JPH0311007B2 - - Google Patents

Info

Publication number
JPH0311007B2
JPH0311007B2 JP56172400A JP17240081A JPH0311007B2 JP H0311007 B2 JPH0311007 B2 JP H0311007B2 JP 56172400 A JP56172400 A JP 56172400A JP 17240081 A JP17240081 A JP 17240081A JP H0311007 B2 JPH0311007 B2 JP H0311007B2
Authority
JP
Japan
Prior art keywords
light
output
photodetectors
detector
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56172400A
Other languages
Japanese (ja)
Other versions
JPS5873024A (en
Inventor
Kaneki Matsui
Haruhisa Takiguchi
Yukio Kurata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56172400A priority Critical patent/JPS5873024A/en
Publication of JPS5873024A publication Critical patent/JPS5873024A/en
Publication of JPH0311007B2 publication Critical patent/JPH0311007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor

Description

【発明の詳細な説明】 本発明は微小スポツト状に絞つた光を照射して
デイスク上の記録媒体に情報を記録しまた記録さ
れた情報を再生する光学装置に関し、特に記録媒
体上での微小スポツト光の大きさが記録再生動作
に対し常に最適径に保持されるように焦点制御を
行なう光学式情報処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical device that records information on a recording medium on a disk by irradiating light focused in the form of a minute spot, and reproduces the recorded information, and particularly relates to an optical device that records information on a recording medium on a disk by irradiating light focused in the shape of a minute spot, and plays back the recorded information. The present invention relates to an optical information processing device that performs focus control so that the size of a spot light is always maintained at an optimum diameter for recording and reproducing operations.

デイスクに記録された情報を光学的に再生する
手段としてはVLP等のようなビデオデイスクが
よく知られている。ビデオデイスクでは、直径約
1μm程度に絞つたスポツト光を焦点制御、トラ
ツキング制御等の制御を行ないながらあらかじめ
記録された情報トラツク上に照射し、トラツク上
を正しく追跡することによつて情報が再生され
る。しかしながら、ビデオデイスクのデイスク板
は読取動作において高速で回転駆動されるため、
回転時の面振れあるいは外部振動等によつてスポ
ツト光照射点の位置が絶えず変動する。従つて、
情報を正確に読取るためにはこのデイスク板の位
置変動に追従してスポツト光の焦点制御及びトラ
ツキング制御を確実に行なうことが要求され、デ
イスク板及び情報トラツクの位置検出機構及びス
ポツト光照射系の駆動制御機構が必要となる。
Video disks such as VLP are well known as means for optically reproducing information recorded on a disk. For video discs, the diameter is approx.
Information is reproduced by irradiating a spot light focused to about 1 μm onto a pre-recorded information track while performing focus control, tracking control, etc. and tracking the track correctly. However, since the disc plate of a video disc is rotated at high speed during the reading operation,
The position of the spot light irradiation point constantly changes due to surface runout during rotation or external vibration. Therefore,
In order to read information accurately, it is necessary to reliably perform focus control and tracking control of the spot light by following the positional changes of the disc plate, and the position detection mechanism of the disc plate and information track, as well as the spot light irradiation system. A drive control mechanism is required.

本発明は、上述の焦点制御を簡単な光学系で行
なうことのできるピツクアツプ装置に焦点位置検
出機構を備えた新規有用な光学式情報処理装置を
提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new and useful optical information processing device that is equipped with a focus position detection mechanism in a pickup device that can perform the above-mentioned focus control using a simple optical system.

以下、本発明を実施例に従つて図面を参照しな
がら詳説する。
Hereinafter, the present invention will be explained in detail according to embodiments with reference to the drawings.

第1図は本発明を用いたピツクアツプ装置の一
実施例を示す構成図である。
FIG. 1 is a block diagram showing an embodiment of a pickup device using the present invention.

