JPH03109703A - Soft magnetic thin film and magnetic head - Google Patents

Soft magnetic thin film and magnetic head

Info

Publication number
JPH03109703A
JPH03109703A JP24833389A JP24833389A JPH03109703A JP H03109703 A JPH03109703 A JP H03109703A JP 24833389 A JP24833389 A JP 24833389A JP 24833389 A JP24833389 A JP 24833389A JP H03109703 A JPH03109703 A JP H03109703A
Authority
JP
Japan
Prior art keywords
magnetic
film
thin film
grain size
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24833389A
Other languages
Japanese (ja)
Other versions
JP2712631B2 (en
Inventor
Akira Gyotoku
明 行徳
Hiroshi Tomiyasu
弘 冨安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24833389A priority Critical patent/JP2712631B2/en
Publication of JPH03109703A publication Critical patent/JPH03109703A/en
Application granted granted Critical
Publication of JP2712631B2 publication Critical patent/JP2712631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a film having a small stress and good magnetic properties by forming a Fe-AL-Si thin film of crystal grain size of 250Angstrom or less in the case of a (211) plane priority orientation film or 290 to 310Angstrom in the case of a (110) plane priority orientation film. CONSTITUTION:Fe-Al-Si is preferentially oriented in a plane (211) or (110), and its crystal grain size is formed 250Angstrom or less and 290 to 310Angstrom , respectively. That is, the film is formed 250Angstrom or less in the case of a (211) plane priority orientation film or 290 to 310Angstrom in the case of a (110) priority orientation film to provide high initial permeability, thereby forming a magnetic head having a high efficiency. Thus, the crystal structure of the thin film can be improved, and no stress is generated in the film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録装置等に使用される磁気ヘッド及び
その磁気ヘッドに用いられる軟磁性薄膜に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic head used in a magnetic recording device and the like, and a soft magnetic thin film used in the magnetic head.

従来の技術 近年、磁気記録装置の小型化、大容量化にともない、高
密度化の要求が高(種々の開発がなされている。媒体は
、高保磁力で高飽和磁束密度化が必要である。この条件
にかなうものとして、酸化物の微粒子を塗布した媒体か
ら、磁束密度の高い強磁性薄膜を真空装置にて作製した
媒体へ移行しつつある。この様な媒体を十分に記録する
能力をもつ磁気ヘッドは、磁気的に飽和することなく高
い記録磁界を出す必要がある。この為には、磁気ヘッド
が出来るだけ高い飽和磁束密度を持つ材料から構成され
る必要がある。一般に、磁気ヘッドは、軟磁性材料であ
るフェライトから構成され、媒体対抗面に磁気ギャップ
を有し、この磁気ギャップにて記録再生を行っている。
BACKGROUND OF THE INVENTION In recent years, with the miniaturization and increase in capacity of magnetic recording devices, there has been a strong demand for higher densities (various developments have been made).Media need to have high coercive force and high saturation magnetic flux density. As a medium that satisfies this condition, there is a shift from media coated with fine oxide particles to media in which a ferromagnetic thin film with high magnetic flux density is fabricated using a vacuum device. A magnetic head must emit a high recording magnetic field without becoming magnetically saturated.For this purpose, the magnetic head must be made of a material with as high a saturation magnetic flux density as possible.Generally, a magnetic head is , is made of ferrite, which is a soft magnetic material, and has a magnetic gap on the surface facing the medium, and records and reproduces data using this magnetic gap.

 高密度媒体を記録する場合、磁気飽和を防ぐため、フ
ェライトより飽和磁束密度高い軟磁性薄膜を少なくとも
磁気コアの一部に用いることが進められている。
When recording high-density media, in order to prevent magnetic saturation, the use of a soft magnetic thin film with a higher saturation magnetic flux density than ferrite for at least a portion of the magnetic core is being promoted.

