JPH03109430A - Production of uniaxially oriented polyacetylene film - Google Patents

Production of uniaxially oriented polyacetylene film

Info

Publication number
JPH03109430A
JPH03109430A JP24628289A JP24628289A JPH03109430A JP H03109430 A JPH03109430 A JP H03109430A JP 24628289 A JP24628289 A JP 24628289A JP 24628289 A JP24628289 A JP 24628289A JP H03109430 A JPH03109430 A JP H03109430A
Authority
JP
Japan
Prior art keywords
liquid crystal
polyacetylene film
film
smectic liquid
polyacetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24628289A
Other languages
Japanese (ja)
Inventor
Kotaro Araya
康太郎 荒谷
Hideki Shirakawa
白川 英樹
Kazuo Akagi
和夫 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24628289A priority Critical patent/JPH03109430A/en
Publication of JPH03109430A publication Critical patent/JPH03109430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the subject polyacetylene film, having a high electric conductivity and useful as an organic electrically conductive material and photosensor by treating a polyacetylene film with a smectic liquid crystal substance as a polymerization medium for acetylene. CONSTITUTION:A uniaxially oriented polyacetylene film is produced by treating a polyacetylene film with an electron accepting substance. In the process, a smectic liquid crystal substance is used as a polymerization medium for acetylene. Furthermore, a phenylcyclohexane derivative is preferably used as the aforementioned liquid crystal substance and a nematic liquid crystal phase is preferably provided between an isotropic liquid phase and the smectic liquid crystal phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は親規な有機導電材料に係り、特に高い電気伝導
度を有するポリアセチレン膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a conventional organic conductive material, and particularly to a method for producing a polyacetylene film having high electrical conductivity.

〔従来の技術〕[Conventional technology]

アセチレンを遷移金属化合物と有機金属化合物からなる
チーグラ・ナツタ触媒を用いて重合する方法において、
アセチレンと重合触媒溶液との自由表面近傍の界面にお
いて重合反応を行うと、ポリアセチレンを直接的に膜状
試料として得ることが出来る(特公昭48−32581
号)、この膜は直径数十ナノメーターのフィブリル(繊
維状微結晶)が無秩序に集合した構造を持っている。
In a method of polymerizing acetylene using a Ziegler-Natsuta catalyst consisting of a transition metal compound and an organometallic compound,
When a polymerization reaction is carried out at the interface between acetylene and a polymerization catalyst solution near the free surface, polyacetylene can be directly obtained as a film sample (Japanese Patent Publication No. 32581/1983).
(No.), this film has a structure in which fibrils (fibrous microcrystals) with a diameter of several tens of nanometers are assembled in a disordered manner.

このポリアセチレン膜は有機半導体として知られ、更に
電子供与性ドーパントあるいは電子受容性ドーパントで
処理することにより、高い電気伝導性を有する材料にな
ることも知られている(特開昭55−129426) 
、具体的にはドーパントが五フッ化ヒ素の場合、最高5
60 S(!1″″五の高電導材料が得られることがす
でに報告されているフイジヵルーレビュー争レター(P
hys、Rev、Latt、、) 39 。
This polyacetylene film is known as an organic semiconductor, and it is also known that it can be made into a material with high electrical conductivity by treating it with an electron-donating dopant or an electron-accepting dopant (Japanese Patent Laid-Open No. 55-129426).
, specifically when the dopant is arsenic pentafluoride, up to 5
60S (!1''''5 high conductivity materials have been reported to be obtained)
hys, Rev, Latt, ) 39.

1098 (1977)、ヨウ素の場合は160Sex
−”の値が得られているジャーナル・オン・アメリカン
・ケミカル・ソサIティ(J、Am、Chem、5oc
) 。
1098 (1977), 160Sex for iodine
The Journal on American Chemical Society (J, Am, Chem, 5oc.
).