半導体レーザ1から放射されたレーザ光はその
偏光面が紙面と平行になるように設定されている
ため、偏光膜を有するビームスプリツター2に入
射した場合、偏光膜の有する特性によつてビーム
スプリツター2をほぼ完全に透過しコリメートレ
ンズ3に入射する。コリメートレンズ3によつて
平行にされた光束はλ/4板4を通過することに
より円偏光に変換された後、対物レンズ5に入射
される。対物レンズ5を出射した光束は集光させ
て対物レンズ5の焦点位置に配置されたデイスク
6面上に微小な光スポツトを形成する。デイスク
6面から反射された光束は入射時の光束に対して
逆回りの円偏光になつて再び対物レンズ5に入射
され、合焦状態で平行光束となりλ/4板4に入
射する。λ/4板4を出射した光束は入射時の光
束に対し直線偏光の向きが90゜変換され、再びコ
リメートレンズ3を通過した後偏光膜を有するビ
ームスプリツター2に入射され、ビームスプリツ
ター2でほぼ完全に反射し検出器8に入射され
る。
Since the laser light emitted from the semiconductor laser 1 is set so that its polarization plane is parallel to the plane of the paper, when it enters the beam splitter 2 which has a polarizing film, the beam splitter will be split due to the characteristics of the polarizing film. The light almost completely passes through the twine 2 and enters the collimating lens 3. The light beam made parallel by the collimator lens 3 is converted into circularly polarized light by passing through the λ/4 plate 4, and then enters the objective lens 5. The light beam emitted from the objective lens 5 is condensed to form a minute light spot on the surface of the disk 6 placed at the focal point of the objective lens 5. The light beam reflected from the surface of the disk 6 becomes circularly polarized light in the opposite direction to the incident light beam and enters the objective lens 5 again, and in a focused state becomes a parallel light beam and enters the λ/4 plate 4. The direction of linear polarization of the light beam exiting the λ/4 plate 4 is changed by 90 degrees with respect to the light beam at the time of incidence, and after passing through the collimating lens 3 again, it enters the beam splitter 2 having a polarizing film. It is almost completely reflected by the beam and enters the detector 8.

第2図は本発明を用いたピツクアツプ装置の他
の実施例を示す構成図である。
FIG. 2 is a block diagram showing another embodiment of a pickup device using the present invention.

本実施例に於いては、半導体レーザ1から放射
されたレーザ光はまずコリメートレンズ3に入射
し、平行光にされた後ビームスプリツター2に入
射し、その後同様にλ/4板4、対物レンズ5を
透過した後デイスク6に集光される。デイスク6
面から反射された光束は同様にして対物レンズ
5、λ/4板4を透過後ビームスプリツター2で
ほぼ完全に反射されてカツプリングレンズ7に入
射する。カツプリングレンズ7を透過したレーザ
光は検出器8上に所定のビーム径で入射する。
In this embodiment, the laser beam emitted from the semiconductor laser 1 first enters the collimator lens 3, is made into parallel light, and then enters the beam splitter 2, and then similarly passes through the λ/4 plate 4 and the objective. After passing through the lens 5, the light is focused on the disk 6. disk 6
The light beam reflected from the surface similarly passes through the objective lens 5 and the λ/4 plate 4, and is almost completely reflected by the beam splitter 2 and enters the coupling lens 7. The laser light transmitted through the coupling lens 7 is incident on the detector 8 with a predetermined beam diameter.

第3図は上記実施例で用いた検出器8の主とし
て受光面の形状を示す構成図である。
FIG. 3 is a configuration diagram mainly showing the shape of the light receiving surface of the detector 8 used in the above embodiment.

この検出器8の受光面は両側に大きな受光面を
もつ2組の分割検出器8−a1,8−a2と8−b1
8−b2と中央部に両側の検出器より小さな受光面
をもつ1組の分割検出器8−c1,8−c2からなつ
ており、各組の検出器の分割部が一直線状になる
ように近接して配置されている。検出器8は第1
図ではコリメートレンズ3の光軸上に、第2図で
はカツプリングレンズ7の光軸上に検出器中心が
一致するように光軸に垂直に設置されており、コ
リメートレンズ3あるいはカツプリングレンズ7
からの検出器8での間隔は検出器8の大きさとコ
リメートレンズ3あるいはカツプリングレンズ7
の焦点距離及び口径で定まる所定の位置に設定さ
れている。
The light-receiving surface of this detector 8 is divided into two sets of divided detectors 8-a 1 , 8-a 2 and 8-b 1 , each having a large light-receiving surface on both sides.
8-b 2 and a pair of split detectors 8-c 1 and 8-c 2 each having a smaller light-receiving surface in the center than the detectors on both sides, and the split portions of each set of detectors are arranged in a straight line. They are placed close enough to each other. Detector 8 is the first
The detector is installed perpendicularly to the optical axis so that the center of the detector is on the optical axis of the collimating lens 3 in the figure, and on the optical axis of the coupling lens 7 in FIG.
The distance between the detector 8 and the detector 8 is determined by the size of the detector 8 and the collimating lens 3 or coupling lens 7.
The lens is set at a predetermined position determined by the focal length and aperture of the lens.

