JPH0311171B2 - - Google Patents

Info

Publication number
JPH0311171B2
JPH0311171B2 JP59057683A JP5768384A JPH0311171B2 JP H0311171 B2 JPH0311171 B2 JP H0311171B2 JP 59057683 A JP59057683 A JP 59057683A JP 5768384 A JP5768384 A JP 5768384A JP H0311171 B2 JPH0311171 B2 JP H0311171B2
Authority
JP
Japan
Prior art keywords
voltage
differential amplifier
capacitor
input
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057683A
Other languages
Japanese (ja)
Other versions
JPS60200725A (en
Inventor
Nobuo Unno
Noboru Furukawa
Mitsuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5768384A priority Critical patent/JPS60200725A/en
Publication of JPS60200725A publication Critical patent/JPS60200725A/en
Publication of JPH0311171B2 publication Critical patent/JPH0311171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、普通のオフイスに設置される情報処
理装置等に、商用の交流電源を整流した直流電圧
を供給する電源装置の停電検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a power failure detection circuit for a power supply device that supplies DC voltage obtained by rectifying a commercial AC power supply to information processing equipment installed in ordinary offices. .

(b) 技術の背景 近年、情報処理装置は小形化が進み専用の計算
機室だけでなく普通のオフイスにも設置されるよ
うになつて来た。計算機室に設置される場合は殆
ど専用電源、例えば定電圧で定周波の交流電源が
用意され、該交流電源の出力を整流した直流電圧
を出力する電源装置から情報処理装置に安定した
直流電圧が供給され、停電、瞬断、電圧低下等が
生じないようになつている。しかし、オフイスに
設置される情報処理装置には専用電源が無く、入
力の商用の交流電源をそのまま整流した直流電圧
を使用する場合が多く、このため、商用電源の停
電、瞬断、電圧低下等が生じると情報処理装置が
誤動作してしまうことがある。そこで、其の停
電、瞬断、電圧低下等を検出した停電検出信号を
情報処理装置の割り込み信号として所謂リセツト
処理をして該装置のデータの保護を行つている。
(b) Background of the technology In recent years, information processing equipment has become smaller and more compact, and it has come to be installed not only in dedicated computer rooms but also in ordinary offices. When installed in a computer room, a dedicated power supply such as a constant voltage, constant frequency AC power supply is usually prepared, and a stable DC voltage is supplied to the information processing equipment from a power supply device that outputs a DC voltage obtained by rectifying the output of the AC power supply. The system is designed to prevent power outages, instantaneous interruptions, voltage drops, etc. However, information processing equipment installed in offices does not have a dedicated power supply and often uses DC voltage that is rectified from the input commercial AC power supply, resulting in problems such as commercial power outages, instantaneous interruptions, and voltage drops. If this occurs, the information processing device may malfunction. Therefore, a power outage detection signal that detects a power outage, instantaneous interruption, voltage drop, etc. is used as an interrupt signal for the information processing device to perform a so-called reset process to protect the data in the device.

装置の電源の停電検出回路としては、停電時の
検出信号の送出のみならず、正常に復電した時も
負荷装置に誤動作をさせない事が必要である。
The power failure detection circuit for the device's power supply not only needs to send out a detection signal during a power outage, but also needs to prevent the load device from malfunctioning even when the power is restored normally.

(c) 従来技術と問題点 この電源装置の従来の停電検出回路について以
下に説明する。第1図、第2図、第4図、第6図
は、従来の第1、第2、第3、第4の停電検出回
路の構成を示すブロツク図であり、第3図、第5
図、第7図、第8図は、それら従来例の動作を説
明するための電圧波形図である。図において、1
は整流回路、2は抵抗、3はホトカプラ、4は一
次側ダイオード、5は二次側トランジスタ、6は
駆動用トランジスタ、7は継電器、8は検出信号
の出力手段の接点、aは交流入力端、bは検出信
号の出力端を示す。第1の従来例の構成を示す第
1図において、交流入力端aより入力する商用電
源の交流電圧を整流回路1で整流し、整流して得
た直流電圧を、抵抗2を通してホトカプラ3の一
次側ダイオード4に印加する。
(c) Prior Art and Problems The conventional power failure detection circuit of this power supply device will be explained below. 1, 2, 4, and 6 are block diagrams showing the configurations of conventional first, second, third, and fourth power failure detection circuits, and FIGS.
7 and 8 are voltage waveform diagrams for explaining the operations of these conventional examples. In the figure, 1
is a rectifier circuit, 2 is a resistor, 3 is a photocoupler, 4 is a primary side diode, 5 is a secondary side transistor, 6 is a driving transistor, 7 is a relay, 8 is a contact of the detection signal output means, and a is an AC input terminal , b indicates the output end of the detection signal. In FIG. 1 showing the configuration of a first conventional example, a rectifier circuit 1 rectifies the AC voltage of a commercial power supply input from an AC input terminal a, and the DC voltage obtained by rectification is passed through a resistor 2 to the primary of a photocoupler 3. side diode 4.