磁気ヘッドの磁気回路全てを軟磁性薄膜にて構成した薄
膜磁気ヘッドや、飽和の起こりやすいギャップ近傍のみ
に軟磁性薄膜を用いた磁気ヘッドの開発が精力的に進め
られている。この時、磁気ヘッドの特性を左右する要因
は、この軟磁性薄膜の特性である。この薄膜は、高飽和
磁束密度を有するとともに、高い初透磁率を有する事が
求められる。軟磁性薄膜として、非晶質合金、Ni−F
e。
The development of thin-film magnetic heads in which the entire magnetic circuit of the magnetic head is made of soft magnetic thin films, and magnetic heads in which soft magnetic thin films are used only in the vicinity of the gap where saturation is likely to occur, is being actively pursued. At this time, the factor that influences the characteristics of the magnetic head is the characteristics of this soft magnetic thin film. This thin film is required to have a high saturation magnetic flux density and a high initial magnetic permeability. As a soft magnetic thin film, amorphous alloy, Ni-F
e.

Fe−Al−Si等のFe系合金の開発が進められ、特
性向上が図られつつある。
Fe-based alloys such as Fe-Al-Si are being developed and their properties are being improved.

これらの軟磁性薄膜の中で飽和磁束密度が10kGと高
く、シかも耐摩耗性、耐熱性に優れているFe−A1−
6i系軟磁性薄膜が、最近多用されつつある。この軟磁
性薄膜の磁気特性は、従来より膜組成によって決定され
る結晶磁気異方性や磁歪に強く影響されることが知られ
ている。よって、優れた磁気特性を得るためには、結晶
磁気異方性や磁歪を小さ(する組成を決定することが必
要である。
Among these soft magnetic thin films, Fe-A1- has a high saturation magnetic flux density of 10 kG and has excellent wear resistance and heat resistance.
6i-based soft magnetic thin films have recently been increasingly used. It has been known that the magnetic properties of this soft magnetic thin film are strongly influenced by magnetocrystalline anisotropy and magnetostriction, which are determined by the film composition. Therefore, in order to obtain excellent magnetic properties, it is necessary to determine a composition that reduces magnetocrystalline anisotropy and magnetostriction.

膜組成を最適化すると共に、結晶構造も考慮する必要が
ある。Fe−Al−Si系軟磁性薄膜は、結晶質材料で
あるため下地の影響が強(、基板を選択することにより
結晶構造を制御し、その磁気特性を改善することが図ら
れている。本出願人は、Fe−Al−3i系軟磁性薄膜
の特性改善を図るため、例えば、特願昭60−2413
20  または、63−241315等を開示してきた
。これによると、(211)面が優先配向した膜はど優
れた磁気特性の膜が得られている。
In addition to optimizing the film composition, it is also necessary to consider the crystal structure. Since Fe-Al-Si based soft magnetic thin films are crystalline materials, they are strongly influenced by the underlying material (by selecting the substrate, the crystal structure is controlled and the magnetic properties are improved. In order to improve the characteristics of Fe-Al-3i-based soft magnetic thin films, the applicant has filed, for example, Japanese Patent Application No. 60-2413.
20 or 63-241315 etc. have been disclosed. According to this, a film with preferential orientation of the (211) plane has excellent magnetic properties.

発明が解決しようとする課題 しかしながら従来の軟磁性薄膜では形成した作成条件等
によって初透磁率に大きなばらつきが生じ、この従来の
軟磁性薄膜を磁気ヘッドの媒体対向面に用いたりまたは
、全て薄膜に形成された磁気ヘッドのコアに用いた場合
、磁気特性のばらつきが生じるという問題点を有してい
た。
Problems to be Solved by the Invention However, with conventional soft magnetic thin films, large variations in initial magnetic permeability occur depending on the conditions under which they were formed. When used in the core of a formed magnetic head, there was a problem in that variations in magnetic properties occurred.

課題を解決するための手段 Fe−Al−8iを(211)面または(110)面に
優先配向させ、しかも、その結晶粒径をそれぞれ250
A以下及び290A以上310Å以下にした。
Means for Solving the Problem Fe-Al-8i is preferentially oriented in the (211) plane or (110) plane, and the crystal grain size is 250 in each case.
A or less and 290A or more and 310A or less.

作   用 この構成により、薄膜の結晶構造をよくする事ができる
とともに、薄膜に応力が発生しない。。
Function: With this configuration, the crystal structure of the thin film can be improved and no stress is generated in the thin film. .