次に第4図に従つて焦点制御を行うための合
焦、非合焦状態を検出する原理について説明す
る。尚、第4図では理解を容易にするために光デ
イスク6から反射して検出器8に入射するまでを
図示し、対物レンズ5とコリメートレンズ3ある
いはカツプリングレンズ7を1個の対物レンズ9
で代用している。対物レンズ9とデイスク6との
各位置での検出器上に照射される光スポツト10
−a,10−b,10−c,10−dの形状も合
せて図示する。
Next, the principle of detecting in-focus and out-of-focus states for performing focus control will be explained according to FIG. 4. In addition, in FIG. 4, for ease of understanding, the process from reflection from the optical disk 6 to incidence on the detector 8 is illustrated, and the objective lens 5 and collimating lens 3 or coupling lens 7 are combined into one objective lens 9.
It is substituted with A light spot 10 irradiated onto the detector at each position of the objective lens 9 and the disk 6
-a, 10-b, 10-c, and 10-d are also illustrated.

まず第4図bに示すように合焦位置ではデイス
ク6から反射してきた光束は検出器8上に光スポ
ツト10−bの形状で照射され、この時中央の1
組の分割検出器8−cの出力と両側の2組の分割
検出器8−a,8−bの出力の和が相等しくなる
ように検出器8が設定されている。尚、同図に明
瞭に記載されているように中央に配置された分割
検出器8−cの縦の長さは合焦状態での検出器8
への反射光スポツト10−cの径に略一致してい
る。従つて中央の1組の分割検出器8−cの出力
と両側の2組の分割検出器8−a,8−bの出力
の和との差 VF={V(8-a)+V(8-b)}−V(8-c)は零になる。ここ
で、V(8-a),V(8-b),V(8-c)は各組の分割検出器か
らの出力値を表わす。
First, as shown in FIG. 4b, at the focus position, the light beam reflected from the disk 6 is irradiated onto the detector 8 in the shape of a light spot 10-b, and at this time,
The detector 8 is set so that the output of the set of divided detectors 8-c and the sum of the outputs of the two sets of divided detectors 8-a and 8-b on both sides are equal to each other. As clearly shown in the same figure, the vertical length of the divided detector 8-c placed in the center is the same as that of the detector 8 in the focused state.
This substantially matches the diameter of the reflected light spot 10-c. Therefore, the difference between the output of one set of divided detectors 8-c in the center and the sum of the outputs of two sets of divided detectors 8-a and 8-b on both sides V F ={V (8-a) +V ( 8-b) }−V (8-c) becomes zero. Here, V (8-a) , V (8-b) , and V (8-c) represent output values from each set of divided detectors.

しかしながら第4図aに示す如くデイスク6が
合焦状態からずれて対物レンズ9から遠ざかるに
つれ検出器8上の光スポツト10−aは小さくな
り、このため両側の2組の分割検出器8−a,8
−bへの入射光量は少なくなり、一方中央の1組
の分割検出器8−cへの入射光量は増加する。こ
のため、中央の1組の分割検出器8−cの出力と
両側の2組の分割検出器8−a,8−bの出力の
和とに差動出力差VF={V(8-a)+V(8-b)}−V(8-c)
0が表われる。
However, as shown in FIG. 4a, as the disk 6 deviates from the focused state and moves away from the objective lens 9, the light spot 10-a on the detector 8 becomes smaller, so that the two sets of divided detectors 8-a on both sides become smaller. ,8
The amount of light incident on -b decreases, while the amount of light incident on the central pair of divided detectors 8-c increases. Therefore, a differential output difference V F = {V (8- a) +V (8-b) }-V (8-c)
0 appears.