交流入力端aの交流電圧が正常で、ホトカプラ
3への入力の直流電圧が正常の時は、ホトカプラ
3の一次側ダイオード4がオンして二次側トラン
ジスタ5もオンする。すると、継電器7の駆動用
のトランジスタ6がオンして継電器7が動作し、
検出接点8が開く。交流入力端aの交流電圧が停
電又は瞬断すると、ホトカプラ3の一次側ダイオ
ード4がオフし二次側トランジスタ5もオフして
継電器7が非動作となり、継電器7の検出接点8
が閉じて、検出信号の出力端bより装置側(図示
せず)に割り込み信号として停電検出信号を送出
していた。また、継電器7を使用せずに駆動用ト
ランジスタ6のエミツタ―コレクタ間の電圧を検
出して停電等の検出信号として場合もある。この
第1の従来例の停電検出回路は、入力の交流電圧
が低下した場合、例えば通常はAC100Vの電圧が
供給されていて、何等かの原因で50Vまで低下し
た場合でも、ホトカプラ3が正常に動作していれ
ば、その電圧低下を検出することが出来ない。し
かし、情報処理装置の電源装置は、その入力の交
流電圧が50Vになれば、整流した直流電圧V1
大きく低下してしまい、情報処理装置は誤動作
し、装置データが保護されなくなるという欠点を
有する。上述の第1の従来例の欠点は、第2図に
示す如く、入力の交流電源を整流する整流回路1
からの直流電圧V1を、一次側ダイオード4と二
次側トランジスタ5からなるホトカプラ3の一次
側ダイオード4と該ダイオードに直列接続した定
電圧ダイオード11とを通して入力し、前記入力
電圧V1の低下を含む停電の場合は、該定電圧ダ
イオード11のオン/オフによる該一次側ダイオ
ード4のオン/オフにより前記ホトカプラ3の二
次側トランジスタ5がオン/オフして、該二次側
トランジスタ5のオフにより、出力接点8が停電
検出信号を送出するように構成した第2の従来例
の停電検出回路によつて達成された。然しなが
ら、この第2の従来例も、定電圧ダイオード11
をホトカプラ3の一次側ダイオード4と直列接続
しているため、ホトカプラ3と抵抗2に加わる入
力電圧V1は、第3図の電圧波形図に示す如く、
定電圧ダイオード11のツエナー電圧をVZDとし
た場合、入力電圧V1からツエナー電圧VZDを差引
いた斜線部Aの歪んだ波形の電圧が、ホトカプラ
3の一次側ダイオード4の入力電圧となる。この
歪んだ波形の入力電圧では、ホトカプラ3の二次
側トランジスタ5への伝達率によつては、該トラ
ンジスタのコレクタに接続された継電器7を動作
させる事が出来なくなる。何となれば、ホトカプ
ラ3の一次側ダイオード4は、最低でも10数mA
の電流を必要とし、定電圧ダイオード11による
電圧損失が大となるからである。従つて、この定
電圧ダイオード11の挿入によつて、入力電圧
V1の低下を前記の第1の従来例の回路よりも敏
感に検出するとは言え、継電器7を動作させる事
が出来なければ停電検出回路として意味が無いと
いう欠点を有している。この第2の従来例の欠点
を改善するため、第4図に示す如く、前記ホトカ
プラ3の一次側ダイオード4を該ダイオードをコ
レクタに接続したトランジスタ12によつてオ
ン/オフさせるように、該トランジスタ12のベ
ースと前記一次側ダイオード4との間に定電圧ダ
イオード13を直列抵抗14と共に挿入して、前
記一次側ダイオード4と前記定電圧ダイオード1
3との接続点と前記トランジスタ12のエミツタ
との間に前記入力電圧V1を供給するよう構成し、
定電圧ダイオード13に流れる電流をトランジス
タ12の1/hfeに小さくし、定電圧ダイオード
13の電圧損失を大幅に低減させた第3の従来例
の停電検出回路によつて改善された。即ちホトカ
プラ3の一次側ダイオード4と抵抗2に加わる電
圧は、第5図の電圧波形図の斜線部Bの如く大き
くなり、ホトカプラ3の二次側への伝達率の経年
変化等を考慮しても充分な電流を流すことが出来
て安定な停電検出回路が得られる。然しながら、
この第4図の第3発明の従来例も、入力電圧V1
の異常が起きると直ちに検出してしまい、例えば
負荷の装置が入力電源の停電から100msec間は出
力電圧を保持できるものとすれば、入力電源の異
常の持続時間が100msec以下の場合は、装置は正
常動作をするため検出信号を送出する必要がな
く、入力異常が起きて直ぐ検出信号を送出する事
は、却つて悪いという欠点を有する。この第3の
従来例の欠点を改善するため、第6図に示す如
く、前記ホトカプラ3の二次側トランジスタ5の
コレクタに充電用のコンデンサ15を接続し、前
記ホトカプラの二次側トランジスタ5がオフして
前記コンデンサ15を抵抗16を通して充電し、
前記コンデンサ15の充電電圧V2が所定の基準
電圧V3を越えた時に差動増幅器17が動作し、
該差動増幅器の動作により、入力異常が起きた場
合、コンデンサ15と抵抗16の時定数により任
意に選定できる一定時間だけ遅延させて、前記出
力手段8が停電検出信号を送出するよう構成した
第6図の第4の従来例の停電検出回路によつて改
善された。即ち、第6図の充電用のコンデンサ1
5の充電電圧V2は、第7図の電圧波形図に示す
如く、整流回路1からの直流の入力電圧が正常の
場合は、ホトカプラ3のオン/オフにより、コン
デンサ15と抵抗16の時定数により定まる一定
時間「PIオフ」で上昇し、同じ時間「PIオン」
で下降する電圧V2の波形となり、コンデンサ1
5の充電電圧V2は、差動増幅器17の基準電圧
V3より低い電圧に抑えられているため、差動増
幅器17の出力は“H”レベルとなり、駆動トラ
ンジスタ6がオンし、継電器7が動作するため、
検出接点8は開放となる。入力の交流電源に異常
が起きて整流回路1からの直流の入力電圧が異常
の場合は、ホトカプラ3の二次側トランジスタ5
がオフの状態を続けるため、第8図の電圧波形図
の如く、コンデンサ15の充電電圧V2は、抵抗
16とコンデンサ15による充電カーブにより上
昇し、差動増幅器17の基準電圧V3を越えると
該差動増幅器17の動作が反転し其の出力が
“L”レベルとなり、駆動トランジスタ6と継電
器7がオフ状態となり、信号出力端bより停電検
出信号を送出する。抵抗20、ダイオード21、
抵抗22は、コンデンサ15の充電電圧V2が図
の検出点Cに達した時に、基準電圧V3の値を下
げるよう所謂ヒステリシスを掛けている。以上の
ように、コンデンサ15と抵抗16の充電カーブ
により、入力異常時の検出信号の送出を任意に遅
延させることが出来るため、負荷の装置の動作に
合つた停電検出回路となつた。然しながら、この
第4の従来例の停電検出回路は、入力の交流電源
が異常状態から正常に復しホトカプラ3への直流
の入力電圧V1が正常に復帰した場合は、直ちに
異常検出信号の送出を解除してしまう。そのた
め、負荷の装置の動作が完全に立ち上がつていな
い場合は該装置が誤動作してしまうという難点が
ある。
When the AC voltage at the AC input terminal a is normal and the DC voltage input to the photocoupler 3 is normal, the primary side diode 4 of the photocoupler 3 is turned on and the secondary side transistor 5 is also turned on. Then, the transistor 6 for driving the relay 7 turns on, and the relay 7 operates.
Detection contact 8 opens. When the AC voltage at the AC input terminal a is interrupted or momentarily interrupted, the primary side diode 4 of the photocoupler 3 is turned off, the secondary side transistor 5 is also turned off, and the relay 7 becomes inoperable, and the detection contact 8 of the relay 7 is turned off.