実施例 以下に、本発明の実施例を挙げ詳細に説明する。Example EXAMPLES Below, examples of the present invention will be given and explained in detail.

Fe−^1−Si系軟磁性薄膜は、スパッターリング法
により成膜した。Fe−Al−8i薄膜は、膜組成以外
に結晶構造に依っても、その磁気特性は影響される。故
に、結晶構造の変化をもたらす成膜条件、及び、装置の
種類により、磁気特性は影響をうける。第1図には、様
々な成膜条件、装置により成膜した膜に於て、X線回折
により求めた(211)面の配向度と初透磁率の関係を
示す。ここで横軸には(211)面の配向度、縦軸には
初透磁率をとっている。配向度とはX線回折によって求
めた<211)面のX線強度をM(211>とし、(1
10)面のX強度をM(110)とした時に次式によっ
て表される。ここで配向度をZとすると、 Z =M(211>/(M(211)十M(11θ))
ここで配向度Zが0というのは(110)面が優先配向
してできた膜である事を意味し、配向度Mが1という事
は(211)面が優先は移行しているという事を意味し
ている。(211)面に優先配向するほど、初透磁率は
、高(なっている。しかし、優先配向した膜でもその初
透磁率は、1300から5000まで非常に大きくバラ
つきを生じている。その原因は、成膜条件、または、装
置の種類に大きく依存している。
The Fe-^1-Si-based soft magnetic thin film was formed by a sputtering method. The magnetic properties of the Fe-Al-8i thin film are affected not only by the film composition but also by the crystal structure. Therefore, the magnetic properties are affected by the film formation conditions that cause changes in the crystal structure and by the type of device. FIG. 1 shows the relationship between the degree of orientation of the (211) plane and the initial magnetic permeability determined by X-ray diffraction in films formed using various film forming conditions and apparatuses. Here, the horizontal axis represents the degree of orientation of the (211) plane, and the vertical axis represents the initial magnetic permeability. The degree of orientation is defined as the X-ray intensity of the <211) plane determined by X-ray diffraction as M(211>,
10) When the X intensity of the plane is M(110), it is expressed by the following equation. Here, if the degree of orientation is Z, then Z = M(211>/(M(211) + M(11θ))
Here, an orientation degree Z of 0 means that the film is formed with preferential orientation of the (110) plane, and an orientation degree M of 1 means that the (211) plane is preferentially oriented. It means. The more preferentially oriented to the (211) plane, the higher the initial magnetic permeability becomes.However, even in preferentially oriented films, the initial magnetic permeability varies greatly from 1300 to 5000.The reason for this is , depends largely on film-forming conditions or type of equipment.

上記の種々の膜について、X線回折の半値幅により結晶
粒径を測定し、初透磁率との関係を調べたところ、第2
図のようになった。
For the various films mentioned above, the crystal grain size was measured by the half-width of X-ray diffraction, and the relationship with the initial magnetic permeability was investigated.
It became like the figure.

(211)面が優先配向した膜では、結晶粒径の微細化
と共に初透磁率は高くなっている。−方、(110)面
が優先配向した膜では、結晶粒径が30OAで最大の初
透磁率を示している。この事は(211)面が優先配向
した膜と(110)が優先配向した膜では膜設も良好な
磁気特性を示す結晶粒径に違いがある事を示している。
In a film in which the (211) plane is preferentially oriented, the initial magnetic permeability increases as the crystal grain size becomes finer. On the other hand, a film in which the (110) plane is preferentially oriented shows the maximum initial magnetic permeability when the crystal grain size is 30 OA. This shows that there is a difference in crystal grain size, which exhibits good magnetic properties, between a film in which the (211) plane is preferentially oriented and a film in which the (110) plane is preferentially oriented.

磁気ヘッド効率の面から考えると、初透磁率が高いほど
効率が高く、高い出力を得る事ができる。90以上の効
率を得るためには初透磁率が2000以上必要である。
In terms of magnetic head efficiency, the higher the initial magnetic permeability, the higher the efficiency and the higher the output. In order to obtain an efficiency of 90 or more, the initial magnetic permeability must be 2000 or more.