逆に第4図cに示すようにデイスク6が合焦状
態からずれて対物レンズ6に接近すると結像位置
は後方に移行し、検出器8上での光スポツト10
−cは大きくなる。このため両側の2組の分割検
出器8−a,8−bへの入射光量は増大し、中央
の1組の分割検出器8−cへの入射光量は減少す
る。この結果、中央の1組の分割検出器8−cの
出力と両側の2組の分割検出器8−a,8−bの
出力の和との出力差に第4図aの場合と逆符号の
出力差が現われる。
Conversely, as shown in FIG. 4c, when the disk 6 deviates from the focused state and approaches the objective lens 6, the imaging position moves backward, and the light spot 10 on the detector 8
-c becomes larger. Therefore, the amount of light incident on the two sets of divided detectors 8-a and 8-b on both sides increases, and the amount of light incident on the one set of divided detectors 8-c in the center decreases. As a result, the output difference between the output of one set of divided detectors 8-c in the center and the sum of the outputs of two sets of divided detectors 8-a and 8-b on both sides has a sign opposite to that in the case of FIG. 4a. An output difference appears.

このようにして、中央の1組の分割検出器8−
cからの出力と両側の2組の分割検出器8−a,
8−bからの出力との出力差VFから、デイスク
6の合焦位置を境としデイスク6位置により互い
に逆符号の信号が検出されることになる。
In this way, the central set of divided detectors 8-
output from c and two sets of divided detectors 8-a on both sides,
From the output difference V F with the output from 8-b, signals with opposite signs are detected depending on the position of the disk 6 with the in-focus position of the disk 6 as the boundary.

しかしながら第4図aに示す位置よりも更にデ
イスク6が対物レンズ9から遠ざかつた場合には
検出器8前方で結像した後検出器8に照射するた
め検出器8上の光スポツトは次第に大きくなる。
このため中央の1組の分割検出器8−cからの出
力と両側の2組の分割検出器8−a,8−bから
の出力との出力差VFは第4図aのデイスク6位
置より更に対物レンズ9から遠ざかるにつれて第
4図dに示すようになり第4図bに示すデイスク
位置に対応する出力差VFと同じ出力差VFが得ら
れる。第5図は対物レンズ9にデイスク6を密着
させ対物レンズ9からデイスク6を漸次離間せし
める際に上記3組の検出器より得られる出力差
VFの変化を示す信号波形図である。図中のa,
b,c,dは各々第4図a,b,c,dに対応す
る信号である。このように3組の検出器の差動出
力VF={V(8-a)+V(8-b)}−V(8-c)が零になるデイス
ク6位置は第4図bの合焦点位置と第4図dの擬
合焦点位置の2箇所存在するが、例えばデイスク
6を対物レンズ9から次第に離間せしめることに
よつて出力差VFが正符号から負符号に変化する
位置が合焦状態で負符号から正符号に変化する位
置が擬合焦状態となり、両者を区別することがで
きる。また、デイスク6を対物レンズ9に接近さ
せていた場合は上記と逆になることは明らかであ
り、差動出力VF′=V(8-c)−{V(8-a)+V(8-b)}を得
ることにより同様にデイスク6位置を検知するこ
とができる。
However, if the disk 6 moves further away from the objective lens 9 than the position shown in FIG. .
Therefore, the output difference V F between the output from one set of divided detectors 8-c in the center and the outputs from two sets of divided detectors 8-a and 8-b on both sides is determined by the output difference V F at the disk 6 position in Fig. 4a. As the distance from the objective lens 9 increases, the output difference V F becomes as shown in FIG. 4 d, and the same output difference V F as the output difference V F corresponding to the disk position shown in FIG. 4 b is obtained. Figure 5 shows the output difference obtained from the three sets of detectors when the disk 6 is brought into close contact with the objective lens 9 and the disk 6 is gradually separated from the objective lens 9.
FIG. 3 is a signal waveform diagram showing changes in VF . a in the figure,
b, c, and d are signals corresponding to a, b, c, and d in FIG. 4, respectively. In this way, the disk 6 position where the differential output V F = {V (8-a) +V (8-b) }-V (8-c) of the three sets of detectors becomes zero is the case shown in Figure 4b. There are two positions, the focal position and the pseudo-focal position shown in Fig. 4d, but for example, by gradually separating the disk 6 from the objective lens 9, the position where the output difference V F changes from a positive sign to a negative sign is the position where the output difference V F changes from a positive sign to a negative sign. A position that changes from a negative sign to a positive sign in a focused state becomes a quasi-focused state, and the two can be distinguished. Furthermore, if the disk 6 is brought close to the objective lens 9, it is clear that the above will be reversed, and the differential output V F ′=V (8-c) −{V (8-a) +V (8 -b) } The position of disk 6 can be detected in the same way.