was closed, and a power failure detection signal was sent as an interrupt signal to the device (not shown) from the detection signal output terminal b. Furthermore, the voltage between the emitter and collector of the driving transistor 6 may be detected as a detection signal for a power outage, etc., without using the relay 7. The power failure detection circuit of this first conventional example prevents the photocoupler 3 from operating normally even if the input AC voltage drops, for example, even if the voltage that is normally supplied is 100V AC and drops to 50V for some reason. If it is operating, the voltage drop cannot be detected. However, the power supply device for information processing equipment has the drawback that if the input AC voltage reaches 50V, the rectified DC voltage V 1 will drop significantly, causing the information processing equipment to malfunction and the equipment data to be unprotected. have The drawback of the first conventional example described above is that, as shown in FIG.
A DC voltage V 1 from the source is input through the primary diode 4 of the photocoupler 3, which is composed of a primary diode 4 and a secondary transistor 5, and a constant voltage diode 11 connected in series with the diode, and the input voltage V 1 decreases. In the case of a power outage, the secondary side transistor 5 of the photocoupler 3 is turned on/off due to the on/off of the primary side diode 4 due to the on/off of the constant voltage diode 11, and the secondary side transistor 5 of the photocoupler 3 is turned on/off. This was achieved by the second conventional power failure detection circuit configured such that the output contact 8 sends out a power failure detection signal when turned off. However, this second conventional example also has a constant voltage diode 11.
is connected in series with the primary side diode 4 of the photocoupler 3, so the input voltage V1 applied to the photocoupler 3 and the resistor 2 is as shown in the voltage waveform diagram of FIG.
When the Zener voltage of the constant voltage diode 11 is V ZD , the voltage of the distorted waveform in the shaded area A obtained by subtracting the Zener voltage V ZD from the input voltage V 1 becomes the input voltage of the primary side diode 4 of the photocoupler 3 . With the input voltage having this distorted waveform, depending on the transmission rate of the photocoupler 3 to the secondary side transistor 5, it becomes impossible to operate the relay 7 connected to the collector of the transistor. After all, the primary side diode 4 of the photocoupler 3 is at least 10 mA
This is because the voltage loss caused by the constant voltage diode 11 becomes large. Therefore, by inserting this voltage regulator diode 11, the input voltage
Although this circuit detects a drop in V 1 more sensitively than the first conventional circuit, it has the disadvantage that it is meaningless as a power failure detection circuit unless the relay 7 can be operated. In order to improve the drawbacks of the second conventional example, as shown in FIG. A voltage regulator diode 13 is inserted together with a series resistor 14 between the base of the primary diode 12 and the primary diode 4.
configured to supply the input voltage V 1 between the connection point with 3 and the emitter of the transistor 12,
This is improved by the third conventional power failure detection circuit in which the current flowing through the constant voltage diode 13 is reduced to 1/h fe of the transistor 12, and the voltage loss of the constant voltage diode 13 is significantly reduced. In other words, the voltage applied to the primary side diode 4 and resistor 2 of the photocoupler 3 increases as shown in the shaded area B of the voltage waveform diagram in FIG. A stable power failure detection circuit can be obtained by allowing sufficient current to flow. However,
The conventional example of the third invention shown in FIG. 4 also has an input voltage V 1
For example, if a load device is able to maintain the output voltage for 100 msec after an input power failure, if the duration of the input power abnormality is 100 msec or less, the device will detect the abnormality as soon as it occurs. It is not necessary to send out a detection signal for normal operation, and sending out a detection signal immediately after an input abnormality occurs has the disadvantage that it is even worse. In order to improve the drawbacks of the third conventional example, as shown in FIG. 6, a charging capacitor 15 is connected to the collector of the secondary side transistor 5 of the photocoupler 3, turning off and charging the capacitor 15 through the resistor 16;
When the charging voltage V 2 of the capacitor 15 exceeds a predetermined reference voltage V 3 , the differential amplifier 17 operates;
When an input abnormality occurs due to the operation of the differential amplifier, the output means 8 is configured to send out a power failure detection signal by delaying it by a certain period of time that can be arbitrarily selected based on the time constants of the capacitor 15 and the resistor 16. This is improved by the fourth conventional power failure detection circuit shown in FIG. That is, the charging capacitor 1 in FIG.
As shown in the voltage waveform diagram of FIG. 7, when the DC input voltage from the rectifier circuit 1 is normal, the charging voltage V 2 of 5 is determined by the time constant of the capacitor 15 and resistor 16 by turning on/off the photocoupler 3. It rises with "PI off" for a certain period of time determined by, and "PI on" for the same period of time.
The waveform of voltage V 2 drops at
The charging voltage V 2 of 5 is the reference voltage of the differential amplifier 17.
Since the voltage is suppressed to a level lower than V 3 , the output of the differential amplifier 17 becomes "H" level, the drive transistor 6 is turned on, and the relay 7 is operated.
The detection contact 8 becomes open. If an abnormality occurs in the input AC power supply and the DC input voltage from the rectifier circuit 1 is abnormal, the secondary side transistor 5 of the photocoupler 3
continues to be off, the charging voltage V 2 of the capacitor 15 rises due to the charging curve formed by the resistor 16 and the capacitor 15 and exceeds the reference voltage V 3 of the differential amplifier 17, as shown in the voltage waveform diagram of FIG. The operation of the differential amplifier 17 is reversed and its output becomes "L" level, the drive transistor 6 and the relay 7 are turned off, and a power failure detection signal is sent from the signal output terminal b. Resistor 20, diode 21,
The resistor 22 applies so-called hysteresis so that the value of the reference voltage V 3 is lowered when the charging voltage V 2 of the capacitor 15 reaches the detection point C in the figure. As described above, the charging curve of the capacitor 15 and the resistor 16 allows the transmission of the detection signal in the event of an input abnormality to be delayed as desired, resulting in a power failure detection circuit suitable for the operation of the load device. However, the power failure detection circuit of this fourth conventional example immediately sends an abnormality detection signal when the input AC power supply returns to normal from an abnormal state and the DC input voltage V 1 to the photocoupler 3 returns to normal. will be canceled. Therefore, there is a problem that if the load device does not start up completely, the device may malfunction.

