JPH03110905A - Multiple beam antenna through which direction is convertible by low level switch - Google Patents

Multiple beam antenna through which direction is convertible by low level switch

Info

Publication number
JPH03110905A
JPH03110905A JP24228390A JP24228390A JPH03110905A JP H03110905 A JPH03110905 A JP H03110905A JP 24228390 A JP24228390 A JP 24228390A JP 24228390 A JP24228390 A JP 24228390A JP H03110905 A JPH03110905 A JP H03110905A
Authority
JP
Japan
Prior art keywords
outputs
amplifiers
couplers
antenna
general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24228390A
Other languages
Japanese (ja)
Inventor
Jones Trevor
トレヴオル・ジヨーンズ
Roederer Antoine
アントワーヌ・ローデレール
Lenormand Regis
レジ・ルノルマン
Raguenet Gerard
ジエラール・ラゲネ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Thales Alenia Space France SAS
Original Assignee
Alcatel Espace Industries SA
Alcatel Thomson Espace SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel Thomson Espace SA filed Critical Alcatel Espace Industries SA
Publication of JPH03110905A publication Critical patent/JPH03110905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2658Phased-array fed focussing structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Abstract

PURPOSE: To markedly enhance overall efficiency of a sub-system, consisting of antenna and amplifiers by forming a coverage with (m) spot beams and making each spot beam correspond to a prescribed number of active element sources and providing an electronic circuit with at least one low level switch which connects the input to one of the outputs. CONSTITUTION: The electronic circuit for the antenna consists of a low level switch C1, which connects an input E1 to one of radiator assemblies corresponding to spot beams Spi, and an amplifying stage 16 which has (m) inputs and (m) outputs and includes first and second general couplers 17 and 18, arranged on both sides of (m) parallel amplifiers 19 and has (m) filter 20 connected to outputs of amplifiers 19. If the amplifying stage has 16 inputs and 16 outputs (m=16), the first and second general couplers 17 and 18 included in the amplification stage 16 consist of assemblies of hybride couplers 21, arranged on both sides of plural amplifiers 19 corresponding to filters 20 respectively. Thus respective inputs of the first general coupler 17 are distributed among a plurality of amplifiers 19 and is consequently distributed among all the outputs of hybrid couplers of the first general coupler 17.

Description

【発明の詳細な説明】 本発明は低レベルスイッチングによって方向を変えるこ
とができるマルチビームアンテナに係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-beam antenna that can change direction by low-level switching.

先j1支術!I先朋− 電気通信科学技術シリーズの一環として1982年にM
assonから出版された“TI!lecommuni
cationsSpaLiales(宇宙通信)゛、よ
り特定的にはその第1巻の92〜94ページ及び259
〜261ページには、電力分割器と移相器とを介して同
一送信器から同時に受信する複数のアンテナを1つの集
合体にまとめる方法が記載されている。この集合体の放
射特性は、各アンテナのダイアグラムと振幅及び位相に
係わる電力分配とに依存する。この性質は、単一放射源
では得られないダイアグラムを得るのに利用される。電
力分割器及び移相器の特性を電子的手段で変化させれば
、前記ダイアグラムは殆ど瞬時に変化し得る。最も単純
な放射源集合体は、総ての放射源が同一タイプであって
位置だけが互いに異なる(並進変位)ようなアレイであ
る。この場合は、直線アレイ又は平面アレイを形成する
ことができる。
First j1 branch! I-Spontomo - M in 1982 as part of the Telecommunications Science and Technology Series.
“TI! lecommuni” published by asson
cationsSpaLiales (Space Communications)'', more specifically Volume 1 thereof, pages 92-94 and 259.
Pages 1 to 261 describe a method of combining multiple antennas that simultaneously receive from the same transmitter into one aggregate via a power divider and a phase shifter. The radiation characteristics of this assembly depend on the diagram of each antenna and the power distribution in terms of amplitude and phase. This property can be exploited to obtain diagrams that cannot be obtained with a single source. By changing the characteristics of the power divider and phase shifter by electronic means, the diagram can be changed almost instantaneously. The simplest source collection is an array in which all the sources are of the same type and differ from each other only in position (translational displacement). In this case, linear or planar arrays can be formed.

前記文献には、複数の移動ビームを発生させるための反
射鏡アンテナの使用も記述されている。
The document also describes the use of reflector antennas to generate multiple moving beams.