以上の如く、3組の検出器の差動出力VFの変
化を検出することにより合焦状態と非合焦状態の
識別を行うことができ、またデイスク6の合焦位
置を境とする互いに逆符号の信号を検出すること
により合焦位置と擬合焦位置の識別を行なうこと
ができる。差動出力VFはデイスク位置検出信号
として光学系の駆動機構に帰還され、光学系は集
光スポツトを合焦状態でデイスク6面へ照射する
ように制御駆動される。
As described above, by detecting changes in the differential output V F of the three sets of detectors, it is possible to distinguish between the in-focus state and the out-of-focus state, and also to By detecting signals of opposite signs, the in-focus position and the pseudo-in-focus position can be identified. The differential output V F is fed back to the drive mechanism of the optical system as a disk position detection signal, and the optical system is controlled and driven so that the condensing spot illuminates the six surfaces of the disk in a focused state.

次に第6図に従つてトラツキング制御を行うた
めのトラツク位置を検出する原理について説明す
る。第6図はデイスク6面のトラツクに情報とし
て記録されたピツト11と集光スポツト13の各
位置関係とそれに対応する検出器8への入射光ス
ポツト10、ピツト像12を模式図として示して
いる。
Next, the principle of detecting the track position for tracking control will be explained with reference to FIG. FIG. 6 schematically shows the positional relationship between the pit 11 and the condensing spot 13 recorded as information on the track on the disk 6, and the corresponding incident light spot 10 and pit image 12 on the detector 8. .

まず第6図bに示す如く、ピツト11中心と集
光スポツト13中心が正確に合致してトラツク上
に光照射されているときには、検出器上の入射光
スポツト10−bの中央部にピツト像12が形成
される。このため検出器8の中央線で上下2分割
された上半分の3個の分割検出器8−a1,8−
b1,8−c1の和の出力と下半分の3個の分割検出
器8−a2,8−b2,8−c2の和の出力は相等しく
なるため図中の上半分の分割検出器8−a1,8−
b1,8−c1の和に対応する出力と下半分の分割検
出器8−a2,8−b2,8−c2の和に対応する出力
の差VTは零になる。
First, as shown in FIG. 6b, when the center of the pit 11 and the center of the condensing spot 13 exactly match and the track is irradiated with light, a pit image is formed at the center of the incident light spot 10-b on the detector. 12 is formed. Therefore, the three divided detectors 8-a 1 , 8- in the upper half are divided into upper and lower parts by the center line of the detector 8.
Since the output of the sum of b 1 , 8-c 1 and the sum of the outputs of the three divided detectors 8-a 2 , 8-b 2 , 8-c 2 in the lower half are equal, Divided detector 8-a 1 , 8-
The difference V T between the output corresponding to the sum of b 1 , 8-c 1 and the output corresponding to the sum of the lower half divided detectors 8-a 2 , 8-b 2 , 8-c 2 becomes zero.

次に第6図aに示す如くピツト11中心が集光
スポツト13中心からずれ、図中では下方に移動
した場合、検出器上の入射光スポツト10−bの
上方にピツト像12が形成される。このため検出
器8の図中の上半分の3個の分割検出器8−a1
8−b1,8−c1の和の出力は下半分の3個の分割
検出器8−a2,8−b2,8−c2の和の出力より小
さくなるため上半分の分割検出器8−a1,8−
b1,8−c1の和に対応する出力と下半分の分割検
出器8−a2,8−b2,8−c2の和に対応する出力
の差VTが差動出力として発生する。
Next, as shown in FIG. 6a, when the center of the pit 11 deviates from the center of the condensing spot 13 and moves downward in the figure, a pit image 12 is formed above the incident light spot 10-b on the detector. . Therefore, the three divided detectors 8-a 1 in the upper half of the detector 8 in the figure
Since the output of the sum of 8-b 1 and 8-c 1 is smaller than the output of the sum of the three divided detectors 8-a 2 , 8-b 2 , and 8-c 2 in the lower half, division detection in the upper half is performed. Vessel 8-a 1 , 8-
The difference V T between the output corresponding to the sum of b 1 , 8-c 1 and the output corresponding to the sum of the lower half divided detectors 8-a 2 , 8-b 2 , 8-c 2 is generated as a differential output. do.

