embodiment, the inlet portion 15 of the first flow path 15.
By changing the width of the corresponding channel grooves 23 and 24, the flow path cross-sectional area of b becomes gradually larger until it reaches the inlet hole 15.
The fuel that has flowed into the first flow path 15 from the inlet hole 25 gradually increases in pressure without any sudden change in the population portion 15b and is guided to the downstream flow path.

このため上記第1実施例のと同様に燃料の弁圧能力が向
トしてキャビテーションの発生が抑υ1され、ボン7流
出の増加とともにポンプ効率の向上が得られ、さらには
高温始動時におけるベーパの発生が抑制されて高温始動
性が向上する利点を有する。
Therefore, as in the first embodiment, the valve pressure capacity of the fuel is increased, suppressing the occurrence of cavitation υ1, increasing the outflow of the cylinder 7 and improving the pump efficiency. This has the advantage that the occurrence of is suppressed and high-temperature startability is improved.

また特に本実施例の入口部15bでは第10図に示した
ように入口穴25の部位において第1インペラ11の先
端部と第1スペーサ18との闇の幅Wが大きくなってい
るため入口穴2511IJの流路部分とその反対側の流
路部分とのIXlの圧力差がなくなり、昇圧が入口部1
5bにおいて第1インペラ11の両側で円滑に行われる
利点を有する。
In addition, especially in the inlet portion 15b of this embodiment, as shown in FIG. The pressure difference in IXl between the flow path section of 2511IJ and the flow path section on the opposite side disappears, and the pressure increases at the inlet section 1.
5b has the advantage of being carried out smoothly on both sides of the first impeller 11.

第14図には上記第2実浦例の燃料供給ポンプにおける
角度(入口穴25を起点とする第12i路15の流れ方
向の角度)(deg)−圧力(KV /−)特性が従来
の燃料ポンプとの比較で示しである。図中実線は本実施
例の特性を、破線は従来例の特性を示し、本実施例でも
上記第1実施例と同様に入口穴25直侵における従来例
のような圧力降下部分(図中にハツチングで示す)がな
くなりスムーズな昇圧が得られる。
FIG. 14 shows that the angle (angle in the flow direction of the 12i passage 15 starting from the inlet hole 25) (deg) - pressure (KV/-) characteristic of the fuel supply pump of the second example is different from that of the conventional fuel. This is shown in comparison with a pump. The solid line in the figure shows the characteristics of this embodiment, and the broken line shows the characteristics of the conventional example. In this embodiment, as in the first embodiment, there is a pressure drop part (not shown in the figure) like the conventional example at the point where the inlet hole 25 directly penetrates. (indicated by hatching) is eliminated and smooth pressure increase is obtained.

次に本発明の第3実施例を第15図〜第22図を参照し
て説明する。
Next, a third embodiment of the present invention will be described with reference to FIGS. 15 to 22.

なお本実施例の燃料供給ポンプの基本的な構造も上記第
1実施例の燃料供給ポンプと同様であり、同様な部材に
は同一符号を付してその説明を省略する。
The basic structure of the fuel supply pump of this embodiment is also the same as that of the fuel supply pump of the first embodiment, and similar members are given the same reference numerals and their explanations will be omitted.

第15図は上記第1実施例の■−■線断面図である第2
図に対応する図で、同図に示すように、入口穴25に連
続する第1流路15には、入口穴25を起点とする上記
第1実施例とh1様な角度θ(−70” )の範囲にお
いて、流路面積が入口穴25に向かうにつれ徐々に拡大
する入口部15cが設置ノられている。このような流路
面積の拡大は第1流路15の高さ及び幅の双方を変化さ
「ることにより11ノられている。ここで高さ方向の変
化は第1流路15を形成するポンプボデー17の流路溝
23とセンタープレート19の流路溝24とをそれぞれ
同一の割合で入口穴25に至り徐々に深くなるように形
成することで、また幅方向の変化流路溝23と流路溝2
4とをそれぞれ同一の割合で入口穴25に至り徐々に広
くなるように形成することで達成されており、入口部1
5bにおいて流路溝23と流路溝24の半径方向内側の
縁部は入口穴25に向かうにつれ第1インペラ11の羽
根溝13の半径方向内側の縁部よりも徐々に内側に移行
し、かつ、半径方向外側の縁部も徐々に外側に移行して
形成されている。
FIG. 15 is a second cross-sectional view taken along the line ■-■ of the first embodiment.
As shown in the figure, the first flow path 15 continuous to the inlet hole 25 has an angle θ (-70") similar to h1 with respect to the first embodiment starting from the inlet hole 25. ), an inlet portion 15c is installed in which the channel area gradually increases as it approaches the inlet hole 25. Such an increase in the channel area is due to both the height and width of the first channel 15. 11.Here, the change in the height direction is such that the flow groove 23 of the pump body 17 forming the first flow passage 15 and the flow groove 24 of the center plate 19 are the same. By forming the groove so that it gradually becomes deeper until it reaches the inlet hole 25 at a ratio of
This is achieved by forming the inlet holes 1 and 4 at the same ratio so that they gradually become wider until they reach the inlet hole 25.
5b, the radially inner edges of the flow grooves 23 and 24 gradually move inward than the radially inner edges of the blade grooves 13 of the first impeller 11 toward the inlet hole 25, and , the radially outer edge is also formed to gradually move outward.

また、第16図に示すように、入口穴25と第1流路1
5を形成するポンプボデー17の流路溝23との連続部
34はなだらかな曲面状に形成されている。
In addition, as shown in FIG. 16, the inlet hole 25 and the first flow path 1
A continuous portion 34 of the pump body 17 forming the flow path groove 23 is formed into a gently curved shape.

上記のように構成された第1流路15の入口f’J11
5cからぞの下流側の流路部分に至る流れに直角な方向
の断面形状の変化が第17図、第18図。
Inlet f'J11 of the first flow path 15 configured as described above
Figures 17 and 18 show changes in the cross-sectional shape in the direction perpendicular to the flow from 5c to the downstream flow path.

第19図及び第20図に順次水されている。ここで第1
7図は入口穴25における流路断面形状を、第18図は
入口穴25の下流側に近接づる部位の流路断面形状を、
第19図は入口部15cの下流lll端部における流路
断面形状を、また第20図は入口部15cの下流の流路
断面形状をそれぞれ示しており、流路面積は入口部15
cの下゛流側において一定の流路面積を保って次段の連
通穴に至っている。
The water is sequentially shown in FIGS. 19 and 20. Here the first
7 shows the cross-sectional shape of the flow path at the inlet hole 25, and FIG. 18 shows the cross-sectional shape of the flow path at a portion adjacent to the downstream side of the inlet hole 25.
FIG. 19 shows the cross-sectional shape of the flow path at the downstream end of the inlet portion 15c, and FIG. 20 shows the cross-sectional shape of the flow path downstream of the inlet portion 15c.
A constant flow path area is maintained on the downstream side of c and reaches the next stage communicating hole.

また本実施例の入口部15cでは上記第2実施例と同様
に、第17図に示したように入口穴25の部位において
第1インペラ11の先端部と第1スペーサ18との間の
幅Wが大きくなっているため人口穴25側の流路部分と
その反対側の流路部分との間の圧力差がなくなり、昇圧
が入口部15Cにおいて第1インペラ11の両側で円滑
に行われる すなわら本実施例は上記第1実施例の構成と第2実施例
の構成とを組合わせたもので、第1流路15の入口部1
5cの流路断面積が入口穴15に争り徐々に大きくなっ
ており、入口穴25から第1流路15に流入した燃料は
入口部15cにおい−(急激な変化を伴うことなく徐々
に昇圧して下流側の流路に導かれる。
Further, in the inlet portion 15c of this embodiment, as in the second embodiment, the width W between the tip of the first impeller 11 and the first spacer 18 at the inlet hole 25 is is large, so there is no pressure difference between the flow path portion on the artificial hole 25 side and the flow path portion on the opposite side, and the pressure is increased smoothly on both sides of the first impeller 11 at the inlet portion 15C. This embodiment is a combination of the configuration of the first embodiment and the configuration of the second embodiment.
The cross-sectional area of the flow path 5c competes with the inlet hole 15 and gradually increases, and the fuel that flows into the first flow path 15 from the inlet hole 25 gradually increases in pressure without a sudden change. and is guided to the downstream flow path.

このため上記第1実施例及び第2実IM例と同様に燃料
の昇圧能力が向上してキャビテーションの発生が抑制さ
れ、ポンプ流口の増加とともにポンプ効率の向上が得ら
れ、さらにはaiti!始動時におけるベーパの発生が
抑制されて高−始動性が向上する利点を有する。
Therefore, as in the first embodiment and the second actual IM example, the fuel pressure boosting ability is improved, the occurrence of cavitation is suppressed, and the pump efficiency is improved as the number of pump flow ports increases. This has the advantage that the generation of vapor at the time of starting is suppressed and high startability is improved.

また特に本実施例では入口部15cの流路面積の拡大を
高さ方向と幅方向の双方で行っているため流路面積の大
きな拡大が可能となる。このため上記で列挙した利点の
さらに向上が得られ、特に流量特性が著しく向上する。
Further, in particular, in this embodiment, since the flow path area of the inlet portion 15c is expanded in both the height direction and the width direction, it is possible to greatly expand the flow path area. Therefore, the advantages enumerated above are further improved, and in particular, the flow characteristics are significantly improved.

第21図には上記第3実施例の燃料供給ポンプにおける
角度(入口穴25を起点とする第1流路15の流れ方向
の角度)(deQ)−圧力(Ky /ci)特性が従来
の燃料ポンプとの比較で示しである。図中実線は本実施
例の特性を、破線は従来例の特性を示し、本実施例でも
上記第1実施例及び第2実施例と同様に入口穴25直後
における従来例のような圧力降下部分く図中にハツチン
グで示す)がなくなりまた第1実施例及び第2実ll1
AVAの場合に比べてよりスムーズな昇圧が得られる。
FIG. 21 shows that the angle (angle in the flow direction of the first flow path 15 starting from the inlet hole 25) (deQ)-pressure (Ky/ci) characteristic of the fuel supply pump of the third embodiment is different from that of the conventional fuel. This is shown in comparison with a pump. In the figure, the solid line indicates the characteristics of this embodiment, and the broken line indicates the characteristics of the conventional example. In this embodiment, as in the first and second embodiments, there is a pressure drop portion immediately after the inlet hole 25 as in the conventional example. (indicated by hatching in the figure) disappeared, and the first example and the second example
A smoother pressure increase can be obtained compared to the case of AVA.

また第22図には上記第3実施例の燃料供給ポンプにお
ける吐出圧力P <Kl/d>−流mQ <j/[1)
特性が従来の燃料ポンプとの比較で示しである。F7!
4中実線は本実施例の特性を、破線は従来例の特性を示
し、本実施例の燃料供給ポンプでは従来のポンプに対し
同一吐出圧で顕著な流ω増大が見られる。
Further, FIG. 22 shows the discharge pressure P <Kl/d>-flow mQ <j/[1] in the fuel supply pump of the third embodiment.
The characteristics are shown in comparison with a conventional fuel pump. F7!
4. The solid line shows the characteristics of this embodiment, and the broken line shows the characteristics of the conventional example.The fuel supply pump of this example shows a remarkable increase in flow ω at the same discharge pressure compared to the conventional pump.

(効果) 本発明の燃料供給ポンプでは燃料の吸込口から対応する
流路内に流入した燃料が該流路の人口部において急激な
変化を伴うことなく徐々に讐汁して下流側の流路に導か
れるので燃料の昇圧能力が向上してキャビテーションの
発生が抑tl11され、ポンプ流量の増加とともにポン
プ効率の向上が得られ、さらには^温始動時におけるベ
ーパの発すが抑制されて高温始動性が向上する利貞を右
する。
(Effects) In the fuel supply pump of the present invention, the fuel that flows into the corresponding flow path from the fuel suction port gradually flows into the downstream flow path without any sudden change in the artificial part of the flow path. This improves the fuel pressure boosting ability and suppresses the occurrence of cavitation, which increases the pump flow rate and improves the pump efficiency.Furthermore, the generation of vapor during hot starts is suppressed, improving high temperature startability. Toshisada will improve.

なお、以上の実施例はいずれもインペラを2つ惟えた2
段式の燃料供給ポンプに関し説明したが単一のインペラ
を備えた単段式の燃料供給あるいはインペラを3つ以上
備えた燃料供給ポンプにおいても同様な楢成が適用可能
である。
In addition, in all of the above embodiments, two impellers were prepared.
Although the description has been made regarding a stage-type fuel supply pump, the same structure can be applied to a single-stage fuel supply pump having a single impeller or a fuel supply pump having three or more impellers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の第1実施例を示すもので、第
1図は燃料供給ポンプの縦断面図、第2図は第1図の■
−■線断面図、第3図は第2図の■−m線断面図、第4
図は第2図のIV −+V線断面図、第5図は第2図の
v−V線断面図、第6図はM2図のVr −VI Jl
断面図、第7図は第1図〜第6図に示したポンプ部の最
も上流側の入口穴に連続する流路の入口穴を起点と16
角度θ−圧力(Kg/ ci )特性を従来例との比較
で示した図、第8図〜第14図は本発明の第2実施例を
示すもので、第8図は燃料供給ポンプの縦断面図、第9
図は第8図のIX −XX線断面図、第10図は第9図
のXX線断面図、第11図は第9図のXJ−XX線断面
図、第12図は第9図f7)Xll−Xll線断面図、
第13図は第9図のXlll−X1ll線断面図、第1
4図は第8図〜第13図に示した燃料供給ポンプの第7
図と同様な特性線図、第15図〜第22図は本発明の第
3実施例を示すもので、第15図はv5Fl供給ポンプ
の第2図と対応する断面図、第16図は第15図ノXV
I −XVI 1llFii711.117aH1m1
5図(7) XV[I−XVIIlil断面図、第18
図は第15図のXVIII−XVIII線断面図、第1
9図は第15図のXIX −XIX @%面図、第20
図は第15図のXXXX線断面図、第21図は第15図
〜第20図に示した燃料供給ポンプの第7図と同様な特
性線図、第22図は第15図〜第20図に示した燃料供
給ポンプの吐出圧力P(Kg/ci)−流1a(II/
h)特性を従来例との比較で示した図である。 10・・・ポンプ部 14・・・ポンプケーシング 11・・・第1インペラ 12・・・第2インペラ 13・・・羽根溝 15・・・第1流路 15a、15b、15c・・・入口部 16・・・第2流路 25・・・入口穴
1 to 7 show a first embodiment of the present invention, FIG. 1 is a vertical sectional view of a fuel supply pump, and FIG.
-■ line sectional view, Figure 3 is the ■-m line sectional view of Figure 2,
The figure is a sectional view taken along the line IV - + V in Fig. 2, Fig. 5 is a sectional view taken along the v-V line in Fig. 2, and Fig. 6 is a sectional view taken along the line Vr - VI Jl in Fig. 2.
The cross-sectional view, FIG. 7, shows the starting point of the inlet hole of the flow path that is continuous with the inlet hole on the most upstream side of the pump section shown in FIGS. 1 to 6.
Figures 8 to 14 show the second embodiment of the present invention, and Figure 8 shows a longitudinal cross-section of the fuel supply pump. Front view, No. 9
The figure is a sectional view taken along the line IX-XX of FIG. 8, FIG. 10 is a sectional view taken along the XX line of FIG. 9, FIG. 11 is a sectional view taken along the XJ-XX line of FIG. 9, and FIG. Xll-Xll line sectional view,
Figure 13 is a sectional view taken along the line Xllll-X1ll in Figure 9,
Figure 4 shows the seventh fuel supply pump shown in Figures 8 to 13.
15 to 22 show the third embodiment of the present invention, and FIG. 15 is a sectional view corresponding to FIG. 2 of the v5Fl supply pump, and FIG. 16 is a sectional view corresponding to FIG. Figure 15 XV
I-XVI 1llFii711.117aH1m1
Figure 5 (7) XV[I-XVIIlil sectional view, No. 18
The figure is a sectional view taken along the line XVIII-XVIII in Figure 15.
Figure 9 is the XIX-XIX @% view of Figure 15, No. 20
The figure is a sectional view taken on the line XXXX of Fig. 15, Fig. 21 is a characteristic diagram similar to Fig. 7 of the fuel supply pump shown in Figs. Discharge pressure P (Kg/ci) of the fuel supply pump shown in −Flow 1a (II/
h) A diagram showing characteristics in comparison with a conventional example. 10... Pump part 14... Pump casing 11... First impeller 12... Second impeller 13... Vane groove 15... First flow passages 15a, 15b, 15c... Inlet part 16...Second flow path 25...Inlet hole

Claims (1)

【特許請求の範囲】[Claims] 回転駆動され、外周部に複数の羽根溝を有する少なくと
も1つのインペラと、該インペラの各々を前記羽根溝周
囲において取囲んで前記羽根溝との間に円周方向の流路
を形成するポンプケーシングと、該ポンプケーシングに
前記流路の各々に対応してその上下に設けられ、互いに
円周方向に適宜間隔を隔てて配置された入口穴及び出口
穴とを有する燃料供給ポンプであつて、前記入口穴のう
ち最も上流側の入口穴に連続する前記流路の適宜範囲の
入口部の面積を、該入口部の下流側の前記流路の面積よ
りも大きく設定し、かつ前記入口部の面積を下流側に至
り徐々に小さくなるように設定したことを特徴とする燃
料供給ポンプ。
At least one impeller that is rotationally driven and has a plurality of blade grooves on its outer periphery, and a pump casing that surrounds each of the impellers around the blade grooves to form a circumferential flow path between the impeller and the blade grooves. and an inlet hole and an outlet hole provided in the pump casing above and below each of the flow passages and arranged at appropriate intervals in the circumferential direction, the fuel supply pump comprising: The area of the inlet portion of the appropriate range of the flow path that is continuous with the most upstream inlet hole among the inlet holes is set to be larger than the area of the flow path downstream of the inlet portion, and the area of the inlet portion is A fuel supply pump characterized in that the fuel supply pump is set to gradually become smaller as it reaches the downstream side.
JP14769789A 1989-06-09 1989-06-09 Fuel supply pump Pending JPH0311191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14769789A JPH0311191A (en) 1989-06-09 1989-06-09 Fuel supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14769789A JPH0311191A (en) 1989-06-09 1989-06-09 Fuel supply pump

Publications (1)

Publication Number Publication Date
JPH0311191A true JPH0311191A (en) 1991-01-18

Family

ID=15436217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14769789A Pending JPH0311191A (en) 1989-06-09 1989-06-09 Fuel supply pump

Country Status (1)

Country Link
JP (1) JPH0311191A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213090A (en) * 1992-11-27 1994-08-02 Walbro Corp Reprocessed fuel pump
US5336045A (en) * 1992-01-22 1994-08-09 Nippondenso Co., Ltd. Fuel pump
FR2708678A1 (en) * 1993-08-06 1995-02-10 Bosch Gmbh Robert Peripheral pump in particular for pumping fuel from a tank to an internal combustion engine of a motor vehicle.
FR2714121A1 (en) * 1993-12-16 1995-06-23 Bosch Gmbh Robert Fuel delivery unit from a storage tank to an internal combustion engine.
JP2002276581A (en) * 2001-03-19 2002-09-25 Denso Corp Fuel pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336045A (en) * 1992-01-22 1994-08-09 Nippondenso Co., Ltd. Fuel pump
JPH06213090A (en) * 1992-11-27 1994-08-02 Walbro Corp Reprocessed fuel pump
FR2708678A1 (en) * 1993-08-06 1995-02-10 Bosch Gmbh Robert Peripheral pump in particular for pumping fuel from a tank to an internal combustion engine of a motor vehicle.
FR2714121A1 (en) * 1993-12-16 1995-06-23 Bosch Gmbh Robert Fuel delivery unit from a storage tank to an internal combustion engine.
JP2002276581A (en) * 2001-03-19 2002-09-25 Denso Corp Fuel pump
JP4600714B2 (en) * 2001-03-19 2010-12-15 株式会社デンソー Fuel pump

Similar Documents

Publication Publication Date Title
EP2464872B1 (en) Balanced pressure, variable displacement, dual lobe, single ring, vane pump
US5338165A (en) Automotive fuel pump with modular pump housing
CN102705266A (en) Compressor device
JPH09511812A (en) A feed pump that pumps fuel from an automobile fuel storage container to an internal combustion engine
CN108150448B (en) Impeller design method of unequal-spacing runner pump
JPH08284770A (en) Reproducing type fuel pump
US3947149A (en) Submerged fuel pump with bevel sided impeller blades
JP2002138991A (en) Double suction volute pump
US5209630A (en) Pump impeller
JPH0311191A (en) Fuel supply pump
JP2001200797A (en) Multistage centrifugal compressor
JPS58135396A (en) Movable-blade compressor
US4231702A (en) Two-stage turbo compressor
JP3924233B2 (en) Turbo pump diffuser
US10859092B2 (en) Impeller and rotating machine
JPH0553955B2 (en)
US1340091A (en) Centrifugal pump
US5749707A (en) Water pumps
JP5481346B2 (en) Centrifugal pump
JPH0318688A (en) Westco type pump mechanism
JP2007162483A (en) Cascade pump
JPS59131797A (en) Vane type compressor
JP2566971Y2 (en) Centrifugal pump
US6447244B1 (en) Centrifugal pump apparatus and method for using a single impeller with multiple passes
WO2020075378A1 (en) Centrifugal fluid machine