このアンテナは、最適化された増幅段を使用し質量が小
さいという利点を有する。反射鏡照射システムは、放射
口が閉塞されないように、また衛星で使用する場合にプ
ラットホームに配置し易いように、通常は反射鏡に対し
て偏心している。主反射鏡は例えば放物面を有する。移
動ビームは、組の照射源を焦点の近値に配置することに
よって得られる基本ビームの組合わせからなる。各照射
源は夫々1つの基本ビームに対応する。
This antenna uses an optimized amplification stage and has the advantage of low mass. The reflector illumination system is usually eccentric with respect to the reflector to avoid blocking the emission aperture and to facilitate placement on the platform when used on a satellite. The main reflecting mirror has, for example, a paraboloid. The moving beam consists of a combination of elementary beams obtained by placing a set of illumination sources close to the focal point. Each radiation source corresponds to one fundamental beam.

照射源は厳密に焦点位置に配置することはできず、従っ
て照射は幾何学的に不完全であり、そのため位相収差が
発生する。この位相収差は放射性能を幾らか低下させる
ため、利得は照射源が焦点位置にある時に得られるであ
ろう値より小さくなる。これらの低下は、焦点からのず
れと反射鏡の曲率とが増加するにつれて大きくなる。従
って、反射鏡はできるだけ「偏平」にしなければならな
い。
The illumination source cannot be placed exactly at the focal point, so the illumination is geometrically imperfect and thus phase aberrations occur. This phase aberration degrades the radiation performance somewhat, so the gain is less than what would be obtained when the source was in focus. These reductions increase as the defocus and mirror curvature increase. Therefore, the reflecting mirror must be made as "flat" as possible.

即ち焦点距離対口径の比を大きくしなければならない、
しかしながら、その場合は構造物の大きさが増すため、
機械的強度及び精度の問題が生じる。
In other words, the ratio of focal length to aperture must be increased.
However, in that case, the size of the structure increases;
Mechanical strength and precision problems arise.

蚊 広い視界にわたる外射波の電子偏向を必要とする衛星通
信で使用すると、幾つかのビーム幅の角偏差が生じる。
When used in satellite communications, which require electronic deflection of external waves over a wide field of view, some angular deviations of the beamwidth occur.

従って、アンテナのダイアグラムの形状を正確に制御で
きることが必須となる。
Therefore, it is essential to be able to accurately control the shape of the antenna diagram.

これらの大型アンテナの配置には、下記のような種々の
システムファクタも考慮しなければならない。
The placement of these large antennas must also consider various system factors, such as:

送信及び受信を同時に行うアンテナの必要性に鑑みた衛
星の大きさの制限、 操作前及び操作中に行われるプラットホーム上及び打ち
上げ用ロケット上での簡単な機械的レイアウトの適合性
、 十分な温度調整、 異なるユーザに応じた多機能の可能性。
Satellite size limitations in view of the need for simultaneous transmitting and receiving antennas; compatibility with simple mechanical layouts on the platform and on the launch vehicle before and during operations; adequate temperature control; , multifunctional possibilities according to different users.

本発明の目的は、前述の問題を解決し、ユーザ数(例え
ば5以下のような小さい数であり得る)に係わりなくア
ンテナ+増幅器からなるサブシステムの全体的効率を極
めて高くして作動できるような、低レベルスイッチング
で方向を変えることができるアンテナを提供することに
ある。
It is an object of the present invention to solve the aforementioned problems and to enable the antenna+amplifier subsystem to operate with extremely high overall efficiency regardless of the number of users (which can be as small as, for example, 5 or less). Another object of the present invention is to provide an antenna that can change direction with low-level switching.

1哩ユ」1 本発明は、低レベルスイッチングによって方向を変える
ことができるマルチビームアンテナに係わる。このアン
テナは、エネルギを集束する反射の入力及びm個の出力
を備えた増幅段を有する電子回路とを含み、カバレッジ
がrn個のスポットビームによって形成され、各スポッ
トビームが所定数の能動素子源に対応し、前記電子回路
が入力を出力の1つに接続するための低レベルスイッチ
を少なくとも1つ有することを特徴とする。
1. Field of the Invention The present invention relates to a multi-beam antenna that can change direction by low-level switching. The antenna includes an energy-focusing reflective input and an electronic circuit having an amplification stage with m outputs, the coverage being formed by r spot beams, each spot beam having a predetermined number of active element sources. , characterized in that said electronic circuit has at least one low-level switch for connecting an input to one of the outputs.

機械的手法に比べて、本発明は放射源又は反射鏡を移動
させる必要がないどう利点を有する。本発明では、短い
焦点距離(小型アンテナ)を使用することができ、複数
のリンクを同時に得ることができる。
Compared to mechanical approaches, the invention has the advantage that there is no need to move the radiation source or reflector. With the present invention, short focal lengths (small antennas) can be used and multiple links can be obtained simultaneously.

本発明は、直接放射アレイを用いる方法と比べて下記の
利点を有する。
The present invention has the following advantages over methods using direct emitting arrays.

アンテナの性能がアレイの全体的大きさに直接関係しな
い。
Antenna performance is not directly related to the overall size of the array.

必ずしも衛星の地球に面した側面に設置する必要がない
It does not necessarily have to be installed on the side of the satellite facing the earth.

本発明のアンテナは、単一反射鏡影像アレイを使用する
場合に比べて下記の利点を有する。
The antenna of the present invention has the following advantages over using a single reflector image array.

アレイの全体的大きさが小さい。The overall size of the array is small.

アンテナの効率が高い。High antenna efficiency.

また、二重反射鏡影像アレイを使用する場合と比べれば
、本発明のアンテナが小型であることは明白である。
Also, the compactness of the antenna of the present invention is evident when compared to the use of a double reflector image array.

本発明の特徴及び利点は、添付図面に基づく以下の非限
定的実施例の説明でより明らかにされよう。
The features and advantages of the invention will become clearer from the following description of non-limiting examples based on the accompanying drawings.

■朋!Iu」 第1図に示す本発明のアンテナは偏心放物面状反射鏡1
0を含む、この反射鏡は、その焦点Fの近傍に配置され
た放射源の平面形アレイ11からビームを受給する。ア
レイ12はアレイ11に対応する仮想放射源アレイであ
る。
■My friend! The antenna of the present invention shown in FIG.
0, this reflector receives a beam from a planar array 11 of radiation sources placed in the vicinity of its focal point F. Array 12 is a virtual source array corresponding to array 11.

第2図は、放射源アレイ11のレベルで2つの方向Ox
及びOYに従って移動させた場合の種々の振幅分布を示
している。
FIG. 2 shows two directions Ox at the level of the radiation source array 11.
and various amplitude distributions when moved according to OY.

第2図に示されている円の直径は、前記アレイの種々の
放射源によって受信される信号の振幅を表す。
The diameters of the circles shown in FIG. 2 represent the amplitudes of the signals received by the various sources of the array.

センサが固定された分布法則を有する場合には、これら
種々のエネルギ分布を捕獲する効率が最適にはなり得な
い、これは、位相分布についても同様である。
If the sensor has a fixed distribution law, the efficiency of capturing these various energy distributions cannot be optimal, and the same is true for the phase distribution.

従って、成る放射源を反射鏡の焦点に対して仮想変位さ
せるとアンテナの効率が低下する。
Virtually displacing the radiation source with respect to the focal point of the reflector therefore reduces the efficiency of the antenna.

特定のカバレッジが複数のスポットビームによって形成
されている場合には、アンテナの指向性能がこれらスポ
ットビームの重なり度によって決定される。
When a specific coverage is formed by multiple spot beams, the directivity performance of the antenna is determined by the degree of overlap of these spot beams.

本発明のアンテナはm個のスポットビームを使用するよ
うに設計されており、各スポットビームに所定数の放射
器又は放射源が対応する。所与のスポットビームに対応
する総ての放射器は同時には1ヤ動しない0本発明のこ
の種のアンテナの電子回路は、第3図に示す実施例では
、下記の部材を含む。
The antenna of the invention is designed to use m spot beams, each spot beam being associated with a predetermined number of radiators or sources. All radiators corresponding to a given spot beam do not move at the same time.The electronic circuit for this type of antenna of the invention, in the embodiment shown in FIG. 3, includes the following components:

入力E1をスポットビームSPiに対応する放射器アセ
ンブリの1つに接続する低レベルスイッチCI。
A low level switch CI connecting the input E1 to one of the radiator assemblies corresponding to the spot beam SPi.

m個の入力とm個の出力とを有し、m個の並列増幅器1
9の両側に夫々配置された第1及び第2汎用カップラ1
7及び18を含む増幅段16゜増幅器19の出力にはm
個のフィルタ20が接続されている。
m parallel amplifiers 1 with m inputs and m outputs
first and second general-purpose couplers 1 arranged on both sides of 9, respectively;
The output of the 16° amplifier 19 includes m
filters 20 are connected.

第4図に示すように、入力及び出力を夫々16個ずつ有
する(m = 16)実施例では、第1汎用カップラ1
7の各入力が総ての増幅器19の間で分配され、従って
第1汎用カップラ17のハイブリッドカップラの総ての
出力の間で分配されるように、増幅段16に含まれる第
1汎用カップラ17及び第2汎用カップラ18が夫々、
フィルタ20に1つずつ対応する複数の増幅器19を挟
んで配置されたハイブリッドカップラ21アセンブリで
構成される。このようにすると、増幅器19が一定の入
力電力を有し、従って公称容量で作動できる。
As shown in FIG. 4, in an embodiment having 16 inputs and 16 outputs (m = 16), the first general-purpose coupler 1
A first universal coupler 17 included in the amplification stage 16 such that each input of the first universal coupler 17 is distributed between all amplifiers 19 and thus between all outputs of the hybrid coupler of the first universal coupler 17. and the second general-purpose coupler 18, respectively,
It is composed of a hybrid coupler 21 assembly arranged with a plurality of amplifiers 19, one each corresponding to a filter 20, sandwiched therebetween. In this way, the amplifier 19 has a constant input power and can therefore operate at its nominal capacity.

この増幅段16では、例えば第1人力に印加された信号
が増幅されて第1出力から送出される0例えば順位iの
入力に信号が印加されると、この信号が総ての増幅器で
増幅されて対応出力(順位i)に送られ、他の出力には
信号が与えられない。汎用カップラの入力ボートの1つ
に与えられた信号は、この信号に対してコヒーレントな
信号が他のいずれの入力にも供給されなければ、その場
合に限り、n個の出力で振幅の等しいn個の成分に分割
される。
In this amplification stage 16, for example, a signal applied to the first input is amplified and sent out from the first output.For example, when a signal is applied to the input of rank i, this signal is amplified by all the amplifiers. is sent to the corresponding output (rank i), and no signal is given to the other outputs. A signal applied to one of the input ports of a general-purpose coupler has n outputs of equal amplitude if and only if no signal coherent with respect to this signal is applied to any other input. divided into components.

成るスポットビームに対応する1つの放射源又は−組の
放射源を入力Eからアドレス指定すると、両者の間にエ
ネルギのルートができる。スポットビームと入力Eとの
間には所定時点で対応関係が生じ、このようにして種々
のスポットビームSPI〜Sl’nが順次指定される。
Addressing a source or a set of sources corresponding to a spot beam from input E creates an energy route between them. A correspondence occurs between the spot beam and the input E at a predetermined time, and in this way various spot beams SPI to Sl'n are designated in sequence.

ユーザが複数の場合には、第5図に示す例のように、少
なくとも1つの第2のスイッチC1を用いて入力を重複
し得る。その場合、信号の組会わせは、当業者に公知の
カップラ(図示せず)を介して増幅段16の各人力Ei
で実施される。
If there are multiple users, at least one second switch C1 may be used to duplicate the inputs, as in the example shown in FIG. In that case, the combination of the signals is effected via couplers (not shown) well known to those skilled in the art.
It will be carried out in

本発明のアンテナでは、形成すべきカバレッジをm個の
地域に分割する。これらm個の各地域毎に、アンテナの
一次アレイの一組の放射源がビームSPiを放射する。
In the antenna of the present invention, the coverage to be formed is divided into m regions. For each of these m regions, a set of radiation sources in the primary array of antennas radiates a beam SPi.

原則として、各放射源は単一ビームSPiの放射に使用
される。前記地域の境界で決定されるビーム間の重なり
度は、放射源の励振係数の最適化と係わりがある。
In principle, each radiation source is used for the radiation of a single beam SPi. The degree of overlap between the beams, determined at the boundaries of the regions, is relevant to the optimization of the excitation coefficient of the radiation source.

前記係数は、実際の操作では、固定分配装置Riにより
振幅及び位相で決定される。
In practical operation, the coefficients are determined in amplitude and phase by a fixed distribution device Ri.