一方、第6図cに示す如くピツト11中心が集
光スポツト13中心からずれて、図中では上方に
移動した場合には第6図aとは逆の結果になり検
出器上の入射光スポツト10−bの下方にピツト
像12が形成される。このため、検出器8の図中
上半分の3個の分割検出器8−a1,8−b1,8−
c1の和の出力は下半分の3個の分割検出器8−
a2,8−b2,8−c2の和の出力より大きくなるた
め、上半分の分割検出器8−a1,8−b1,8−c1
の和に対応する出力と下半分の分割検出器8−
a2,8−b2,8−c2の和に対応する出力の差VT
第6図aとは逆符号の差動出力として現われる。
On the other hand, if the center of the pit 11 deviates from the center of the condensing spot 13 and moves upward in the figure, as shown in Fig. 6c, the result will be opposite to that of Fig. 6a, and the incident light spot on the detector will be A pit image 12 is formed below 10-b. Therefore, the three divided detectors 8-a 1 , 8-b 1 , 8-
The output of the sum of c 1 is sent to the lower half of the three divided detectors 8-
Since the output is larger than the sum of a 2 , 8-b 2 , 8-c 2 , the upper half divided detector 8-a 1 , 8-b 1 , 8-c 1
The output corresponding to the sum of and the lower half divided detector 8-
The output difference V T corresponding to the sum of a 2 , 8-b 2 , and 8-c 2 appears as a differential output with a sign opposite to that in FIG. 6a.

即ち、第6図aのようにピツト11中心が集光
スポツト13中心より下方に位置した場合と第6
図cのように上方に位置した場合とでは第6図b
のようにピツト11中心と集光スポツト13中心
が合致した状態を境にして分割検出器8−a1,8
−b1,8−c1の和の出力に対応する出力と分割検
出器8−a2,8−b2,8−c2の和の出力に対応す
る出力は反転するため上記2組に対応する和の出
力の差動増幅を行なうことによつてピツト位置即
ちトラツク位置に対応した互いに逆符号の信号が
検出されることになる。
That is, when the center of the pit 11 is located below the center of the condensing spot 13 as shown in FIG.
Figure 6b shows the case where it is located above as shown in Figure c.
As shown in FIG .
The output corresponding to the sum of -b 1 and 8-c 1 and the output corresponding to the sum of divided detectors 8-a 2 , 8- b 2 and 8-c 2 are inverted, so they are combined into the above two sets. By performing differential amplification of the corresponding sum outputs, signals with opposite signs corresponding to pit positions or track positions are detected.

第7図は集光スポツト13がピツト列を横切つ
た場合の和信号即ち各分割検出器の和の出力とト
ラツク誤差信号即ちVT={V(8-a1)+V(8-b1)
V(8-c1)}−{V(8-a2)+V(8-b2)+V(8-c2)}の信号を一
例を示す波形図である。ここでトラツク誤差信号
が零となる位置が和信号の最少値になる時と、和
信号の最大置になる時の2箇所存在するが和信号
が最大値となる時はピツトとピツトの中間位置に
集光スポツト13が在る時であり、和信号が最少
値となる時は集光スポツト13がピツト中心に合
致した時である。更にトラツク誤差信号に示した
ように上述の2つの場合は信号の変化の様子すな
わち図中では信号が負から正に変化する所が合ト
ラツク状態になつていることから識別することが
できる。
FIG. 7 shows the sum signal, that is, the sum output of each divided detector, and the track error signal, that is, V T ={V (8-a1) + V (8-b1) +
FIG. 2 is a waveform diagram showing an example of a signal of V (8-c1) }−{V (8-a2) +V (8-b2) +V (8-c2) }. Here, there are two positions where the track error signal becomes zero: when the sum signal becomes the minimum value, and when the sum signal becomes the maximum value, but when the sum signal becomes the maximum value, it is at the intermediate position between the pits. This is when the focused spot 13 is located at the center of the pit, and the sum signal becomes the minimum value when the focused spot 13 coincides with the center of the pit. Further, as shown in the track error signal, the above two cases can be distinguished from the manner in which the signal changes, that is, in the figure, the location where the signal changes from negative to positive is a matching track state.