この初透磁率を得るためには、(211)優先配向膜で
は250A以下、(110)優先配向膜では、290人
以上310A以下の膜を作製することが、高い初透磁率
をもたらし効率の良い磁気ヘッドを作成する事ができる
In order to obtain this initial magnetic permeability, it is necessary to fabricate a film with a (211) preferential orientation of 250 A or less, and a (110) preferential orientation film of 290 or more and 310 A or less to achieve a high initial magnetic permeability and good efficiency. You can create magnetic heads.

結晶粒径と格子定数の関係を第3図に示す。上記結晶粒
径であるならば、各々の膜の格子定数は、バルクセンダ
スト材料のそれに等しくなっている。このバルクセンダ
スト材料は、十分に熱処理されており応力が非常に小さ
いものとなっている。この様に(211)面が優先配向
した膜での結晶粒径を150A以下、(110)面が優
先配向した膜での結晶粒径が290人以上310A以下
のとき応力が非常に小さい物となる。第4図はこの様に
形成された軟磁性薄膜を用いた磁気ヘッドを示す斜視図
である。第4図において、1,2はそれぞれフェライト
等の磁性材料によって構成されたコアで、コア2には巻
線溝2aが設けられている。3はコア1の上に形成され
金属磁性膜で、金属磁性膜3はFe−Al−8iによっ
て形成されている。また金属磁性膜3は(211)面が
優先配向し、結晶粒径を150A以下になるように作成
した。またこの金属磁性膜3は前述したように、(11
0)面が優先配向し、結晶粒径が290人以上310A
以下になるように形成しても同様な効果が得られる。4
は磁気ギャップとなる非磁性物である。この様に形成さ
れた磁気ヘッドは、金属磁性膜3の初透磁率が良くなり
、しかもコアに加える応力が小さくなり、しかも出力が
大きくなり磁気特性が良くなる。また疑似ギャップによ
葛疑似出力もあまりでなかった。
Figure 3 shows the relationship between crystal grain size and lattice constant. With the above crystal grain size, the lattice constant of each film is equal to that of the bulk sendust material. This bulk Sendust material has been sufficiently heat treated to have very low stress. In this way, when the crystal grain size of a film with the preferential orientation of the (211) plane is 150A or less, and when the crystal grain size of a film with the preferential orientation of the (110) plane is between 290 and 310A, the stress is extremely small. Become. FIG. 4 is a perspective view showing a magnetic head using the soft magnetic thin film formed in this manner. In FIG. 4, numerals 1 and 2 are cores each made of a magnetic material such as ferrite, and core 2 is provided with a winding groove 2a. A metal magnetic film 3 is formed on the core 1, and the metal magnetic film 3 is made of Fe-Al-8i. The metal magnetic film 3 was prepared so that the (211) plane was preferentially oriented and the crystal grain size was 150A or less. Further, as mentioned above, this metal magnetic film 3 has (11
0) The plane is preferentially oriented and the crystal grain size is 290 or more 310A
A similar effect can be obtained even if the structure is formed as follows. 4
is a non-magnetic substance that becomes a magnetic gap. In the magnetic head formed in this manner, the metal magnetic film 3 has a good initial magnetic permeability, the stress applied to the core is small, the output is large, and the magnetic properties are good. Also, due to the pseudo gap, there was not much pseudo output.