このアンテナは、所与のカバレッジ配置とm個の独立し
たボー1へとの間に対応関係を確立せしめる。従って、
m個の入力/出力を備えた汎用カップラを含む増幅段で
は、問題のスボッI・ビームSPiとは無関係に、m個
の増幅器19の最適曲用(入力ロードが一定)が可能に
なる。
This antenna establishes a correspondence between a given coverage arrangement and m independent bauds. Therefore,
An amplification stage containing a general-purpose coupler with m inputs/outputs allows an optimal tuning (constant input load) of m amplifiers 19, independent of the Subop I-beam SPi in question.

カバレッジの任意の方向に信号を送出するためには、そ
の方向を含む地域に対応する増幅段16の前記入力信号
をアドレス指定すればよい。
To send a signal in any direction of coverage, one need only address the input signal of the amplifier stage 16 that corresponds to the area containing that direction.

m個の増幅器19の定格は、必要な放射エネルギが得ら
れるように決定する。マルチユーザオペレーション(ユ
ーザ数=p>への拡大は、1個の接続回路Ciを接続す
ることによって達成される。
The ratings of the m amplifiers 19 are determined so that the required radiant energy can be obtained. Expansion to multi-user operation (number of users = p>) is achieved by connecting one connection circuit Ci.

この接続は低レベル技術を用いて行う、この場合は、増
幅器の定格を放射すべきエネルギの和に応じて決定する
This connection is made using low-level techniques, in which case the amplifier is rated according to the sum of energy to be radiated.

以上、好ましい実施例を挙げて本発明を説明してきたが
、本発明はこれには限定されず、例えば構成部材を他の
等価部材に代えるなど様々な変形が可能である。
Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited thereto, and various modifications can be made, for example, by replacing the constituent members with other equivalent members.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の走査形アンテナの簡略説明図、第2図
は本発明のアンテナの作動説明図、第3図は本発明のア
ンテナの電子回路の第1実施例を示す説明図、第4図は
第3図の電子回路の段の1つを示す説明図、第5図は本
発明のアンテナの電子回路の第2実施例を示す説明図で
ある。 C1・・・・・・低レベルスイッチ、17.18・・・
・・・汎用カップラ、19・・・・・・増幅器、20・
・・・・・フィルタ。 FIG、1
FIG. 1 is a simplified explanatory diagram of the scanning antenna of the present invention, FIG. 2 is an explanatory diagram of the operation of the antenna of the present invention, and FIG. 3 is an explanatory diagram showing a first embodiment of the electronic circuit of the antenna of the present invention. FIG. 4 is an explanatory diagram showing one of the stages of the electronic circuit of FIG. 3, and FIG. 5 is an explanatory diagram showing a second embodiment of the electronic circuit of the antenna of the present invention. C1...Low level switch, 17.18...
...General purpose coupler, 19...Amplifier, 20.
·····filter. FIG.1

Claims (3)

【特許請求の範囲】[Claims] (1)低レベルスイッチによって方向を変えることがで
きるマルチビームアンテナであつて、エネルギを集束す
る反射鏡と、この反射鏡の焦点領域に配置されて該焦点
領域内で電磁界を合成する素子源のアレイと、m個の入
力及びm個の出力を備えた増幅段を有する電子回路とを
含み、カバレッジがm個のスポットビームによって形成
され、各スポットビームが所定数の能動素子源に対応し
、前記電子回路が入力を出力の1つに接続するための低
レベルスイッチを少なくとも1つ有することを特徴とす
る低レベルスイッチによって方向を変えることができる
マルチビームアンテナ。
(1) A multi-beam antenna whose direction can be changed by a low-level switch, including a reflector that focuses energy and an element source that is placed in the focal region of the reflector and combines electromagnetic fields within the focal region. and an electronic circuit having an amplification stage with m inputs and m outputs, the coverage being formed by m spot beams, each spot beam corresponding to a predetermined number of active element sources. , a multi-beam antenna capable of changing direction by means of a low-level switch, characterized in that said electronic circuit has at least one low-level switch for connecting an input to one of the outputs.
(2)増幅段がm個の並列増幅器の両側に夫々配置され
た第1及び第2汎用カップラを含み、前記各増幅器にフ
ィルタが直列接続されていることを特徴とする請求項1
に記載のアンテナ。
(2) Claim 1 characterized in that the amplification stage includes first and second general-purpose couplers respectively placed on both sides of m parallel amplifiers, and a filter is connected in series to each of the amplifiers.
Antenna described in.
(3)第1及び第2汎用カップラが、第1カップラの各
入力が総ての増幅器の間で分配され従つて第1汎用カッ
プラのハイブリッドカップラの総ての出力の間で分配さ
れるように、夫々1つのハイブリッドカップラアセンブ
リで構成されており、第2汎用カップラが第1汎用カッ
プラと逆の構造を有することを特徴とする請求項2に記
載のアンテナ。
(3) the first and second general purpose couplers are arranged such that each input of the first coupler is distributed between all the amplifiers and thus between all the outputs of the hybrid couplers of the first general coupler; , each consisting of one hybrid coupler assembly, the second universal coupler having an opposite structure to the first universal coupler.
JP24228390A 1989-09-13 1990-09-12 Multiple beam antenna through which direction is convertible by low level switch Pending JPH03110905A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8911967A FR2651927B1 (en) 1989-09-13 1989-09-13 LOW LEVEL SWITCHING MULTI-BEAM ANTENNA.
FR8911967 1989-09-13

Publications (1)

Publication Number Publication Date
JPH03110905A true JPH03110905A (en) 1991-05-10

Family

ID=9385412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24228390A Pending JPH03110905A (en) 1989-09-13 1990-09-12 Multiple beam antenna through which direction is convertible by low level switch

Country Status (5)

Country Link
EP (1) EP0417679B1 (en)
JP (1) JPH03110905A (en)
CA (1) CA2025154A1 (en)
DE (1) DE69013831T2 (en)
FR (1) FR2651927B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111361A (en) * 2000-07-06 2002-04-12 Alcatel Communication antenna for wider ground coverage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367467A (en) * 1971-03-26 1974-09-18 Marconi Co Ltd Switching systems
JPS6178213A (en) * 1984-09-25 1986-04-21 Nippon Telegr & Teleph Corp <Ntt> Power amplifier
GB8721188D0 (en) * 1987-09-09 1988-04-27 Era Patents Ltd Networks for antenna arrays
FR2628896B1 (en) * 1988-03-18 1990-11-16 Alcatel Espace ANTENNA WITH ELECTRONIC RECONFIGURATION IN EMISSION
FR2628895B1 (en) * 1988-03-18 1990-11-16 Alcatel Espace ELECTRONIC SCANNING ANTENNA

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111361A (en) * 2000-07-06 2002-04-12 Alcatel Communication antenna for wider ground coverage

Also Published As

Publication number Publication date
CA2025154A1 (en) 1991-03-14
FR2651927A1 (en) 1991-03-15
DE69013831T2 (en) 1995-03-23
EP0417679B1 (en) 1994-11-02
EP0417679A1 (en) 1991-03-20
FR2651927B1 (en) 1991-12-13
DE69013831D1 (en) 1994-12-08

Similar Documents

Publication Publication Date Title
US4965587A (en) Antenna which is electronically reconfigurable in transmission
AU613458B2 (en) An electronically scanned antenna
US6018316A (en) Multiple beam antenna system and method
US5128687A (en) Shared aperture antenna for independently steered, multiple simultaneous beams
US4268831A (en) Antenna for scanning a limited spatial sector
US5038147A (en) Electronically scanned antenna
EP0963006B1 (en) Reconfigurable multiple beam satellite phased array antenna
ES2710500T3 (en) Active discrete lens multi-beam antenna
US5162803A (en) Beamforming structure for modular phased array antennas
JP6127067B2 (en) Two-dimensional multi-beamformer, antenna comprising such a multi-beamformer and satellite communication system comprising such an antenna
US5598173A (en) Shaped-beam or scanned beams reflector or lens antenna
JPH06232621A (en) Active transmission phased array antenna
JP3089088B2 (en) Effective load architecture in space.
US5289193A (en) Reconfigurable transmission antenna
JP3284837B2 (en) Distribution combining device and antenna device
US5321413A (en) Offset active antenna having two reflectors
JPH03110905A (en) Multiple beam antenna through which direction is convertible by low level switch
JPH03135205A (en) Electronic scanning type transmission antenna
US4245223A (en) Self-multiplexing antenna employing orthogonal beams
JPH10229308A (en) Beam scanning antenna system
GB2262387A (en) Multibeam antenna
Sikina et al. Variably inclined continuous transverse stub-2 antenna
Zou et al. Parametric Flat Lenses for Near-Field Imaging and Electronic Beam Scanning
JPH04291503A (en) Reconstructable trnsmission antenna
JPH07181251A (en) Electronic scanning antenna