このようにして得られたデイスク位置検出信号
とトラツク位置検出信号を各々の駆動系に於ける
制御用コイルに帰還して光学系の光照射点を移動
させ焦点制御、トラツキング制御を行なうことに
よりデイスク6が振動した場合でも常に合焦状態
でトラツク上に正確に集光スポツトを照射するこ
とができ、安定した情報再生動作が確立される。
さらに第6図で示したようにトラツク位置を検出
するには図中上半分の3個の分割検出器の和の出
力と、下半分の3個の分割検出器の和の出力の差
の出力値を検出するだけでなく、少なくとも上下
各一対の分割検出器の出力の差の出力、例えば第
8図に示すように、中央部の上下の分割検出器の
差の出力あるいは第9図に示すように両側の上下
の分割検出器の差の出力を検出することによつて
同様の原理によりトラツク位置を検出することが
できる。
The disk position detection signal and track position detection signal obtained in this way are fed back to the control coils in each drive system to move the light irradiation point of the optical system and perform focus control and tracking control. Even if the lens 6 vibrates, the focused spot can always be accurately illuminated on the track in a focused state, and stable information reproducing operation can be established.
Furthermore, as shown in Figure 6, in order to detect the track position, the difference between the output of the sum of the three divided detectors in the upper half of the figure and the sum of the output of the three divided detectors in the lower half of the figure is output. In addition to detecting the value, at least the output of the difference between the outputs of the upper and lower divided detectors, for example, the difference between the upper and lower divided detectors in the center as shown in Figure 8, or the output of the difference between the upper and lower divided detectors in the center as shown in Figure 9. The track position can be detected based on the same principle by detecting the differential output of the upper and lower divided detectors on both sides.

以上詳述したように複数の分割検出器よりなる
検出器系を用いることによつて焦点制御を簡単な
光学系で行なうことのできる焦点制御機構を備え
たピツクアツプ装置の光学系を構成することがで
き、情報読取を確実に実行し得る光学式情報処理
装置が得られる。
As detailed above, by using a detector system consisting of a plurality of divided detectors, it is possible to construct an optical system of a pickup device equipped with a focus control mechanism that allows focus control to be performed with a simple optical system. Thus, an optical information processing device capable of reliably reading information is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明のデイスク
位置検出系を有するピツクアツプ装置の実施例を
示す構成図である。第3図は第1図及び第2図の
ピツクアツプ装置で用いた検出器の1実施例を示
す説明図である。第4図は焦点誤差検出機構の原
理を説明する説明図である。第5図はデイスク位
置検出信号すなわち焦点誤差信号の1例を示す波
形図である。第6図はトラツク誤差検出機構の原
理を説明する説明図である。第7図はトラツク位
置検出信号すなわちトラツク誤差信号の1例を示
す波形図である。第8図及び第9図は本発明の他
の実施例を示す検出器の説明図である。 1……半導体レーザ素子、2……偏光ビームス
プリツタ、3……コリメートレンズ、4……λ/
4板、5……対物レンズ、6……デイスク、7…
…カツプリングレンズ、8……検出器、9……対
物レンズ、10−a,10−b,10−c,10
−d……入射スポツト光、11……ピツト、12
……ピツト像、13……集光スポツト。
1 and 2 are block diagrams showing embodiments of a pickup device having a disk position detection system according to the present invention, respectively. FIG. 3 is an explanatory diagram showing one embodiment of the detector used in the pickup apparatus shown in FIGS. 1 and 2. FIG. FIG. 4 is an explanatory diagram illustrating the principle of the focus error detection mechanism. FIG. 5 is a waveform diagram showing an example of a disk position detection signal, that is, a focus error signal. FIG. 6 is an explanatory diagram illustrating the principle of the track error detection mechanism. FIG. 7 is a waveform diagram showing an example of a track position detection signal, that is, a track error signal. FIGS. 8 and 9 are explanatory diagrams of a detector showing another embodiment of the present invention. 1... Semiconductor laser element, 2... Polarizing beam splitter, 3... Collimating lens, 4... λ/
4 plates, 5... objective lens, 6... disk, 7...
...Coupling lens, 8...Detector, 9...Objective lens, 10-a, 10-b, 10-c, 10
-d...Incoming spot light, 11...Pit, 12
...Pitsuto statue, 13...Light condensing spot.