そこで、(211)優先配向膜の中で、結晶粒径の異な
る3種のFe−Al−8illを用いて、第4図に示す
構造の磁気ヘッドを3種類作成して評価した。第1の磁
気ヘッドは、粒径150人の金属磁性膜を、第2の磁気
ヘッドは粒径250Aの金属磁性膜を、第3の磁気ヘッ
ドは、350人の金属磁性膜を用いている。これら3種
の磁気ヘッド出力を比較すると、第1の磁気ヘッドのそ
れを1とすると、第2の磁気ヘッドは、0.92、第3
の磁気ヘッドは、0.55となる。この様に、最適な結
晶粒径を持つ薄膜を用いヘッドを作製すれば、高い効率
つまり高い出力を得る事ができる磁気ヘッドを作製する
ことが出来る。また第1の磁気ヘッド、及び第2の磁気
ヘッドはフェライトとFe−Al−Si薄膜の界面に発
生し易い疑似出力は、殆ど検出されない。なぜならば、
使用される薄膜が応力が小さ(磁気特性が良好であり、
さらに金属磁性膜の応力によるフェライトへのダメージ
も少ないためである。この様にFe−Al−8iででき
た磁性薄膜の結晶粒径を適正化する事により、第4図に
示すような磁気ヘッドの出力だけでな(磁気ヘッドに発
生し易い疑似出力をも低減する事ができる。
Therefore, three types of magnetic heads having the structure shown in FIG. 4 were fabricated and evaluated using three types of Fe-Al-8ill with different crystal grain sizes in the (211) preferentially oriented film. The first magnetic head uses a metal magnetic film with a grain size of 150A, the second magnetic head uses a metal magnetic film with a grain size of 250A, and the third magnetic head uses a metal magnetic film with a grain size of 350A. Comparing the outputs of these three types of magnetic heads, if the output of the first magnetic head is 1, the output of the second magnetic head is 0.92, and the output of the third magnetic head is 1.
The magnetic head has a value of 0.55. In this way, by manufacturing a head using a thin film having an optimal crystal grain size, it is possible to manufacture a magnetic head that can obtain high efficiency, that is, high output. Further, in the first magnetic head and the second magnetic head, pseudo output that is likely to occur at the interface between the ferrite and the Fe--Al--Si thin film is hardly detected. because,
The thin film used has low stress (good magnetic properties,
Furthermore, there is less damage to the ferrite due to stress in the metal magnetic film. In this way, by optimizing the crystal grain size of the magnetic thin film made of Fe-Al-8i, we can reduce not only the output of the magnetic head as shown in Figure 4 (but also the pseudo output that tends to occur in magnetic heads). I can do that.

また他の実施例を第5図に示す。第5図は全てを薄膜に
よって構成た磁気ヘッドである。第5図において5は非
磁性物によって出来た基板、6は基板5の上に形成され
、Fe  AI  Ssによって構成された下部磁性層
で、下部磁性層6は(211)面が優先配向し、結晶粒
径を150A以下になるように作成した。またこの下部
磁性層6は前述したように、<110)面が優先配向し
、結晶粒径が290人以上310A以下になるように形
成しても同様な効果が得られる。7は下部磁性層6の上
に形成されたギャップ層、8はギャップ層7の上に形成
された絶縁膜、9は絶縁膜8の上に形成されたコイル層
、10はコイル層9をお応用に絶縁膜8の上に形成され
た絶縁膜、11は絶縁@9の上に形成され、Fe−Al
−8iによって形成された上部磁性層で、上部磁性層1
1は<211)面が優先配向し、結晶粒径を150A以
下になるように作成した。またこの上部磁性層11は前
述したように、(110)面が優先配向し、結晶粒径が
290A以上310八以下になるように形成しても同様
な効果が得られる。12は下部磁性層11の上に形成さ
れた保護層である。
Another embodiment is shown in FIG. FIG. 5 shows a magnetic head constructed entirely of thin films. In FIG. 5, 5 is a substrate made of a non-magnetic material, 6 is a lower magnetic layer formed on the substrate 5 and made of Fe AI Ss, and the (211) plane is preferentially oriented in the lower magnetic layer 6. The crystal grain size was made to be 150A or less. Further, as described above, the same effect can be obtained even if the lower magnetic layer 6 is formed so that the <110) plane is preferentially oriented and the crystal grain size is 290 to 310A. 7 is a gap layer formed on the lower magnetic layer 6, 8 is an insulating film formed on the gap layer 7, 9 is a coil layer formed on the insulating film 8, and 10 is a coil layer formed on the coil layer 9. In the application, an insulating film 11 is formed on the insulating film 8, and an insulating film 11 is formed on the insulating film 9, and Fe-Al
-8i, the upper magnetic layer 1
No. 1 was prepared so that the <211) plane was preferentially oriented and the crystal grain size was 150A or less. Further, as described above, the same effect can be obtained even if the upper magnetic layer 11 is formed so that the (110) plane is preferentially oriented and the crystal grain size is 290A or more and 310A or less. 12 is a protective layer formed on the lower magnetic layer 11.