工し遼0 1013 (1978)。Kushiryo 0 1013 (1978).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に高分子材料においては、その−次元性が材料の目
視構成に反映させると、すなわち−軸配向を有すると材
料特性が向上することが知られている。上記ポリアセチ
レン膜は加熱しても溶融せず、またこのポリマを溶解す
る溶媒も見い出されていない、このため、−軸配向した
ポリアセチレン膜を得るための方法としては加熱下で機
械的操作により延伸する方法が知られている。(特開昭
55−14213 ) 、この方法で得られたポリアセ
チレン膜の電気伝導度は配向のため著しく向上し、配向
方向の電気伝導度は3000 Sam−’程度にもなる
Generally, in polymeric materials, it is known that when the -dimensionality is reflected in the visual configuration of the material, that is, when the material has -axis orientation, the material properties are improved. The above polyacetylene film does not melt even when heated, and no solvent has been found that dissolves this polymer. Therefore, the method for obtaining a -axis oriented polyacetylene film is to stretch it by mechanical operation under heating. method is known. (Japanese Unexamined Patent Publication No. 55-14213), the electrical conductivity of the polyacetylene film obtained by this method is significantly improved due to the orientation, and the electrical conductivity in the orientation direction is about 3000 Sam-'.

これらの事実から分かるように、高分子の構造の違いは
その特性に大きな影響を与える。
As can be seen from these facts, differences in the structure of polymers have a large effect on their properties.

一方1本発明者らは先に、液晶物質をアセチレンの重合
溶媒として用いる新しい合成法により。
On the other hand, the present inventors have previously developed a new synthetic method using a liquid crystal substance as a polymerization solvent for acetylene.

部分的にフィブリルが配向してポリアセチレン膜を得て
いる(特開昭60−23402 )。この方法で得られ
たポリアセチレン膜は部分的な配向だけでなくフィブリ
ル鎖が長く又太く成長した構造を持っていることが分っ
た。この膜状試料に上述のドーピング操作を行ったとこ
ろ、通常の有機溶媒で得られていたポリアセチレン膜と
比較し著しく大きな電気伝導度を示し、その大きさは機
械的に延伸配向したポリアセチレン膜に電気伝導度の値
に匹敵することを見い出した。
A polyacetylene film is obtained in which the fibrils are partially oriented (Japanese Patent Laid-Open No. 60-23402). It was found that the polyacetylene film obtained by this method had a structure in which not only the fibril chains were partially oriented but also long and thick. When this film-like sample was subjected to the above-mentioned doping operation, it showed a significantly higher electrical conductivity than a polyacetylene film obtained using a normal organic solvent. It was found that the conductivity values are comparable.

また1本発明者らはチーグラ・ナツタ触媒を溶解したネ
マチック液晶の配向下でアセチレンの重合を行う方法で
も、配向性ポリアセチレンが得られることを見い出し、
且つ、大面積の試料が得られることを見い出また(特開
昭6O−255806) 、更にこの配向膜試料を電子
受容性のドーパントで処理したところ、その電気伝導度
は著しく向上し。
In addition, the present inventors have discovered that oriented polyacetylene can also be obtained by a method of polymerizing acetylene under the alignment of nematic liquid crystal in which a Ziegler-Natsuta catalyst is dissolved.
They also discovered that a sample with a large area could be obtained (Japanese Patent Application Laid-open No. 6O-255806). Furthermore, when this alignment film sample was treated with an electron-accepting dopant, its electrical conductivity was significantly improved.

機械的に配向させたポリアセチレン膜の値より大きくな
ることを見出した(特開昭6l−118454)。
It was found that the value was larger than that of a mechanically oriented polyacetylene film (Japanese Patent Application Laid-Open No. 61-118454).

しかしながら、上記ネマチック液晶の配向下での重合で
は、得られるポリアセチレン膜の配向度はネマチック液
晶の配向度(0,6程度)を反映し、完全な配向はして
いない。ここで、無配向の状態の配向度をO1完全に一
軸配向をした状態の配向度を1.0 と定義する。従っ
て、更に高い配向度のポリアセチレン膜が得られたなら
ば、配向膜の電気伝導度も更に増加すると予想される。
However, in the polymerization under the orientation of the nematic liquid crystal, the degree of orientation of the resulting polyacetylene film reflects the degree of orientation (about 0.6) of the nematic liquid crystal, and is not perfectly oriented. Here, the degree of orientation in a non-oriented state is defined as O1, and the degree of orientation in a completely uniaxially oriented state is defined as 1.0. Therefore, if a polyacetylene film with a higher degree of orientation is obtained, it is expected that the electrical conductivity of the oriented film will further increase.

本発明の目的は、アセチレンの重合媒体としてスメクチ
ック液晶物質を用いて、配向度の高いポリアセチレン膜
を合成し、高い電気伝導度を有したポリアセチレン膜を
提供することにある。
An object of the present invention is to synthesize a highly oriented polyacetylene film using a smectic liquid crystal material as an acetylene polymerization medium, and to provide a polyacetylene film having high electrical conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、ネマチック液晶より高い配
向度を有するスメクチック液晶について検討をおこなっ
た。このスメクチック液晶はネマチック液晶と比較し粘
性が大きく、アセチレンの拡散が起きず1重合が起こら
ないと考えられていた。しかしながら、重合触媒に化学
的に安定なスメクチック液晶を調製し、重合を行ったと
ころ、重合時間を長くすれば、ポリアセチレン膜が得ら
れることを見い出し1本発明に至った。
In order to achieve the above object, we investigated smectic liquid crystals that have a higher degree of orientation than nematic liquid crystals. This smectic liquid crystal has a higher viscosity than a nematic liquid crystal, and it was thought that acetylene would not diffuse and monopolymerization would not occur. However, when a chemically stable smectic liquid crystal was prepared as a polymerization catalyst and polymerized, the inventors discovered that a polyacetylene film could be obtained by increasing the polymerization time, leading to the present invention.

本発明は、ポリアセチレン膜の合成法において重合媒体
としてスメクチック液晶物質を用いることにより一軸配
向膜を得ることを特徴とし、こうして得られた配向膜を
電子受容性物質で処理して高導電性のポリアセチレン膜
を提供することにある。
The present invention is characterized in that a uniaxially oriented film is obtained by using a smectic liquid crystal substance as a polymerization medium in a method for synthesizing a polyacetylene film, and the oriented film thus obtained is treated with an electron-accepting substance to form a highly conductive polyacetylene film. The goal is to provide a membrane.

ポリアセチレン膜の合成の手順としては、チーグラ・ナ
ツタ触媒をスメクチック液晶物質に溶解させ、この触媒
含有液晶を配向させたのち、この液晶表面にてアセチレ
ンを重合して行なう。
The procedure for synthesizing a polyacetylene film is to dissolve a Ziegler-Natsuta catalyst in a smectic liquid crystal material, align the catalyst-containing liquid crystal, and then polymerize acetylene on the surface of the liquid crystal.

チーグラ・ナツタ触媒は遷移金属化合物と有機金属化合
物とからなり、組合せにより数多くの触媒が得られる。
Ziegler-Natsuta catalysts consist of transition metal compounds and organometallic compounds, and many catalysts can be obtained by combining them.

しかしながら、良質なポリアセチレン膜を得るには、触
媒がスメクチック液晶中に均一に溶解することが条件と
なり、使用可能な触媒は限られる。溶解性の高いチーグ
ラ・ナツタ触媒としてはTi(OBu)aとAflEt
a、VO(acac)zとA 2 E t Jl、 T
 i  (acac)zとA Q E t 3等の組合
せが知られている。導電材料として更に良質なポリアセ
チレン膜を得るためには、アセチレンの重合に対して触
媒の活性が高いことが望ましい、この点を考慮すると、
Ti  (OBu)4とA Q E t aからなる触
媒が本発明に最も適したポリアセチレン膜を提供できる
ことが分った。
However, in order to obtain a high-quality polyacetylene film, the catalyst must be uniformly dissolved in the smectic liquid crystal, and the usable catalysts are limited. Ti(OBu)a and AflEt are highly soluble Ziegler-Natsuta catalysts.
a, VO(acac)z and A 2 E t Jl, T
Combinations such as i (acac)z and A Q E t 3 are known. In order to obtain a polyacetylene film of higher quality as a conductive material, it is desirable that the catalyst has high activity for acetylene polymerization. Considering this point,
It has been found that a catalyst consisting of Ti(OBu)4 and AQEta can provide the most suitable polyacetylene membrane for the present invention.

Ti(OBu)aとA Q E t aの組成比は前老
1に対して、後者が3以上あれば特に限定されないが、
次の理由により余り大きくない方が好ましい、すなわち
、ネマチック液晶にチーグラ・ナツタ触媒の如き不純物
を加えると、ネマチック液晶−等方性液体転移温度が降
下し、不純物が多いとネマチック液晶相が消失してしま
う、このことから組成比を3に固定し、触媒を高濃度加
えないことが望ましい。
The composition ratio of Ti(OBu)a and AQEta is not particularly limited as long as the former is 1 and the latter is 3 or more,
It is preferable that the temperature is not too large for the following reasons. Namely, when impurities such as Ziegler-Natsuta catalyst are added to nematic liquid crystal, the nematic liquid crystal-isotropic liquid transition temperature decreases, and when there are many impurities, the nematic liquid crystal phase disappears. For this reason, it is desirable to fix the composition ratio to 3 and not add a high concentration of catalyst.

本発明に用いられる液晶物質としては、チーグラ・ナツ
タ触媒に対して化学的に安定なことが必要条件となる。
The liquid crystal material used in the present invention must be chemically stable against the Ziegler-Natsuta catalyst.

この見地から、種々の液晶物質を検討したところ、下記
の分子構造式を持つフェニルシクロヘキサン誘導体が最
適な液晶であった。
From this point of view, various liquid crystal substances were investigated, and a phenylcyclohexane derivative having the following molecular structural formula was found to be the most suitable liquid crystal.

シンセテイツク・メタル(Synth、Metalg)
 、1土。
Synthetic metal (Synth, Metalg)
, 1 Sat.

(1986)199゜ これらの物質を以下、炭素数で略記する。すなわち、P
CH−、monと表わす、上式においてm、nが■の場
合、PCH−IOIと表わす。
(1986) 199° These substances are hereinafter abbreviated by carbon number. That is, P
It is represented as CH-, mon. In the above formula, when m and n are ■, it is represented as PCH-IOI.

全ての炭素数のシクロヘキサン誘導体がスメクチック液
晶を示すとは限らない、スメクチック液晶を示すものと
してはPCH−405,PCH−406、PCH−50
5,PCH−506等が知られているが、特にこれらに
限定されない。
Not all cyclohexane derivatives with carbon numbers exhibit smectic liquid crystals.Those exhibiting smectic liquid crystals include PCH-405, PCH-406, and PCH-50.
5, PCH-506, etc. are known, but are not particularly limited to these.

本発明においては、スメクチック液晶を配向させる必要
があるが、スメクチック液晶は粘性が高く、ネマチック
液晶のように通常の配向処理では配向しない。そこでス
メクチック液晶相の高温側にネマチック液晶相を有する
スメクチック液晶物質を用い、ネマチック液晶相の状態
の時に配向処理を施し、その後温度を下げて、スメクチ
ック液晶の配向状態を達成する。この様にスメクチック
液晶相の高温側にネマチック液晶相を有するスメクチッ
ク液晶物質として、PCH−406,PCH−505,
PCH−506などが知られるが、特にこれらの物質に
限定されない。
In the present invention, it is necessary to align the smectic liquid crystal, but the smectic liquid crystal has a high viscosity and cannot be aligned by ordinary alignment treatment unlike the nematic liquid crystal. Therefore, a smectic liquid crystal material having a nematic liquid crystal phase on the high-temperature side of the smectic liquid crystal phase is used, an alignment treatment is performed while the material is in the nematic liquid crystal phase, and then the temperature is lowered to achieve the smectic liquid crystal alignment state. As described above, PCH-406, PCH-505,
PCH-506 and the like are known, but the substance is not particularly limited to these substances.

スメクチック液晶物質を、単一成分で用いてもかまわな
いが、2成分以上の多成分系で用いる方が好ましい。こ
れはスメクチック液晶相の温度範囲が広がり、実験が容
易になる。第1表に、いくつかのスメクチック液晶物質
の組合せと、液晶相の温度範囲を示した。
Although the smectic liquid crystal substance may be used as a single component, it is preferable to use it as a multi-component system of two or more components. This broadens the temperature range of the smectic liquid crystal phase and facilitates experiments. Table 1 shows some combinations of smectic liquid crystal materials and the temperature range of the liquid crystal phase.

表1.ポリアセチレン合成用スメクチック液晶混合物本
発明においてポリアセチレン膜にドーピングされる電子
受容性物質としてはハロゲン(例えば塩素、臭素及びヨ
ウ素等)、ルイス酸(例えば、五フッ化リン、五フッ化
ヒ素、五フッ化アンチモン、三フッ化ホウ素、三塩化ホ
ウ素、塩化第二鉄等)、プロトン酸(例えば、フッ酸、
塩酸、臭化水素、過塩素酸、硫酸、硝酸等)が挙げられ
る。
Table 1. Smectic liquid crystal mixture for polyacetylene synthesis In the present invention, the electron-accepting substances doped into the polyacetylene film include halogens (e.g. chlorine, bromine, iodine, etc.), Lewis acids (e.g. phosphorus pentafluoride, arsenic pentafluoride, pentafluoride). antimony, boron trifluoride, boron trichloride, ferric chloride, etc.), protic acids (e.g., hydrofluoric acid,
(hydrochloric acid, hydrogen bromide, perchloric acid, sulfuric acid, nitric acid, etc.).

ポリアセチレン膜を電子受容性のドーパントで処理する
方法としては、(1)ドーパントが気体の場合、ポリア
セチレン膜をその気体にさらす。
The method for treating a polyacetylene film with an electron-accepting dopant is as follows: (1) When the dopant is a gas, the polyacetylene film is exposed to the gas.

(2)ドーパントが液体あるいは固体の場合、ポリアセ
チレン膜をその蒸気にさらすか、あるいはそのドーピン
トが溶解した溶液中に浸漬する等の方法がある。ドーピ
ングの方法は上記のいずれでもかまわないが、高い電気
伝導度を達成するには、ドーピングを充分に行う必要が
ある。充分にドーピング処理を行うとは電気伝導度が飽
和するまでドーピングを行うことを意味する。これはド
ーピング処理によりポリアセチレン膜に取込まれたドー
パントの量を秤ることによって判断することができる0
通常ポリアセチレンの炭素1つ当りドーパントが0.1
 以上入ると、その電気伝導はほぼ飽和する傾向にある
。又、ドーピングによる電気伝導度の経時変化を追跡す
ることによっても判断することが出来る。ドーパントを
気相でドーピングする場合、ドーパントの蒸気圧が低い
と長時間ドーピング処理をしても、電気伝導度が飽和し
ないことがあるので、ドーパントの蒸気圧を適度にコン
トロールする必要がある。
(2) When the dopant is liquid or solid, there are methods such as exposing the polyacetylene film to its vapor or immersing it in a solution in which the dopant is dissolved. Although any of the above doping methods may be used, sufficient doping is required to achieve high electrical conductivity. Sufficiently performing doping treatment means performing doping until the electrical conductivity is saturated. This can be determined by weighing the amount of dopant incorporated into the polyacetylene film during the doping process.
Normally, the dopant per carbon of polyacetylene is 0.1
If the temperature exceeds that level, the electrical conduction tends to be almost saturated. It can also be determined by tracking changes in electrical conductivity over time due to doping. When doping a dopant in a gas phase, if the vapor pressure of the dopant is low, the electrical conductivity may not be saturated even if the doping treatment is performed for a long time, so it is necessary to appropriately control the vapor pressure of the dopant.

[作用] 配向性ポリアセチレン膜を得るには重合媒体となるネマ
チック液晶自身も巨視的に配向していることが必要とな
る。液晶を配向させる方法を大別すると(1)表面処理
した基板を用いる。(2)外場印加を用いるの2種類の
方法に分けることができる。(1)の方法には高分子塗
付、ラビング。
[Operation] In order to obtain an oriented polyacetylene film, the nematic liquid crystal serving as the polymerization medium itself must be macroscopically oriented. The methods for aligning liquid crystals can be roughly divided into (1) using a surface-treated substrate; (2) It can be divided into two types of methods using external field application. Method (1) involves polymer coating and rubbing.

斜方蒸着、グレーティグの表面処理が含まれる。Includes oblique deposition and grating surface treatment.

(2)の方法には電場、磁場、流動等の外場印加が含ま
れる。配向性ポリアセチレン膜を得るには(1)、(2
)のいずれの方法でもかまわないが、磁場印加、流動落
下の方法を除いては、ネマチック液晶物質を2枚の基板
で挟む必要がある。これらの方法ではアセチレンガスの
拡散が充分起らず、導電材料に有用な成膜性に優れたポ
リアセチレン膜得ることが出来ない。したがって、磁場
印加と流動落下による液晶の配向方法が本発明に適した
配向性ポリアセチレン膜を提供出来る。
The method (2) includes applying an external field such as an electric field, a magnetic field, and a flow. To obtain an oriented polyacetylene film (1), (2)
) Any method may be used, but except for the method of applying a magnetic field or flowing down, it is necessary to sandwich the nematic liquid crystal material between two substrates. These methods do not cause sufficient diffusion of acetylene gas, making it impossible to obtain a polyacetylene film with excellent film-forming properties useful as a conductive material. Therefore, the liquid crystal orientation method using magnetic field application and flowing drop can provide an oriented polyacetylene film suitable for the present invention.

[実施例〕 以下一実施例により本発明を具体的に説明するが、本発
明はこれら実施例に限定されない。
[Example] The present invention will be specifically explained below using an example, but the present invention is not limited to these examples.

〔実施例1〕 窒素雰囲気下で300 m Qのガラス容器に表1に示
されるロットNα3のPCH−306とPCH−506
のスメクチック液晶混合物を10mQ加えた。この混合
物を45℃にし、等方性液体状態にして、テトラブトキ
シチタニウム102μQ及びトリエチルアルミニウム1
62μQを加え、30分間撹拌することにより重合触媒
を熟成した。
[Example 1] PCH-306 and PCH-506 of lot Nα3 shown in Table 1 in a 300 m Q glass container under nitrogen atmosphere
10 mQ of the smectic liquid crystal mixture was added. This mixture was heated to 45°C, brought to an isotropic liquid state, and 102μQ of tetrabutoxytitanium and 11μQ of triethylaluminum were added.
The polymerization catalyst was aged by adding 62 μQ and stirring for 30 minutes.

この反応容器を重合用・真空ラインに取付け、反応容器
中の窒素を排気した1反応容器を1万ガウスの電磁石中
に保持し、反応容器の温度を30℃にして重合媒体をネ
マチック状態にする0反応容器の温度を徐々に下げ10
℃に保持した。液晶物質がスメクチック液晶状態にある
ことを確認して、反応容器を電磁石中から取り出したの
ち、アセチレンガスを導入した。1時間後、未反応のア
セチレンガスを除去し、反応容器を重合用真空ラインか
ら取りはずした。窒素雰囲気下で、反応容器にトルエン
を100 m Q程度加えると、液晶表面からポリアセ
チレン膜がはく離する。このポリアセチレン膜をトルエ
ンで数回洗浄し、液晶物質と重合触媒を取除いた。ポリ
アセチレン膜を真空乾燥したのち、膜厚8μmの膜状試
料を得た。この膜状試料を電子顕微鏡で[?!!!した
ところ、フィブリルが一方向に並んでいる形状が観察さ
れた。
This reaction vessel is attached to the polymerization/vacuum line, the nitrogen in the reaction vessel is evacuated, and one reaction vessel is held in a 10,000 Gauss electromagnet, and the temperature of the reaction vessel is set to 30°C to bring the polymerization medium into a nematic state. 0 Gradually lower the temperature of the reaction vessel 10
It was kept at ℃. After confirming that the liquid crystal substance was in a smectic liquid crystal state, the reaction vessel was removed from the electromagnet, and then acetylene gas was introduced. After 1 hour, unreacted acetylene gas was removed and the reaction vessel was removed from the polymerization vacuum line. When about 100 mQ of toluene is added to the reaction vessel under a nitrogen atmosphere, the polyacetylene film peels off from the liquid crystal surface. This polyacetylene membrane was washed several times with toluene to remove the liquid crystal material and polymerization catalyst. After drying the polyacetylene film in vacuum, a film-like sample with a film thickness of 8 μm was obtained. This membrane sample was examined under an electron microscope [? ! ! ! As a result, a shape in which fibrils were aligned in one direction was observed.

この−軸配向ポリアセチレン膜を空気もれのない真空容
器に入れ、Q、Q3Torrのヨウ素蒸気にさらし、配
向方向の電気伝導度を直流4端子法により測定した。測
定開始1時間後、電気伝導度は飽和し、その値は18,
0OO8/C!lであった。
This -axis-oriented polyacetylene film was placed in a vacuum container without air leakage, exposed to iodine vapor at Q, Q3 Torr, and electrical conductivity in the orientation direction was measured by a DC four-terminal method. One hour after the start of measurement, the electrical conductivity was saturated and its value was 18,
0OO8/C! It was l.

〔比較例1〕 実施例1で示したポリアセチレン膜の合成において、電
磁石中に入れる操作を除き、全て同じ方法で、膜厚9μ
mのポリアセチレン膜を得た。
[Comparative Example 1] In the synthesis of the polyacetylene film shown in Example 1, a film thickness of 9 μm was obtained using the same method except for placing it in an electromagnet.
A polyacetylene film of m was obtained.

この膜状試料を電子顕微鏡で観察したところ、フィブリ
ルの配向は観察されなかった。
When this film-like sample was observed under an electron microscope, no fibril orientation was observed.

このポリアセチレン膜を空気もれのない真空容器に入れ
、0.03Torrのヨウ素蒸気にさらし、この膜状試
料の電気伝導度を直流4端子法により測定した。測定開
始1時間後に、電気伝導度は飽和し、その値は3.20
05/amであった。
This polyacetylene film was placed in a vacuum container without air leakage, exposed to iodine vapor at 0.03 Torr, and the electrical conductivity of this film sample was measured by a DC four-terminal method. One hour after the start of measurement, the electrical conductivity was saturated and its value was 3.20.
It was 05/am.

〔比較例2〕 実施例1において、スメクチック液晶物質としてPCH
−306とPCB−506の混合物の替りにPCH−4
05の単一成分を用いた以外、全て同じ方法で、膜厚8
μmのポリアセチレン膜を得た。このPCH−405は
スメクチック液晶相の高温側にネマチック液晶相を有し
ないスメクチック液晶物質である。
[Comparative Example 2] In Example 1, PCH was used as the smectic liquid crystal material.
PCH-4 instead of a mixture of -306 and PCB-506
The same method was used except that a single component of 05 was used, and a film thickness of 8
A μm polyacetylene film was obtained. This PCH-405 is a smectic liquid crystal material that does not have a nematic liquid crystal phase on the high temperature side of the smectic liquid crystal phase.

この膜状試料を電子顕微鏡でii+を察したところ、フ
ィブリルの配向は観察されなかった。
When this film-like sample was observed under an electron microscope, no fibril orientation was observed.

このポリアセチレン膜を空気もれのない真空容器に入れ
、Q、Q3Torrのヨウ素蒸気にさらし、この膜状試
料の電気伝導度を直流4端子法により測定した。測定開
始1時間後に、電気伝導度は飽和し、その値は2.50
0S/(!lであった。
This polyacetylene film was placed in a vacuum container with no air leakage, exposed to iodine vapor at Q, Q3 Torr, and the electrical conductivity of this film sample was measured by a DC four-terminal method. One hour after the start of measurement, the electrical conductivity was saturated and its value was 2.50.
It was 0S/(!l.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の有機溶媒中で合成したポリアセ
チレン膜と比較しその電気伝導度が高い材料が得られる
という効果がある。
According to the present invention, there is an effect that a material having higher electrical conductivity than a conventional polyacetylene film synthesized in an organic solvent can be obtained.

こうして得られるポリアセチレン膜は電気・電子素子と
して有用な導電材料として直接使用できるばかりでなく
、p/n接合素子を作ることもできることから、光セン
サ、太陽電池等の材料としても有用である。
The polyacetylene film obtained in this way can not only be used directly as a conductive material useful as an electric/electronic device, but also a p/n junction device can be made, so it is also useful as a material for optical sensors, solar cells, etc.

Claims (1)

【特許請求の範囲】 1、ポリアセチレン膜を電子受容性物質で処理して得ら
れる一軸配向ポリアセチレン膜の製造において、アセチ
レンの重合媒体として、スメクチツク液晶物質を用いる
ことを特徴とする一軸配向ポリアセチレン膜の製造方法
。 2、前記スメクチツク液晶物質としてフェニルシクロヘ
キサン誘導体を用い、かつ等方性液体相とスメクチツク
液晶相の間にネマチツク液晶相を有することを特徴とす
る請求項1記載の一軸配向ポリアセチレン膜の製造方法
。 3、前記スメクチツク液晶物質がネマチツク液晶相を示
している状態で配向処理を行ない、スメクチツク液晶相
を配向せしめることを特徴とする請求項2記載の一軸配
向ポリアセチレン膜の製造方法。
[Claims] 1. A uniaxially oriented polyacetylene film characterized in that a smectic liquid crystal substance is used as an acetylene polymerization medium in the production of a uniaxially oriented polyacetylene film obtained by treating a polyacetylene film with an electron-accepting substance. Production method. 2. The method for producing a uniaxially oriented polyacetylene film according to claim 1, characterized in that a phenylcyclohexane derivative is used as the smectic liquid crystal substance, and a nematic liquid crystal phase is present between the isotropic liquid phase and the smectic liquid crystal phase. 3. The method for producing a uniaxially oriented polyacetylene film according to claim 2, characterized in that the alignment treatment is performed in a state where the smectic liquid crystal substance exhibits a nematic liquid crystal phase to orient the smectic liquid crystal phase.
JP24628289A 1989-09-25 1989-09-25 Production of uniaxially oriented polyacetylene film Pending JPH03109430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24628289A JPH03109430A (en) 1989-09-25 1989-09-25 Production of uniaxially oriented polyacetylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24628289A JPH03109430A (en) 1989-09-25 1989-09-25 Production of uniaxially oriented polyacetylene film

Publications (1)

Publication Number Publication Date
JPH03109430A true JPH03109430A (en) 1991-05-09

Family

ID=17146226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24628289A Pending JPH03109430A (en) 1989-09-25 1989-09-25 Production of uniaxially oriented polyacetylene film

Country Status (1)

Country Link
JP (1) JPH03109430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306531A (en) * 2002-02-15 2003-10-31 Japan Science & Technology Corp Method for electrolytic asymmetric polymerization of conjugated polymer and optically active conjugated polymer
JP2008150584A (en) * 2006-10-27 2008-07-03 Canon Inc Method and apparatus for manufacturing continuous oriented structure of polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306531A (en) * 2002-02-15 2003-10-31 Japan Science & Technology Corp Method for electrolytic asymmetric polymerization of conjugated polymer and optically active conjugated polymer
JP2008150584A (en) * 2006-10-27 2008-07-03 Canon Inc Method and apparatus for manufacturing continuous oriented structure of polymer

Similar Documents

Publication Publication Date Title
Chen et al. Polyaniline plasticized with 1-methyl-2-pyrrolidone: structure and doping behavior
Hatchett et al. Comparison of chemically and electrochemically synthesized polyaniline films
Yang et al. Conjugated aromatic poly (azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes
Jenekhe et al. Complexation-mediated solubilization and processing of rigid-chain and ladder polymers in aprotic organic solvents
Passerini et al. Spin-coated V2O5 xerogel thin films. 1. Microstructure and morphology
Cheng et al. Polymerization of dibromobis [tris (2-cyanoethyl) phosphine] nickel: a" triply-specific" solid-state reaction
Shirakawa Synthesis and characterization of highly conducting polyacetylene
Choi et al. Polymerization mechanism and physicochemical properties of electrochemically prepared polyindole tetrafluoroborate
Araya et al. Polymerization of acetylene in liquid crystal solvent.
Macchi et al. Polymerization in the crystalline state. X. Solid‐state conversion of 6‐aminocaproic acid to oriented nylon 6
Takenami et al. In situ polymerization of liquid-crystalline thin films of electron-transporting perylene tetracarboxylic bisimide bearing cyclotetrasiloxane rings
Osaheni et al. Spectroscopic and morphological studies of highly conducting ion-implanted rigid-rod and ladder polymers
US20230096942A1 (en) Cyclic polyacetylene and methods of preparing the same
JPH03109430A (en) Production of uniaxially oriented polyacetylene film
Kobryansky et al. Analysis of the electronic structure of polyacetylene based on its optical absorption spectra
Osaheni et al. Third-order nonlinear optical properties of thin films of polyanilines and poly (o-toluidines)
Bai et al. Synthesis and Micropatterning of Semiconducting Polypyrrole Nanofilms by a Two‐Step Deposition/Polymerization Process
JPH02119008A (en) Manufacture of conductive polyacetylene film
JPS58145420A (en) Manufacture of coherent poly ( acetylene ) film
JPS6327548A (en) Production of polyacetylene film
KR0148406B1 (en) Lcd element
JPH09208699A (en) Low-metal polybenzimidazole material and its preparation
Munardi et al. Polymerization of acetylene with Ti (OC4H9) 4/butyllithium as catalyst system and silicone oil as reaction medium
Piao et al. Advanced conjugated polymer—helical polyacetylene
Chien et al. Low‐and high‐molecular‐weight polyacetylenes: Synthesis, characterization, and thermal isomerization