Claims (1)

【特許請求の範囲】 1 デイスク面上の記録トラツクに微少スポツト
光を照射して光学的に記録情報の再生を実行する
光学式情報処理装置において、 正常状態で前記微少スポツト光が前記デイスク
面において合焦状態となるように入射光学系を配
置し、 前記デイスク面からの反射光が結像される結像
位置の近傍に3種の光検出器を横一列に互いに近
接して配置し、 前記合焦状態で前記反射光の像が前記3種の光
検出器に跨り、且つ中央に配置された光検出器の
縦の長さが合焦状態での光検出器への反射光スポ
ツト径に略一致し、その両側の光検出器の縦の長
さが前記中央に配置された光検出器の縦の長さに
比して十分長くなるように前記3種の光検出器を
構成し、 前記中央に配置された光検出器の検出出力と前
記両側の光検出器の検出出力和との出力差を前記
微少スポツト光の焦点位置検出信号として検出す
る検出手段を具備したことを特徴とする光学式情
報処理装置。
[Scope of Claims] 1. In an optical information processing device that optically reproduces recorded information by irradiating a recording track on a disk surface with a minute spot light, in a normal state, the minute spot light is irradiated on the disk surface. An input optical system is arranged so as to be in a focused state, and three types of photodetectors are arranged in a horizontal row close to each other in the vicinity of an imaging position where the reflected light from the disk surface is imaged; In a focused state, the image of the reflected light extends across the three types of photodetectors, and the vertical length of the centrally located photodetector is equal to the diameter of the reflected light spot on the photodetector in the focused state. configuring the three types of photodetectors so that they substantially match and the vertical lengths of the photodetectors on both sides are sufficiently longer than the vertical length of the photodetector placed at the center; It is characterized by comprising a detection means for detecting an output difference between the detection output of the photodetector placed at the center and the sum of the detection outputs of the photodetectors on both sides as a focal position detection signal of the minute spot light. Optical information processing device.
JP56172400A 1981-10-27 1981-10-27 Optical information processor Granted JPS5873024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172400A JPS5873024A (en) 1981-10-27 1981-10-27 Optical information processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172400A JPS5873024A (en) 1981-10-27 1981-10-27 Optical information processor

Publications (2)

Publication Number Publication Date
JPS5873024A JPS5873024A (en) 1983-05-02
JPH0311007B2 true JPH0311007B2 (en) 1991-02-15

Family

ID=15941236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172400A Granted JPS5873024A (en) 1981-10-27 1981-10-27 Optical information processor

Country Status (1)

Country Link
JP (1) JPS5873024A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742218A (en) * 1985-03-11 1988-05-03 Hitachi, Ltd. Focus error detection apparatus utilizing focusing an front and rear sides of focal planes
JPH05210858A (en) * 1991-10-29 1993-08-20 Internatl Business Mach Corp <Ibm> Optical type data storage system having aberration compensation for reducing servo-crosstalk
JP2685015B2 (en) * 1995-03-17 1997-12-03 株式会社日立製作所 Optical disk drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100203A (en) * 1977-02-15 1978-09-01 Mitsubishi Electric Corp Optical reproducer
JPS53123103A (en) * 1977-04-02 1978-10-27 Mansei Kogyo Kk Optical information reader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100203A (en) * 1977-02-15 1978-09-01 Mitsubishi Electric Corp Optical reproducer
JPS53123103A (en) * 1977-04-02 1978-10-27 Mansei Kogyo Kk Optical information reader

Also Published As

Publication number Publication date
JPS5873024A (en) 1983-05-02

Similar Documents

Publication Publication Date Title
JPH0345456B2 (en)
KR100213270B1 (en) Optical pickup for use with a double-sided disk
JPH0311007B2 (en)
JP2672618B2 (en) Optical information recording / reproducing device
GB2308489A (en) Dual focusing optical pickup device
JPS61220147A (en) Optical head
JPS59215033A (en) Optical disc recording and reproducing device
JPS6149728B2 (en)
JP2660523B2 (en) Optical recording / reproducing device
KR100600297B1 (en) Optical pick-up equipment for optical disk having a different track pitch
JPH05504224A (en) optical scanning device
JPS6223373B2 (en)
US5532477A (en) Optical pickup apparatus having lens group for determining paths of an incident beam and a reflected &amp; beam
JPS61283035A (en) Optical recording and reproducing device
JPS6145419A (en) Optical pickup
JP2594957B2 (en) Optical recording / reproducing device
JPS641858B2 (en)
JPH076401A (en) Optical write and read device
JPS605431A (en) Tilt detecting system of information recording medium
JPS63282930A (en) Information processor
JPH0482030A (en) Optical information recording and reproducing device
JPS639038A (en) Optical system for optical information
JPH04245038A (en) Optical information recording device
JPS639304B2 (en)
JPH08129770A (en) Optical pickup device