以上の回路例の他に、停電時の停電検出信号を
負荷装置の誤動作を引き起こさないように送出す
る停電検出回路は、図示しないが、種々ある。し
かし、停電状態から正常状態に復電した場合の問
題をも考慮した停電検出回路は少ない。
In addition to the above circuit example, there are various power outage detection circuits (not shown) that send out a power outage detection signal during a power outage so as not to cause a malfunction of the load device. However, there are few power outage detection circuits that take into consideration the problems that occur when power is restored to a normal state from a power outage state.

(d) 発明の目的 本発明は、入力の交流電源が異常となつた場合
に、負荷装置に必要な一定時間後に異常検出信号
を送出するばかりでなく、入力の交流電源が異常
状態から正常に復帰した場合に、やはり該装置に
必要な一定時間後に異常検出信号の送出を解除す
るような停電検出回路を提供することを目的とし
ている。
(d) Purpose of the invention The present invention not only sends an abnormality detection signal to the load device after a certain period of time when the input AC power becomes abnormal, but also detects when the input AC power returns from the abnormal state to normal. It is an object of the present invention to provide a power outage detection circuit which, when restored, cancels the transmission of an abnormality detection signal after a certain period of time required for the device.

(e) 発明の構成 上記の目的は、入力の交流電源を整流する整流
回路1からの直流電圧V1を、一次側ダイオード
4と二次側トランジスタ5からなるホトカプラ3
の該一次側ダイオードの一端をコレクタに接続し
たトランジスタ12のエミツタと、該ダイオード
の他端と該トランジスタのベースの間に設けた定
電圧ダイオード13との接続点との間に入力し、
前記ホトカプラの二次側トランジスタのコレクタ
に充電用の第1のコンデンサ15を接続し、該入
力電圧V1の低下を含む停電の場合に前記ホトカ
プラの二次側トランジスタがオフして前記第1の
コンデンサを抵抗16を通して充電し該第1のコ
ンデンサの充電電圧V2が所定の第1の基準電圧
V3を越えた時に第1の差動増幅器17が動作し、
該第1の差動増幅器の動作により、入力電源の異
常の発生時から一定時間後に、出力手段8が停電
検出信号を送出する停電検出回路において、前記
第1の差動増幅器の動作により動作を反転する第
2の差動増幅器23と、先に電源電圧Vccで抵抗
27を通して充電され前記第2の差動増幅器の反
転動作により放電する第2のコンデンサ25と、
該第2のコンデンサの充電電圧V5が第2の基準
電圧V4より低い時に動作する第3の差動増幅器
26とを具え、前記入力電圧V1の低下を含む断
の場合は、該第1、第2のコンデンサ15,25
と第1、第2、第3の差動増幅器17,23,2
6の動作により前記入力電源の異常の発生時から
一定時間後に、前記出力手段8が停電検出信号を
送出し、前記入力電圧V1が正常に復帰した場合
は、前記ホトカプラ3の二次側トランジスタ5が
オンして前記第1のコンデンサ15を放電し、該
第1のコンデンサの充電電圧V2が前記第1の基
準電圧V3より低くなつて前記第1の差動増幅器
17の動作が反転し、該第1の差動増幅器の動作
の反転により前記第2の差動増幅器23の動作が
再反転して前記第2のコンデンサ25を充電し、
該第2のコンデンサの充電電圧V5が前記第2の
基準電圧V4より高くなり前記第3の差動増幅器
26の動作が反転して不作動となり、前記入力電
源の異常が正常に復電した時より一定時間後に、
前記出力手段8が送出していた停電検出信号を解
除するように構成した本発明の停電検出回路によ
つて達成される。
(e) Structure of the Invention The above object is to convert the DC voltage V 1 from the rectifier circuit 1 that rectifies the input AC power into the photocoupler 3 consisting of the primary side diode 4 and the secondary side transistor 5.
is input between the emitter of a transistor 12 whose collector is connected to one end of the primary side diode, and the connection point between the voltage regulator diode 13 provided between the other end of the diode and the base of the transistor,
A first capacitor 15 for charging is connected to the collector of the secondary transistor of the photocoupler, and in the event of a power outage including a drop in the input voltage V1 , the secondary transistor of the photocoupler is turned off and the first capacitor 15 is turned off. A capacitor is charged through a resistor 16, and the charging voltage V2 of the first capacitor is a predetermined first reference voltage.
When the voltage exceeds V 3 , the first differential amplifier 17 operates,
The operation of the first differential amplifier causes the output means 8 to operate the power failure detection circuit in which the output means 8 sends out a power failure detection signal after a certain period of time from the occurrence of an abnormality in the input power supply. a second differential amplifier 23 that is inverted, and a second capacitor 25 that is previously charged through a resistor 27 with the power supply voltage Vcc and discharged by the inverting operation of the second differential amplifier;
a third differential amplifier 26 that operates when the charging voltage V 5 of the second capacitor is lower than the second reference voltage V 4 ; 1. Second capacitor 15, 25
and first, second, and third differential amplifiers 17, 23, 2
6, the output means 8 sends out a power failure detection signal after a certain period of time from the occurrence of the abnormality in the input power supply, and when the input voltage V1 returns to normal, the secondary side transistor of the photocoupler 3 5 turns on and discharges the first capacitor 15, the charging voltage V2 of the first capacitor becomes lower than the first reference voltage V3 , and the operation of the first differential amplifier 17 is reversed. Then, due to the reversal of the operation of the first differential amplifier, the operation of the second differential amplifier 23 is re-inverted to charge the second capacitor 25,
The charging voltage V 5 of the second capacitor becomes higher than the second reference voltage V 4 and the operation of the third differential amplifier 26 is reversed and becomes inactive, and the abnormality in the input power supply is restored to normal. After a certain period of time,
This is achieved by the power failure detection circuit of the present invention configured to cancel the power failure detection signal sent out by the output means 8.

(f) 発明の実施例 第9図は本発明の実施例の停電検出回路の構成
を示すブロツク図である。第9図において、15
は第1のコンデンサ、17は第1の差動増幅器、
23は第2の差動増幅器、26は第3の差動増幅
器、24はトランジスタ、25は第2のコンデン
サ、27は充放電用の抵抗、28,29は第2の
基準電圧V4を定める抵抗を示す。第2の差動増
幅器23は、抵抗28と抵抗29による電源電圧
Vccの分割電圧で抵抗29の両端電圧を第2の基
準電圧V4として、其の+端子と第3の差動増幅
器26の−端子に印加し、第1の差動増幅器17
の出力を第2の差動増幅器23の−端子に入力す
る。そして第1の差動増幅器17の出力が“H”
レベルの場合は、第2の差動増幅器23の出力は
“L”レベルとなり、第1の差動増幅器17の出
力が“L”レベルの場合は、第2の差動増幅器2
3の出力は“H”レベルとなる。トランジスタ2
4は第2の差動増幅器23の出力の“H”レベル
でオンする。
(f) Embodiment of the invention FIG. 9 is a block diagram showing the configuration of a power failure detection circuit according to an embodiment of the invention. In Figure 9, 15
is the first capacitor, 17 is the first differential amplifier,
23 is a second differential amplifier, 26 is a third differential amplifier, 24 is a transistor, 25 is a second capacitor, 27 is a charging/discharging resistor, 28 and 29 determine a second reference voltage V 4 Show resistance. The second differential amplifier 23 has a power supply voltage caused by a resistor 28 and a resistor 29.
The voltage across the resistor 29 with the divided voltage of Vcc is set as the second reference voltage V4 , and applied to its + terminal and the - terminal of the third differential amplifier 26, and the voltage across the resistor 29 is applied to the - terminal of the third differential amplifier 26.
The output of the differential amplifier 23 is input to the - terminal of the second differential amplifier 23. Then, the output of the first differential amplifier 17 is “H”
level, the output of the second differential amplifier 23 is "L" level, and when the output of the first differential amplifier 17 is "L" level, the output of the second differential amplifier 23 is "L" level.
The output of No. 3 becomes "H" level. transistor 2
4 is turned on when the output of the second differential amplifier 23 is at "H" level.

第2のコンデンサ25は、トランジスタ24の
オンにより充電していた電荷を放電し、トランジ
スタ24のオフにより充電される。第3の差動増
幅器26は、第2の基準電圧V4を其の−端子に
印加し、第2のコンデンサ25に充電される充電
電圧V5を其の+端子に印加して、充電電圧V5
基準電圧V4と比較し、充電電圧V5が高く基準電
圧V4が低い場合は、其の出力が“H”レベルと
なり、継電器7の駆動用のトランジスタ6をオン
する。
The second capacitor 25 discharges the charge it had been charged when the transistor 24 is turned on, and is charged when the transistor 24 is turned off. The third differential amplifier 26 applies a second reference voltage V 4 to its negative terminal, and applies a charging voltage V 5 to be charged to the second capacitor 25 to its positive terminal, thereby increasing the charging voltage. V5 is compared with the reference voltage V4 , and if the charging voltage V5 is high and the reference voltage V4 is low, the output becomes "H" level and turns on the transistor 6 for driving the relay 7.

入力電源が正常の時は、ホトカプラ3のオン/
オフにより、充電用の第1のコンデンサ15が充
放電するが、該コンデンサ15の充電電圧V2
常に第1の差動増幅器17の基準電圧V3以下に
抑えられているので、該差動増幅器17の出力は
“H”レベルである。そして第2の差動増幅器2
3の出力は、第1の差動増幅器17の出力が
“H”レベルであるため、其の出力は“L”レベ
ルである。依つてトランジスタ24がオフしてい
るため、第2コンデンサ25の充電電圧V5は高
く、第3の差動増幅器26の出力は“H”レベル
となり、駆動用のトランジスタ6と継電器7はオ
ン状態である。
When the input power is normal, photocoupler 3 is turned on/off.
When turned off, the first charging capacitor 15 charges and discharges, but since the charging voltage V 2 of the capacitor 15 is always suppressed below the reference voltage V 3 of the first differential amplifier 17, the differential The output of amplifier 17 is at "H" level. and second differential amplifier 2
Since the output of the first differential amplifier 17 is "H" level, the output of No. 3 is "L" level. Since the transistor 24 is off, the charging voltage V5 of the second capacitor 25 is high, the output of the third differential amplifier 26 is at "H" level, and the driving transistor 6 and relay 7 are on. It is.

入力電源に異常が起きると、ホトカプラ3のオ
フが続くため、充電用の第1のコンデンサ15の
充電電位V2が上昇し第1の差動増幅器17の出
力は、“L”レベルに反転し、第2の差動増幅器
23の出力は“H”レベルに反転する。これによ
つてトランジスタ24がオンし、第2のコンデン
サ25を放電させ、第3の差動増幅器26の出力
を“L”レベルに反転させ、駆動用のトランジス
タ6と継電器7はオフ状態となり、検出接点8が
閉じて、信号出力端bより停電検出信号を送出す
る。
When an abnormality occurs in the input power supply, the photocoupler 3 remains off, so the charging potential V2 of the first charging capacitor 15 rises, and the output of the first differential amplifier 17 is inverted to the "L" level. , the output of the second differential amplifier 23 is inverted to "H" level. As a result, the transistor 24 is turned on, the second capacitor 25 is discharged, the output of the third differential amplifier 26 is inverted to "L" level, and the driving transistor 6 and the relay 7 are turned off. The detection contact 8 closes and sends out a power failure detection signal from the signal output terminal b.

ここで入力電源が正常状態に復電したとする
と、ホトカプラ3はオン/オフを始めるため、第
1の差動増幅器17の出力は“H”レベルに反転
し、第2の差動増幅器23の出力は“L”レベル
に反転し、トランジスタ24はオフとなる。しか
し、第2のコンデンサ25は、抵抗27との時定
数により充電されるため、或る一定の時間後でな
いと第3の差動増幅器26の出力が“H”レベル
とならない。そのため継電器7は、一定の遅延時
間を持つてオンされ、検出接点8が開いて、停電
検出信号の送出が解除される。
If the input power is restored to normal state, the photocoupler 3 starts to turn on/off, so the output of the first differential amplifier 17 is inverted to "H" level, and the output of the second differential amplifier 23 is inverted to "H" level. The output is inverted to the "L" level, and the transistor 24 is turned off. However, since the second capacitor 25 is charged by the time constant with the resistor 27, the output of the third differential amplifier 26 does not reach the "H" level until after a certain period of time. Therefore, the relay 7 is turned on after a certain delay time, the detection contact 8 is opened, and the transmission of the power failure detection signal is canceled.

以上述べたように、本発明の実施例の第9図に
示した停電検出回路は、入力電源の停電時には、
負荷の装置の動作に必要な一定時間だけ第1のコ
ンデンサ15と抵抗16の時定数により遅延させ
て停電検出信号を送出し、正常に復電した時は、
第2のコンデンサ25と抵抗27の時定数によ
り、該装置に必要な一定時間だけ遅延させて停電
検出信号の送出を解除するので、本発明の目的は
達成されて問題は無い。
As described above, the power failure detection circuit shown in FIG. 9 according to the embodiment of the present invention performs
A power failure detection signal is sent after being delayed by the time constant of the first capacitor 15 and resistor 16 for a certain period of time necessary for the operation of the load device, and when the power is restored normally,
Since the time constant of the second capacitor 25 and the resistor 27 cancels the transmission of the power failure detection signal by delaying the device by a certain period of time, the object of the present invention is achieved without any problems.

(g) 発明の効果 以上説明した如く、本発明によれば、入力電源
の停電時には、負荷の装置の動作に必要な一定時
間だけ遅延させて停電検出信号を送出し、正常に
復電した時は、該装置に必要な一定時間だけ遅延
させて停電検出信号の送出を解除するので、負荷
装置の例えば情報処理装置の誤動作を防止し、該
装置のデータを保護する効果が得られる。
(g) Effects of the Invention As explained above, according to the present invention, in the event of a power outage of the input power supply, the power outage detection signal is delayed by a certain period of time necessary for the operation of the load device, and the power outage detection signal is sent out when the power is restored normally. Since the transmission of the power failure detection signal is canceled after delaying the power outage detection signal by a certain period of time necessary for the device, it is possible to prevent malfunction of the load device, for example, the information processing device, and to protect the data of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第4図、第6図は、従来の停
電検出回路の構成例のブロツク図であり、第3
図、第5図、第7図、第8図は、それら従来例の
動作説明のための電圧波形図であり、第9図が本
発明の実施例の停電検出回路の構成を示すブロツ
ク図である。 図において、1は整流回路、3はホトカプラ、
4は一次側ダイオード、5は二次側トランジス
タ、6は駆動トランジスタ、7は継電器、8は検
出接点、11,13は定電圧ダイオード、12,
24はトランジスタ、14,16,18,19,
20,22,27,28,29は抵抗、15は第
1のコンデンサ、25は第2のコンデンサ、17
は第1の差動増幅器、23は第2の差動増幅器、
26は第3の差動増幅器である。
1, 2, 4, and 6 are block diagrams of configuration examples of conventional power failure detection circuits.
5, 7, and 8 are voltage waveform diagrams for explaining the operation of these conventional examples, and FIG. 9 is a block diagram showing the configuration of a power failure detection circuit according to an embodiment of the present invention. be. In the figure, 1 is a rectifier circuit, 3 is a photocoupler,
4 is a primary side diode, 5 is a secondary side transistor, 6 is a drive transistor, 7 is a relay, 8 is a detection contact, 11 and 13 are constant voltage diodes, 12,
24 is a transistor, 14, 16, 18, 19,
20, 22, 27, 28, 29 are resistors, 15 is a first capacitor, 25 is a second capacitor, 17
is a first differential amplifier, 23 is a second differential amplifier,
26 is a third differential amplifier.

Claims (1)

【特許請求の範囲】 1 入力の交流電源を整流する整流回路1からの
直流電圧V1を、一次側ダイオード4と二次側ト
ランジスタ5からなるホトカプラ3の該一次側ダ
イオードの一端をコレクタに接続したトランジス
タ12のエミツタと、該ダイオードの他端と該ト
ランジスタのベースの間に設けた定電圧ダイオー
ド13との接続点との間に入力し、前記ホトカプ
ラの二次側トランジスタのコレクタに充電用の第
1のコンデンサ15を接続し、該入力電圧V1
低下を含む停電の場合に前記ホトカプラの二次側
トランジスタがオフして前記第1のコンデンサを
抵抗16を通して充電し、該第1のコンデンサの
充電電圧V2が所定の第1の基準電圧V3を越えた
時に第1の差動増幅器17が動作し、入力電源の
異常の発生時から一定時間後に該第1の差動増幅
器の動作により出力手段8が停電検出信号を送出
する停電検出回路において、 前記第1の差動増幅器の動作により動作を反転
する第2の差動増幅器23と、先に電源電圧Vcc
で抵抗27を通して充電され前記第2の差動増幅
器の反転動作により放電する第2のコンデンサ2
5と、該第2のコンデンサの充電電圧V5が第2
の基準電圧V4より低い時に動作する第3の差動
増幅器26とを具え、 前記入力電圧V1の低下を含む停電の場合は、
該第1、第2のコンデンサ15,25と第1、第
2、第3の差動増幅器17,23,26の動作に
より前記入力電源の異常の発生時から一定時間後
に前記出力手段8が停電検出信号を送出し、前記
入力電圧V1が正常に復帰した場合は、前記ホト
カプラ3の二次側トランジスタ5がオンして前記
第1のコンデンサ15を放電し、該第1のコンデ
ンサの充電電圧V2が前記第1の基準電圧V3より
低くなつて前記第1の差動増幅器17の動作が反
転し、該第1の差動増幅器の動作の反転により前
記第2の差動増幅器23の動作が再反転して前記
第2のコンデンサ25を充電し、該第2のコンデ
ンサの充電電圧V5が前記第2の基準電圧V4より
高くなり前記第3の差動増幅器26の動作が反転
して不作動となり、入力電源の復電時から一定時
間後に前記出力手段8が送出していた停電検出信
号を解除することを特徴とした停電検出回路。
[Claims] 1. A DC voltage V 1 from a rectifier circuit 1 that rectifies an input AC power source is connected to the collector of a photocoupler 3 consisting of a primary diode 4 and a secondary transistor 5, with one end of the primary diode connected to the collector. A charging voltage is input between the emitter of the transistor 12 and the connection point of the constant voltage diode 13 provided between the other end of the diode and the base of the transistor, and the collector of the secondary side transistor of the photocoupler is supplied with a charging voltage. A first capacitor 15 is connected, and in the event of a power outage including a drop in the input voltage V1 , the secondary side transistor of the photocoupler is turned off and the first capacitor is charged through the resistor 16, and the first capacitor The first differential amplifier 17 operates when the charging voltage V 2 exceeds a predetermined first reference voltage V 3 , and the first differential amplifier 17 operates after a certain period of time from the occurrence of an abnormality in the input power supply. In the power outage detection circuit in which the output means 8 sends out a power outage detection signal, the second differential amplifier 23 whose operation is inverted by the operation of the first differential amplifier and the power supply voltage Vcc first are connected.
a second capacitor 2 that is charged through a resistor 27 and discharged by the inverting operation of the second differential amplifier;
5 and the charging voltage V 5 of the second capacitor is the second
a third differential amplifier 26 that operates when the reference voltage V 4 is lower than the input voltage V 4 , and in the case of a power outage including a drop in the input voltage V 1 ,
Due to the operation of the first and second capacitors 15 and 25 and the first, second and third differential amplifiers 17, 23 and 26, the output means 8 is interrupted after a certain period of time from the occurrence of an abnormality in the input power supply. When the detection signal is sent and the input voltage V1 returns to normal, the secondary side transistor 5 of the photocoupler 3 is turned on to discharge the first capacitor 15, and the charging voltage of the first capacitor is reduced. V 2 becomes lower than the first reference voltage V 3 and the operation of the first differential amplifier 17 is reversed, and due to the reversal of the operation of the first differential amplifier, the operation of the second differential amplifier 23 is reversed. The operation is reversed again to charge the second capacitor 25, and the charging voltage V5 of the second capacitor becomes higher than the second reference voltage V4 , and the operation of the third differential amplifier 26 is reversed. The power failure detection circuit is characterized in that the power failure detection signal that the output means 8 has been sending out is canceled after a certain period of time after the input power is restored.
JP5768384A 1984-03-26 1984-03-26 Power interruption detector circuit Granted JPS60200725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5768384A JPS60200725A (en) 1984-03-26 1984-03-26 Power interruption detector circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5768384A JPS60200725A (en) 1984-03-26 1984-03-26 Power interruption detector circuit

Publications (2)

Publication Number Publication Date
JPS60200725A JPS60200725A (en) 1985-10-11
JPH0311171B2 true JPH0311171B2 (en) 1991-02-15

Family

ID=13062729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5768384A Granted JPS60200725A (en) 1984-03-26 1984-03-26 Power interruption detector circuit

Country Status (1)

Country Link
JP (1) JPS60200725A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151723A (en) * 2006-12-20 2008-07-03 Meidensha Corp Instantaneous voltage drop detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362635U (en) * 1976-10-29 1978-05-27

Also Published As

Publication number Publication date
JPS60200725A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US6301133B1 (en) Power supply system with ORing element and control circuit
JPH0313827B2 (en)
KR20010014983A (en) Power suply apparatus, method and electronic apparatus
US6449180B1 (en) World wide power supply apparatus that includes a relay switch voltage doubling circuit
CA1205520A (en) Battery charger failure alarm circuit
JPH0311171B2 (en)
JP2001136743A (en) Switching power supply apparatus
JP3264473B2 (en) Power supply
JPH0359996A (en) Discharge lamp lighting device
JP2857442B2 (en) Power supply low voltage detector
JPH05316640A (en) Power converter
JPH1042488A (en) Power supply
JPH02694Y2 (en)
JP2976345B2 (en) Power failure detection circuit
JPS6377383A (en) Starting circuit
JPH02136024A (en) Service interruption detection circuit
JPS62152372A (en) Power source device
JPH05153725A (en) Ground fault detector
JP2507757Y2 (en) Double voltage rectification automatic switching circuit
JPH05152126A (en) Driving circuit for plunger solenoid
JPS5984167A (en) Voltage detecting circuit
JPS61109430A (en) Trouble detecting circuit for inverter device
JPH0393460A (en) Two-voltage power unit
JPH04183270A (en) Detecting method for output interruption of parallel operation switching power source
JPH01274664A (en) Dc constant-voltage power source