この様に形成された磁気ヘッドは上部磁性層11及び下
部磁性層6を(211)面が優先配向し、結晶粒径を1
50A以下になるように作成したので初透磁率が大きく
出力を大きくできる。また、下部磁性層6及び上部磁性
層11を(110)面が優先配向し、結晶粒径が290
A以上310A以下になるように形成しても同様な効果
が得られる。
In the magnetic head formed in this way, the upper magnetic layer 11 and the lower magnetic layer 6 are preferentially oriented in the (211) plane, and the crystal grain size is reduced to 1.
Since it was made to be 50A or less, the initial permeability is high and the output can be increased. In addition, the (110) plane is preferentially oriented in the lower magnetic layer 6 and the upper magnetic layer 11, and the crystal grain size is 290.
A similar effect can be obtained even if the thickness is formed to be greater than or equal to A and less than or equal to 310A.

発明の効果 Fe−Al−8t薄膜を(211)面優先配向膜の場合
250A以下、(110)面優先配向膜の場合290A
以上310A以下の結晶粒径にすることにより、応力が
小さ(磁気特性の良い膜を提供することが出来る。
Effects of the Invention When the Fe-Al-8t thin film is a (211) plane preferentially oriented film, it is 250A or less, and when it is a (110) plane preferentially oriented film, it is 290A.
By setting the crystal grain size to 310 A or less, it is possible to provide a film with low stress (good magnetic properties).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は配向度と初透磁率の関係示すグラフ、第2図は
結晶粒径と初透磁率の関係を示すグラフ、第3図は格子
定数と結晶粒径の関係を示すグラフ第4図は本発明の一
実施例における磁気ヘッドの斜視図、第5図は他の実施
例を示す断面図である。 1、・・・・・・コア 2a・・・・・・巻線溝 3・・・・・・金属磁性膜 4・・・・・・非磁性物 5・・・・・・基板 6・・・・・・下部磁性層 7・・・・・・ギャップ層 8・・・・・・絶縁膜 9・・・・・・コイル層 O・・・・・・絶縁膜 1・・・・・・上部磁性層 2・・・・・・保護層
Figure 1 is a graph showing the relationship between orientation degree and initial magnetic permeability, Figure 2 is a graph showing the relationship between crystal grain size and initial magnetic permeability, Figure 3 is a graph showing the relationship between lattice constant and crystal grain size.Figure 4 5 is a perspective view of a magnetic head in one embodiment of the present invention, and FIG. 5 is a sectional view showing another embodiment. 1. Core 2a... Winding groove 3... Metal magnetic film 4... Non-magnetic material 5... Substrate 6... ...Lower magnetic layer 7...Gap layer 8...Insulating film 9...Coil layer O...Insulating film 1... Upper magnetic layer 2...Protective layer

Claims (4)

【特許請求の範囲】[Claims] (1)Fe−Al−Si系材料によって形成され、(2
11)面が優先配向した結晶構造を有し、結晶粒径が2
50Å以下である事を特徴とする軟磁性薄膜。
(1) Made of Fe-Al-Si material, (2
11) It has a crystal structure in which the planes are preferentially oriented, and the crystal grain size is 2.
A soft magnetic thin film characterized by a thickness of 50 Å or less.
(2)Fe−Al−Si系材料によって形成され、(1
10)面が優先配向した結晶構造を有し、結晶粒径が2
90Å以上310Å以下である事を特徴とする軟磁性薄
膜。
(2) Made of Fe-Al-Si material, (1
10) It has a crystal structure in which the planes are preferentially oriented, and the crystal grain size is 2.
A soft magnetic thin film characterized by having a thickness of 90 Å or more and 310 Å or less.
(3)コアと、前記コアの上に形成され、請求項第1項
又は請求項第2項記載の軟磁性薄膜と、前記軟磁性薄膜
に磁気ギャップとなる非磁性物を介して付き合わされた
他のコアを備えた事を特徴とする磁気ヘッド。
(3) a core, a soft magnetic thin film formed on the core, and associated with the soft magnetic thin film via a non-magnetic material forming a magnetic gap; A magnetic head characterized by having another core.
(4)基板と、前記基板の上に形成された下部磁性層と
、前記下部磁性膜の上に形成され、磁気ギャップとなる
ギャップ層と、前記ギャップ層の上に設けられ、絶縁層
ではさまれたコイル層と、前記コイルそうの上に形成さ
れ、前記下部磁性層とともに磁気回路を構成する様に設
けられた上部磁性層を備え、前記下部磁性層及び前記上
部磁性層のうち少なくとも一方を請求項第1項又は請求
項第2項記載の軟磁性薄膜によって構成した事を特徴と
する磁気ヘッド。
(4) a substrate, a lower magnetic layer formed on the substrate, a gap layer formed on the lower magnetic film and serving as a magnetic gap, and a gap layer provided on the gap layer and sandwiched between an insulating layer. an upper magnetic layer formed on the coil layer and provided so as to constitute a magnetic circuit together with the lower magnetic layer, and at least one of the lower magnetic layer and the upper magnetic layer. A magnetic head comprising the soft magnetic thin film according to claim 1 or claim 2.
JP24833389A 1989-09-25 1989-09-25 Soft magnetic thin film and magnetic head Expired - Fee Related JP2712631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24833389A JP2712631B2 (en) 1989-09-25 1989-09-25 Soft magnetic thin film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24833389A JP2712631B2 (en) 1989-09-25 1989-09-25 Soft magnetic thin film and magnetic head

Publications (2)

Publication Number Publication Date
JPH03109703A true JPH03109703A (en) 1991-05-09
JP2712631B2 JP2712631B2 (en) 1998-02-16

Family

ID=17176529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24833389A Expired - Fee Related JP2712631B2 (en) 1989-09-25 1989-09-25 Soft magnetic thin film and magnetic head

Country Status (1)

Country Link
JP (1) JP2712631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
JPH06244028A (en) * 1993-01-15 1994-09-02 Internatl Business Mach Corp <Ibm> Magnetic laminar structure and manufacture thereof
US6188543B1 (en) * 1997-05-16 2001-02-13 Tdk Corporation Thin film magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
JPH06244028A (en) * 1993-01-15 1994-09-02 Internatl Business Mach Corp <Ibm> Magnetic laminar structure and manufacture thereof
US6188543B1 (en) * 1997-05-16 2001-02-13 Tdk Corporation Thin film magnetic head

Also Published As

Publication number Publication date
JP2712631B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP4317717B2 (en) Magnetic disk drive using thin film magnetic head for perpendicular recording
US6157526A (en) Magnetoresistive head and magnetic disk apparatus
EP0851411B1 (en) Thin film magnetic head and magnetic recording/reproducing apparatus
US5751528A (en) Multilayer exchange coupled magnetic poles with approximate zero magnetostriction
JP2947621B2 (en) Thin film magnetic head
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
US6150046A (en) Combination magnetoresistive/inductive thin film magnetic head and its manufacturing method
JP4759455B2 (en) Magnetic shield and manufacturing method thereof, thin film magnetic head
JP2712631B2 (en) Soft magnetic thin film and magnetic head
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
US4641213A (en) Magnetic head
JPH0498608A (en) Magnetic head
JP3232592B2 (en) Magnetic head
JP2979557B2 (en) Soft magnetic film
WO2004001779A1 (en) Method of producing nife alloy films having magnetic anisotropy and magnetic storage media including such films
JPH0532809B2 (en)
JPH0389502A (en) Magnetic multilayer film
JPH06223319A (en) Thin film composite magnetic head and manufacture thereof
JPH11306535A (en) Magnetic recording medium and magnetic memory reproducing device
JPH05314420A (en) Magnetic thin film and magnetic head
JPH05226151A (en) Soft magnetic alloy film to be used for magnetic head and having high saturation flux density and high heat resistance and magnetic head
JPH0513223A (en) Magnetic head
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JPS61122919A (en) Vertical magnetic recording medium
JPH0765315A (en) Laminate type magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees