JPH03110605A - Servo controller - Google Patents

Servo controller

Info

Publication number
JPH03110605A
JPH03110605A JP24876289A JP24876289A JPH03110605A JP H03110605 A JPH03110605 A JP H03110605A JP 24876289 A JP24876289 A JP 24876289A JP 24876289 A JP24876289 A JP 24876289A JP H03110605 A JPH03110605 A JP H03110605A
Authority
JP
Japan
Prior art keywords
speed
estimated
disturbance
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24876289A
Other languages
Japanese (ja)
Other versions
JP2906255B2 (en
Inventor
Akira Shimada
明 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1248762A priority Critical patent/JP2906255B2/en
Priority to US07/587,450 priority patent/US5115418A/en
Publication of JPH03110605A publication Critical patent/JPH03110605A/en
Application granted granted Critical
Publication of JP2906255B2 publication Critical patent/JP2906255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41367Estimator, state observer, space state controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41373Observe position and driving signal, estimate disturbance and speed

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve the control performance by providing a function which simultaneously performs compensation to apparently erase the disturbance load with the positive feedback of an estimated disturbance load as well as speed feedback compensation using the estimated speed. CONSTITUTION:The position control operation part 3 of a servo controller 1 compares the data of a position command 5 with the position detection signal 6 of a control object and uses the data of the estimated speed 10 to perform the operation required for control and outputs a driving force command 10a. Meanwhile, the driving force 8 and the position detection signal 6 are inputted to a disturbance load speed observer 4, and the observer 4 outputs the estimated disturbance 9 and the estimated speed 10. The estimated disturbance load 9 is added to the output 10a of the position control operation part 3 to obtain the driving force 8. Since disturbance torque elimination and estimated speed feedback are simultaneously performed in such a manner, stable control is realized even when the speed is so low that speed ripple is apt to occur.

Description

【発明の詳細な説明】 【産業上の利用分野] ロボットマニピュレータ、工作機械、XY子テーブルの
位置、速度または力制御装置に関する。 【発明の概要J 本発明はロボットのアームや、工作機械の主軸、ワーク
台等のように位置検出手段を持ち機械駆動される制御対
象に対して、クーロン摩擦、弾性、粘性または負荷変動
によって生じる加速力の変動や外界からの外力等からな
る制御対象への外乱負荷と制御対象の運動速度とを、ア
クチュエータの発生する駆動力(または駆動電流)と検
出した現在位置データを用いて同時に推定する状態推定
演算部(外乱負荷・速度推定オブザーバ)を持つことを
特徴とし、推定外乱負荷を正帰還することにより外乱負
荷を見かけ上消去する補償と推定速度を利用した速度フ
ィードバック補償とを同時に行う機能を有することで制
御性能を向上させることを特徴とするサーボ制御装置で
ある。(第1図)参照。 [従来の技術】 ロボット、工作機械等の機械駆動系のモータ軸には既知
または未知の外乱トルクが発生し、機械駆動を妨げる場
合、振動の原因になる場合、目標軌道への追従誤差を発
生する原因になる場合等の様々な制御性の劣化を引き起
こす問題があった。 従来、位置・速度制御の分野では第2図の例に見られる
ように位置検出器からの位置信号6または制御対象の速
度信号14のフィードバック信号を利用したフィードバ
ック制御ループを構成することで制御目的を達成してき
た。この際、外乱トルり7に対してはフィードバックル
ープが自ずから持つ外乱除去効果を利用し、ループゲイ
ンを可能な限り大きく取ることで偏差をなくす仕組みに
なっている。また、第5図の従来例の伝達関数ブロック
図に見られるように、位置指令5と位置検出信号6の偏
差に対しては積分補償項11をフィードバックループ内
に挿入することにより定常偏差をなくす方法が取られて
きた。しかしながら、制御対象の特性により制御系の安
定領域に制限が生じるので単なるゲイン11.12.1
3の向上には限界があり十分な特性が得られない。 また既知外乱に対して動特性の変化を考慮した制御系を
構成することで対処する制御方法が多く開発されている
が、未知外乱に対しては同じ制御特性を維持することは
難かった。 そこで第5図に見られるように、外乱トルク7を制御対
象モデル2の一部として扱い、アクチュエータの発生電
流または発生トルク8と運動速度14を用いて外乱トル
ク7を推定する外乱トルクオブザーバ4を構成し速度制
御系に応用する方法が開発されている。一方、速度制御
系に限らず、位置制御系を構成する場合にも、第1図、
第2図にも見られるように、速度フィードバックループ
を併用することで制御性を向上できることが知られてい
る。 [発明が解決しようとする課題] ロボット、工作機械のうちの多くは小型化、軽量化を目
的としてタコジェネレータのような速度検出手段を持た
ず、位置検出手段のみを持つ場合が少なくない、その場
合、制御位置は位置検出データの微分値を速度検出値と
して利用する必要があるが、アナログ回路による微分は
高周波ノイズを拾いやすいため実用的ではなかった。ま
た位置を表すパルスを発生する型の位置検出手段を有す
る制御対象に対しては、パルス周波数に比例する電圧を
発生する速度検出回路が広く利用されているが、低速度
においてリップルを含むために精度に問題があり、振動
の原因にもなった。上記速度検出回路のリップルを消す
ためにローパスフィルタを挿入する方法がとられるが遅
れが生じて制御性を劣化させる問題が起こった。また、
ディジタルサーボ制御装置では現在位置と1サンプル前
の位置の1階差分を速度データとして近似する方法が取
られている場合が多いがこれも低速度においてリップル
が増大するため振動や騒音の原因となり易い。 以上のように1位置検出手段のみを有する位置制御系に
対して、制御対象からの速度信号と、制御系の駆動トル
ク信号よりオブザーバで推定外乱トルクを出力して位置
制御系に利用する制御装置では実用上問題があった。 〔課題を解決するための手段J 本発明は上記問題を解決するため、制御対象の位置信号
および駆動力信号の両信号を演算処理するオブザーバ(
状態推定器)を用い、推定外乱負荷と推定速度とを算出
し推定外乱負荷は正帰還し、推定速度は速度フィードバ
ック補償してサーボ制御する制御装置であり、位置検出
手段を持ち、速度検出手段を持たない制御対象に対して
、駆動力(または駆動電流)と位置検出値とを入力とし
、オブザーバ理論に基づき外乱と速度とを推定する状態
推定演算部(外乱トルク・速度オブザーバ)を構成し、
上記推定外乱負荷を正帰還し、(作用効果)併せて推定
速度を用いて速度フィードバックを同時に行う手段をソ
フトウェア(CPU装置)により行なうようにしたサー
ボ制御装置である。 〔作用1 サーボ制御装置lの位置制御演算部3は位置指令5と制
御対象の位置検出信号6とのデータを比較し、推定速度
10のデータを利用して制御に必要な演算を行い、駆動
力指令として出力する。 方、外乱負荷速度オブザーバは駆動力8と位置検出信号
6を入力し、推定外乱負荷9と推定速度10を出力する
。推定外乱負荷9は前記の位置制御演算部3の出力と加
算され、駆動力8が得られる。 制御対象2は駆動力8と外乱負荷7の差によって駆動制
御される。 【実施例] 本発明の実施例について制御対象が回転系の例で説明す
る。 第1図において、サーボ制御装置1の位置制御演算部3
には、位置指令信号5および制御対象2の位置検出器か
らの位置検出信号6が出力される。一方、外乱トルク・
速度オブザーバ4には。 位置検出信号6と、駆動トルク(駆動力)信号8とが入
力され、オブザーバ4はこれら両信号をもとにして演算
を行ない、推定外乱トルク(負荷)信号9および推定速
度信号lOとを出力する。 推定速度信号10は位置制御演算部3に入力され、推定
外乱トルク信号9は位置制御演算部3の出力10aに加
算される。 位置制御演算部3では、位置指令5と位置検出信号6と
を比較するとともに、推定速度信号10を用いて制御対
象を所定の位置に移動させる駆動力を求める演算を行な
い、駆動トルク指令信号lOaを出力する。この駆動ト
ルク信号10aは前述したようLこ推定外乱トルク信号
9と加算され駆動トルク信号8が得られる。そしてこの
駆動トルク信号8と制御対象の加速変動や摺動摩擦等の
外乱トルクとの差により制御対象2が駆動制御されるこ
ととなる。 なお、位置制御演算部3および外乱トルク速度オブザー
バ4等からなるサーボ制御装置lはCPU装置を用いて
ソフトウェアにより演算処理するようにしているが、そ
れぞれ位置制御演算回路、オブザーバ回路で演算出力す
るようにしてもよい。 次に外乱トルク推定の原理について説明する。 第1式は制御対象に関する運動方程式で、モータ発生ト
ルクT1、慣性モーメントJ、角度位置θ、外乱トルク
T1、・は時間微分を表す。 外乱トルク速度推定オブザーバを得るために制御対象を
第2式、第3式のような状態方程式で表現しておく、そ
こで第1式を第4式の定義と第5式の仮定の基に状態方
程式表現したものが第6式、第7式である。 第5式の仮定に対しても、求めたオブザーバが結果的に
ある程度の外乱トルク変化に追従することが外乱トルク
オブザーバに関する文献により明らかになっている。 運動方程式:’l=Jθ+TL 状態方程式: X=AX+Bu y=cx 定義   :X、=θ、u = T a(1式) (2式) (3式) (4式) Xg=θ、 y=x。 ±θ X纂 =TL 仮定 :%TL:=0 (5式) (6式) 現代制御理論の基本的な設計手法であるゴピナスの最小
次元オブザーバを第6式、第7式に適用することで第8
式、第9式の型式で表した第10式、第11式を得る。 各状態量は第12式で示される意味を持っている。 交=てz+’1lTu (9式) (10式) (11式) Ll、Laは上記システムの固有値を決めるパラメータ
定数であり、システム安定性が確保できるように決める
。 次に第1O式、第11式で得られた外乱トルク速度推定
オブザーバを制御装置上にソフトウェアで実現するため
に離散化を行う、第13式で定義される変換を行うこと
で第14式、第15式の型式で表した第16式、第17
式が得られる0式中のパラメータは第18式から第27
式で表される。 X (kT) = C Z (kT) + D ・U (kTl (15式) (16式) (17式) %式%) () y (kTlを:jw 、 u (kTlをumと書き
表す。 x + (kTlをXo、x 、 fkT)をx 11
x、 x s (kT)をX、と書き表す。 θ(kT)をθ5、δ(kTlをbk、TL(kT)を
T Lkと表す。 α目0 (α−β) −L2(e −”  −e 0丁 ) (20式) (21式) (22式) (24式) (25式) (26式) (27式) %式% J は慣性モーメント の公称値。 ) 第16式、第17式で表される離散化形式の外乱トルク
速度推定オブザーバを制御装置内に組み込む様子を示し
たものが第6図で示されるフローチャートであり、上記
外乱トルク速度推定は単にオブザーバと表記しである。 サーボ制御装置はデータを初期化した後、繰り返しルー
プに入り、逐次の位置指令データを作成し、サンプリン
グタイムを待って、位置検出を行う、検出値と前回の入
力を基にオブザーバが外乱トルクと速度を推定し、サー
ボ演算ルーチンに転送する。サーボは演算結果を駆動ト
ルクとして出力し、繰り返しの回数kを更新する。 第7図にオブザーバの演算ルーチンを示す。 Zi++ (t =、0. 1 、2.・・・)は外乱
トルク速度推定オブザーバ内の中間変数であり、データ
値は初期値を0としてフローチャートのループ内でサン
プリングタイム毎に更新されてい<、Zlllは第14
式のz ((k+t))に相当し、Z+1に相当するZ
 (k)の1サンプル後の変数であり、このルーチン内
で逐次更新される。 第28式に推定外乱トルクと推定速度とを利用した制御
補償を実現する式を示す、指令位置と検出位置の差の積
分にゲインが乗ぜられ、推定速度と検出位置とにそれぞ
れゲインが乗ぜられて負帰還され、推定外乱トルクが正
帰還される。 (28式) %式%: TLk:推定外乱トルク Tmm:メカトルク 第8図が実現のためのルーチンである。 結果として、第4図に示される伝達関数ブロックが実現
されることになる。 〔発明による効果] ロボットを例に取ると、ロボットが未知重量を持つ物体
を把持した場合に、ロボットの動特性パラメータは未知
量の変化を生ずる。また、ロボットに限らず機械駆動系
の弾性、粘性、摩擦等のパラメータは環境温度、湿度等
により変化する。これらの変化によって駆動時に生じる
トルク変動は制御系に対して外乱トルクとして作用する
0本制御装置はこの外乱トルクを見かけ上消去すること
で制御系を常に一定の制御特性を維持させることができ
る。 一般に位置・速度制御系の速度リップルは外乱トルクの
他、検出ノイズ、駆動トルクリップル等により生じるが
、上記の外乱トルク消去機能だけでなく、外乱トルク速
度推定オブザーバが持つローパスフィルタ特性を利用し
て推定速度を利用した速度フィードバックを用いること
により、速度検出時の検出ノイズをも取り除くことがで
きる。 外乱トルク除去と推定速度フィードバックを同時に行う
ことにより、速度リップルを生じ易い低速度でも安定し
た制御が実現できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position, speed or force control device for a robot manipulator, machine tool, or XY child table. [Summary of the Invention J] The present invention applies to control objects that are mechanically driven and have position detection means, such as robot arms, machine tool spindles, work tables, etc., that are caused by Coulomb friction, elasticity, viscosity, or load fluctuations. Simultaneously estimate the disturbance load on the controlled object, such as fluctuations in acceleration force and external forces from the outside world, and the motion speed of the controlled object, using the driving force (or driving current) generated by the actuator and the detected current position data. It is characterized by having a state estimation calculation unit (disturbance load/velocity estimation observer), and has the function of simultaneously performing compensation that apparently eliminates the disturbance load by positive feedback of the estimated disturbance load and velocity feedback compensation using the estimated velocity. This is a servo control device characterized by improving control performance by having the following. See (Figure 1). [Prior Art] Known or unknown disturbance torque occurs on the motor shaft of the mechanical drive system of robots, machine tools, etc., which may interfere with machine drive, cause vibration, or cause an error in tracking the target trajectory. There have been problems that have caused various deteriorations in controllability, such as cases in which the Conventionally, in the field of position/velocity control, as shown in the example in Fig. 2, control objectives are achieved by constructing a feedback control loop that utilizes a feedback signal of the position signal 6 from the position detector or the speed signal 14 of the controlled object. has been achieved. At this time, with respect to the disturbance torque 7, the deviation is eliminated by making use of the disturbance removal effect that the feedback loop inherently has, and by making the loop gain as large as possible. In addition, as seen in the transfer function block diagram of the conventional example in FIG. methods have been taken. However, the stable region of the control system is limited by the characteristics of the controlled object, so the simple gain 11.12.1
There is a limit to the improvement of 3, and sufficient characteristics cannot be obtained. Furthermore, many control methods have been developed to deal with known disturbances by configuring control systems that take into account changes in dynamic characteristics, but it has been difficult to maintain the same control characteristics against unknown disturbances. Therefore, as shown in FIG. 5, a disturbance torque observer 4 is installed that treats the disturbance torque 7 as a part of the controlled object model 2 and estimates the disturbance torque 7 using the actuator's generated current or generated torque 8 and motion speed 14. A method for configuring and applying it to speed control systems has been developed. On the other hand, when configuring not only a speed control system but also a position control system, the
As can be seen in FIG. 2, it is known that controllability can be improved by using a speed feedback loop in combination. [Problem to be solved by the invention] Many robots and machine tools do not have a speed detection means such as a tacho generator, but only have a position detection means, in order to make them smaller and lighter. In this case, it is necessary to use the differential value of the position detection data as the speed detection value for control position, but differentiation using an analog circuit is not practical because it easily picks up high frequency noise. Furthermore, speed detection circuits that generate a voltage proportional to the pulse frequency are widely used for controlled objects that have a position detection means that generates pulses that represent the position, but because they include ripples at low speeds, There were problems with accuracy and caused vibrations. In order to eliminate the ripples in the speed detection circuit, a method of inserting a low-pass filter has been used, but a delay occurs and the controllability deteriorates. Also,
Digital servo control devices often use a method of approximating the first-order difference between the current position and the position one sample before as speed data, but this also tends to cause vibration and noise because ripple increases at low speeds. . As described above, for a position control system having only one position detection means, a control device uses a speed signal from a controlled object and a drive torque signal of the control system to output an estimated disturbance torque using an observer and uses it in the position control system. There was a practical problem. [Means for Solving the Problems J] In order to solve the above problems, the present invention provides an observer (
This is a control device that performs servo control by calculating the estimated disturbance load and estimated speed using a state estimator), gives positive feedback to the estimated disturbance load, and compensates for the estimated speed by speed feedback, and has a position detection means and a speed detection means. A state estimation calculation unit (disturbance torque/velocity observer) is configured to input the driving force (or drive current) and detected position value for a controlled object that does not have a ,
This servo control device uses software (CPU device) to perform positive feedback of the estimated disturbance load and simultaneous speed feedback using the estimated speed. [Operation 1 The position control calculation unit 3 of the servo control device 1 compares the data of the position command 5 and the position detection signal 6 of the controlled object, performs the calculation necessary for control using the data of the estimated speed 10, and starts the drive. Output as a force command. On the other hand, the disturbance load speed observer inputs the driving force 8 and the position detection signal 6, and outputs an estimated disturbance load 9 and an estimated speed 10. The estimated disturbance load 9 is added to the output of the position control calculation section 3, and the driving force 8 is obtained. The controlled object 2 is driven and controlled by the difference between the driving force 8 and the disturbance load 7. [Embodiment] An embodiment of the present invention will be described using an example in which the controlled object is a rotating system. In FIG. 1, the position control calculation section 3 of the servo control device 1
A position command signal 5 and a position detection signal 6 from the position detector of the controlled object 2 are output. On the other hand, the disturbance torque
For speed observer 4. A position detection signal 6 and a driving torque (driving force) signal 8 are input, and the observer 4 performs calculations based on these two signals and outputs an estimated disturbance torque (load) signal 9 and an estimated speed signal lO. do. The estimated speed signal 10 is input to the position control calculation section 3, and the estimated disturbance torque signal 9 is added to the output 10a of the position control calculation section 3. The position control calculation unit 3 compares the position command 5 and the position detection signal 6, and uses the estimated speed signal 10 to calculate the driving force for moving the controlled object to a predetermined position, and generates a driving torque command signal lOa. Output. As described above, this drive torque signal 10a is added to the estimated disturbance torque signal 9 to obtain the drive torque signal 8. The drive of the controlled object 2 is controlled by the difference between this drive torque signal 8 and disturbance torque such as acceleration fluctuations or sliding friction of the controlled object. Note that the servo control device l, which consists of the position control calculation section 3, disturbance torque speed observer 4, etc., uses a CPU device to perform calculation processing by software, but the position control calculation circuit and the observer circuit respectively output calculations. You can also do this. Next, the principle of disturbance torque estimation will be explained. The first equation is an equation of motion regarding the controlled object, where motor generated torque T1, moment of inertia J, angular position θ, and disturbance torque T1, · represent time differentiation. In order to obtain a disturbance torque speed estimation observer, the controlled object is expressed by state equations such as the second and third equations, and the first equation is expressed in terms of the state based on the definition of the fourth equation and the assumption of the fifth equation. Equations 6 and 7 are expressed as equations. Even with the assumption of the fifth equation, it is clear from the literature regarding disturbance torque observers that the obtained observer will eventually follow disturbance torque changes to a certain extent. Equation of motion: 'l=Jθ+TL Equation of state: X=AX+Bu y=cx Definition: X, = θ, u = T a (1 equation) (2 equation) (3 equation) (4 equation) Xg=θ, y=x . ±θ 8th
The 10th and 11th equations expressed in the form of the 9th equation are obtained. Each state quantity has the meaning shown in the 12th formula. Cross=tez+'1lTu (Formula 9) (Formula 10) (Formula 11) Ll and La are parameter constants that determine the eigenvalues of the above system, and are determined so as to ensure system stability. Next, in order to realize the disturbance torque speed estimation observer obtained by Equation 1O and Equation 11 with software on the control device, discretization is performed, and by performing the transformation defined by Equation 13, Equation 14, 16th and 17th expressions expressed in the form of 15th expression
The parameters in the 0 formula that give the formula are the 18th to 27th formulas.
Expressed by the formula. X (kT) = C Z (kT) + D ・U (kTl (Formula 15) (Formula 16) (Formula 17) %Formula%) () y (kTl is written as: jw, u (kTl is written as um. x + (kTl to Xo, x, fkT) to x 11
x, x s (kT) is written as X. θ(kT) is expressed as θ5, δ(kTl is expressed as bk, and TL(kT) is expressed as T Lk. αth 0 (α−β) −L2(e −” −e 0th) (Formula 20) (Formula 21) (Formula 22) (Formula 24) (Formula 25) (Formula 26) (Formula 27) % formula % J is the nominal value of the moment of inertia. ) Disturbance torque speed in the discretized form expressed by Equations 16 and 17 The flowchart shown in Fig. 6 shows how the estimation observer is incorporated into the control device, and the disturbance torque speed estimation described above is simply expressed as an observer.After initializing the data, the servo control device repeats the process repeatedly. Enters a loop, creates sequential position command data, waits for sampling time, and performs position detection.Based on the detected value and previous input, the observer estimates the disturbance torque and speed, and transfers it to the servo calculation routine. The servo outputs the calculation result as a driving torque and updates the number of repetitions k. Figure 7 shows the calculation routine of the observer. Zi++ (t =, 0.1, 2...) is the disturbance torque speed estimation It is an intermediate variable in the observer, and the data value is updated every sampling time in the loop of the flowchart with the initial value as 0.
Z corresponds to z ((k+t)) in the formula and corresponds to Z+1
This is a variable after one sample of (k), and is updated sequentially within this routine. Equation 28 shows the formula for realizing control compensation using estimated disturbance torque and estimated speed. The integral of the difference between the command position and the detected position is multiplied by a gain, and the estimated speed and detected position are each multiplied by a gain. The estimated disturbance torque is fed back negatively, and the estimated disturbance torque is fed back positively. (Formula 28) % Formula %: TLk: Estimated disturbance torque Tmm: Mechatorque Figure 8 is the routine for realization. As a result, the transfer function block shown in FIG. 4 is realized. [Effects of the Invention] Taking a robot as an example, when the robot grips an object with unknown weight, the dynamic characteristic parameters of the robot change by an unknown amount. Furthermore, parameters such as elasticity, viscosity, and friction of mechanical drive systems, not just robots, change depending on environmental temperature, humidity, and the like. Torque fluctuations that occur during driving due to these changes act as disturbance torque on the control system.The zero control device can maintain constant control characteristics of the control system at all times by apparently eliminating this disturbance torque. In general, speed ripples in position/speed control systems are caused by detection noise, drive torque ripples, etc. in addition to disturbance torque. By using speed feedback using estimated speed, detection noise during speed detection can also be removed. By simultaneously performing disturbance torque removal and estimated speed feedback, stable control can be achieved even at low speeds where speed ripples are likely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図で、外乱トルク速
度推定オブザーバとそれを利用した制御装置を示してい
る。第2図および第3図は従来の制御装置の概念図。 第4図は本発明の実施例の伝達関数を示すブロック図、
第5図は第2図の実施例の伝達関数を示すブロック図で
ある。 第6図は本発明の実施例の制御方式を示すフロチャート
であり、第7図および第8図は第6図のオブザーバとサ
ーボの演算ルーチンのフローチャートである。 サーボ制御装置 制御対象 位置制御演算部 外乱負荷(トルク)・速度推定オブ ザーバ(状態推定演算部) 位置指令信号 位置信号 外乱負荷(トルク) 駆動力(トルク)信号 推定外乱負荷(トルク)信号 推定速度信号 11  ・ l 2 ・ l 3 ・ l 4 ・ ・積分補償ゲイン ・速度フィードバックゲイン ・位置フィードバックゲイン ・速度
FIG. 1 is a block diagram of an embodiment of the present invention, showing a disturbance torque speed estimation observer and a control device using the observer. FIGS. 2 and 3 are conceptual diagrams of a conventional control device. FIG. 4 is a block diagram showing a transfer function of an embodiment of the present invention;
FIG. 5 is a block diagram showing the transfer function of the embodiment of FIG. 2. FIG. 6 is a flowchart showing the control system of the embodiment of the present invention, and FIGS. 7 and 8 are flowcharts of the observer and servo calculation routine of FIG. 6. Servo control device Controlled object position control calculation section Disturbance load (torque)/speed estimation observer (state estimation calculation section) Position command signal Position signal Disturbance load (torque) Driving force (torque) signal Estimated disturbance load (torque) signal Estimated speed signal 11 ・ l 2 ・ l 3 ・ l 4 ・ ・Integral compensation gain・Velocity feedback gain・Position feedback gain・Speed

Claims (1)

【特許請求の範囲】 位置検出手段をもつ機械駆動系からなる制御対象を制御
するサーボ制御装置において、 入力信号より演算して制御対象の外乱負荷と制御対象の
運動速度とを同時に推定し、推定外乱負荷および推定速
度信号を出力する状態推定演算手段と、 位置指令信号と位置検出信号と上記推定速度信号とから
演算して駆動力指令信号を出力する位置制御演算手段と
を有し、 上記推定外乱負荷信号は位置制御演算手段に正帰還し、 上記推定速度信号は速度フィードバック補償する構成と
した ことを特徴とするサーボ制御装置。
[Scope of claims] In a servo control device that controls a controlled object consisting of a mechanical drive system having a position detection means, the disturbance load of the controlled object and the motion speed of the controlled object are simultaneously estimated by calculating from an input signal. It has a state estimation calculation means that outputs a disturbance load and an estimated speed signal, and a position control calculation means that calculates from a position command signal, a position detection signal, and the estimated speed signal and outputs a driving force command signal, A servo control device characterized in that a disturbance load signal is positively fed back to a position control calculation means, and the estimated speed signal is compensated for by speed feedback.
JP1248762A 1989-09-25 1989-09-25 Servo control device Expired - Fee Related JP2906255B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1248762A JP2906255B2 (en) 1989-09-25 1989-09-25 Servo control device
US07/587,450 US5115418A (en) 1989-09-25 1990-09-25 Servo control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248762A JP2906255B2 (en) 1989-09-25 1989-09-25 Servo control device

Publications (2)

Publication Number Publication Date
JPH03110605A true JPH03110605A (en) 1991-05-10
JP2906255B2 JP2906255B2 (en) 1999-06-14

Family

ID=17182998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248762A Expired - Fee Related JP2906255B2 (en) 1989-09-25 1989-09-25 Servo control device

Country Status (1)

Country Link
JP (1) JP2906255B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152608A (en) * 1989-11-08 1991-06-28 Okuma Mach Works Ltd Position controller for machine tool
WO1999056185A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Controller and control method
JP2002297243A (en) * 2001-03-30 2002-10-11 Sumitomo Heavy Ind Ltd Spool type flow rate control valve and its controller
US7725201B2 (en) * 2000-12-14 2010-05-25 Kabushiki Kaisha Yaskawa Denki Feedback control device
CN114798873A (en) * 2022-04-26 2022-07-29 广州蓝方自动化设备有限公司 High-speed punch forming process for pipe joint and integrated equipment thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152608A (en) * 1989-11-08 1991-06-28 Okuma Mach Works Ltd Position controller for machine tool
WO1999056185A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Controller and control method
US6310456B1 (en) 1998-04-24 2001-10-30 Hitachi, Ltd. Control system and method
US7725201B2 (en) * 2000-12-14 2010-05-25 Kabushiki Kaisha Yaskawa Denki Feedback control device
JP2002297243A (en) * 2001-03-30 2002-10-11 Sumitomo Heavy Ind Ltd Spool type flow rate control valve and its controller
CN114798873A (en) * 2022-04-26 2022-07-29 广州蓝方自动化设备有限公司 High-speed punch forming process for pipe joint and integrated equipment thereof
CN114798873B (en) * 2022-04-26 2023-03-07 广州蓝方自动化设备有限公司 High-speed punch forming process for pipe joint and integrated equipment thereof

Also Published As

Publication number Publication date
JP2906255B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JP5996127B2 (en) Friction identification method and friction identification apparatus
US4727303A (en) Positional control method and system utilizing same
Capurso et al. Sensorless kinesthetic teaching of robotic manipulators assisted by observer-based force control
Phuong et al. Disturbance observer and Kalman filter based motion control realization
CN102904521A (en) Electric motor controller comprising function for simultaneously estimating inertia, friction, and spring
JP6091523B2 (en) Servo control device
EP1023973B1 (en) Robot control method and device
Liu et al. Robust control of robot manipulators based on dynamics decomposition
CN104965413B (en) The friciton compensation self-adaptation control method of controlledization flat pad
JPH09282008A (en) Servo controller
JPH03110605A (en) Servo controller
JPH03105510A (en) Servo controller
JP2906256B2 (en) Servo control device
CN114734437B (en) Robot joint control method and device
Hu et al. Position control of robots by nonlinearity estimation and compensation: Theory and experiments
JPH06225565A (en) Method of measuring load constant of motor drive system
JP2838578B2 (en) Motor control device, disturbance load torque estimation device
Tungpataratanawong et al. High performance robust motion control of industrial robot parameter identification based on resonant frequency
JPH06225564A (en) Method of measuring load constant of motor drive system
Carignan et al. Achieving impedance objectives in robot teleoperation
Komada et al. Motion control of linear synchronous motors based on disturbance observer
JP2000099105A (en) Control method for load machine
Yin et al. A Phased Optimization Method for Robot Dragging Teaching without Torque Sensors
Chen et al. μ-synthesis based adaptive robust control of linear-motor-driven stages with high-frequency flexible modes
Nagatsu et al. Load-Side Sensor-less Disturbance Estimation Based on Integration of Motor-Side Velocity and Acceleration Information for Flexible Manipulators

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees