JPH03109043A - Magnetic resonance imaging apparatus - Google Patents
Magnetic resonance imaging apparatusInfo
- Publication number
- JPH03109043A JPH03109043A JP1245128A JP24512889A JPH03109043A JP H03109043 A JPH03109043 A JP H03109043A JP 1245128 A JP1245128 A JP 1245128A JP 24512889 A JP24512889 A JP 24512889A JP H03109043 A JPH03109043 A JP H03109043A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- temperature control
- magnetic field
- magnetic circuit
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 6
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims description 9
- 238000005481 NMR spectroscopy Methods 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 4
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 claims description 2
- 230000005679 Peltier effect Effects 0.000 claims 1
- 230000005672 electromagnetic field Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 4
- 238000009423 ventilation Methods 0.000 abstract description 3
- 239000006260 foam Substances 0.000 abstract description 2
- 239000012774 insulation material Substances 0.000 abstract 2
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000006732 Torreya nucifera Nutrition 0.000 description 1
- 244000111306 Torreya nucifera Species 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、磁気共鳴イメージング装置、特に磁気回路の
温度制御を行なった核磁気共鳴イメージング装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic resonance imaging apparatus, and particularly to a nuclear magnetic resonance imaging apparatus in which the temperature of a magnetic circuit is controlled.
[従来の技術]
従来の装置は、特開昭62−112358号に記載され
ているように、磁気回路の温度制御を行なっていた。[Prior Art] A conventional device controls the temperature of a magnetic circuit as described in Japanese Patent Laid-Open No. 112358/1983.
磁気共鳴イメージング装置(以下MRI装置と称する)
において永久磁石を使用した磁気回路は、周囲温度の変
化により磁場強度が変化する欠点がある。永久磁石にN
dFe−Bを用いた場合の温度係数は、−1000pp
m/]000ppm弱くなる。Magnetic resonance imaging device (hereinafter referred to as MRI device)
A magnetic circuit using permanent magnets has the disadvantage that the magnetic field strength changes with changes in ambient temperature. N to the permanent magnet
The temperature coefficient when using dFe-B is -1000pp
m/]000ppm becomes weaker.
MR,I装置では、静磁界に傾斜磁界を加えて、位置を
磁界の大きさに対応させ、位置に応じた共鳴周波数を発
生させる。この共鳴周波数を持つNMR信号を検出し、
位置の特定を行なう。実際に観測されるNMR信号は、
多くの位置からのNMR信号が重なりあった信号である
。従って、これを周波数ごとの成分に分け、基市位置で
の検出周波数を基準周波数として該基準周波数との偏差
周波数を求め、その偏差周波数から位置の特定をはかる
。In the MR,I device, a gradient magnetic field is added to a static magnetic field, the position is made to correspond to the magnitude of the magnetic field, and a resonance frequency corresponding to the position is generated. Detecting the NMR signal with this resonance frequency,
Specify the location. The actually observed NMR signal is
This is a signal in which NMR signals from many positions are overlapped. Therefore, this is divided into components for each frequency, the frequency detected at the base position is used as a reference frequency, the deviation frequency from the reference frequency is determined, and the position is specified from the deviation frequency.
然るに、温度によって磁界が変動すると、その変動分に
対応して周波数が変化し、見かけ上の基準位置の変動、
及び基準位置から見た他の位置の変動も生ずる。更に位
置検出のずれは、画像の歪み、ぼけをも生ずる。However, if the magnetic field fluctuates due to temperature, the frequency will change correspondingly, causing a change in the apparent reference position,
and other positional variations relative to the reference position also occur. Furthermore, the position detection deviation also causes image distortion and blur.
一般に、磁界の変化によって画像に影響を与える制限値
は、5ppm/時間であるとされる。Generally, the limit value for influencing the image by changes in the magnetic field is 5 ppm/hour.
この一つの方法として、磁気回路の周囲を断熱材でおお
い、内部に温度調整用ヒータ(保温ヒータ)を設け、ヒ
ータへの電流を制御して、磁気回路温度を室内温度より
も高い温度に一定に保つ制御方法を提案している。One method for this is to cover the magnetic circuit with a heat insulating material, install a temperature adjustment heater (thermal heater) inside, and control the current to the heater to keep the magnetic circuit temperature at a temperature higher than the indoor temperature. We are proposing a control method to maintain this.
MR,I装置の磁気回路の温度を一定に保つために、前
記保温ヒータは、例えば、電気ファンヒータ(ヒータ線
にニクロム線を使い、この発熱をファンにより空中に放
出するタイプのヒータ)を用いることができる。In order to keep the temperature of the magnetic circuit of the MR, I device constant, the heat-retaining heater is, for example, an electric fan heater (a type of heater that uses nichrome wire as the heater wire and releases the generated heat into the air by a fan). be able to.
[発明が解決しようとする課悪]
上記従来技術では、ヒータで温めた空気により、磁気回
路を一定温度に保温制御する方式であるため、保温温度
は室温よりも高い温度に設定する必要がある。[Illness that the invention aims to solve] In the above-mentioned conventional technology, the magnetic circuit is kept at a constant temperature using air heated by a heater, so the keeping temperature needs to be set to a temperature higher than room temperature. .
磁気回路の保温温度よりも室内の温度が高くなる可能性
のある場合、従来の装置では冷却機能を持たないので、
温度制御が不可能となることがある。If the indoor temperature is likely to be higher than the magnetic circuit's insulation temperature, conventional devices do not have a cooling function.
Temperature control may become impossible.
また、この保温温度を室温よりも高い温度に設定した場
合、常時通電して保温する必要があるために、保温温度
が高いほど電力消費量が大きくなる。また、磁場強度も
弱くなるという問題点がある。Furthermore, if this heat retention temperature is set to a temperature higher than room temperature, it is necessary to constantly turn on electricity to keep warm, so the higher the heat retention temperature, the greater the power consumption. Another problem is that the magnetic field strength also becomes weaker.
口課題を解決するための手段]
上記目的を達成するために、温度制御を加熱だけではな
く冷却も可能とすることにより。Means for Solving the Problem] In order to achieve the above object, temperature control is made possible not only for heating but also for cooling.
任意の設定温度で磁気回路を保持できるようにしたもの
である。This allows the magnetic circuit to be maintained at any set temperature.
[作用]
本発明では、加熱及び冷却による温度制御が可能な温度
制御機構を使用することにより、外気温に左右されるこ
となく、磁気回路の保温が行なえる。従って、磁気回路
の設定温度を任意の温度にすることが可能となり、磁気
回路の設定条件が緩和される。[Function] In the present invention, by using a temperature control mechanism capable of temperature control through heating and cooling, the magnetic circuit can be kept warm without being affected by the outside temperature. Therefore, it becomes possible to set the temperature of the magnetic circuit to an arbitrary temperature, and the conditions for setting the magnetic circuit are relaxed.
[実施例]
本発明のMRI装置の実施例を第1図、及平板永久磁石
1め上に均一磁界形成用磁極片2を積層する。この永久
磁石lと磁極片2とよりなる積層体を2個用意し、被検
体を挿入する測定空間を挟んで、上下位置に対向して設
置する。この結果、上下の磁極片の間の空間は均一磁界
を形成する。[Example] An example of the MRI apparatus of the present invention is shown in FIG. 1, in which a magnetic pole piece 2 for forming a uniform magnetic field is laminated on a flat permanent magnet 1. Two laminates each consisting of the permanent magnet 1 and the magnetic pole piece 2 are prepared and placed vertically facing each other with a measurement space into which the subject is inserted. As a result, the space between the upper and lower pole pieces forms a uniform magnetic field.
この均一磁界空間中には、傾斜磁界発生用コイル、及び
電磁波印加用の照射コイル、NMR信号を受信する受信
コイルとを収容する。配置順序としては、最外周位置に
相当する部分に永久磁石と磁極片とより成る積層体を設
け1次いで内側方向に向けて、傾斜磁界発生用コイル3
1、電磁波印加用照射コイル32、受信コイル33の順
に上記均一磁界空間中に収容する。最内周位置に存在す
る受信コイル33は、円筒ソレノイドコイルであり、こ
の円筒内部の空間が真の測定空間をなし、この測定空間
内に被検体が収容され、測定が行なわれることとなる。This uniform magnetic field space accommodates a gradient magnetic field generation coil, an irradiation coil for applying electromagnetic waves, and a reception coil for receiving NMR signals. As for the arrangement order, a laminate consisting of a permanent magnet and a magnetic pole piece is provided at a portion corresponding to the outermost circumferential position, and then a gradient magnetic field generating coil 3 is placed inwardly.
1. The irradiation coil 32 for applying electromagnetic waves and the receiving coil 33 are housed in the uniform magnetic field space in this order. The receiving coil 33 located at the innermost circumferential position is a cylindrical solenoid coil, and the space inside this cylinder constitutes a true measurement space, in which the subject is accommodated and measurements are performed.
更に、上下のそれぞれの永久磁石の片面は継鉄板3に密
着固定させている。継鉄板3は矩形をなし、少なくとも
永久磁石の片面全面をおおう幅を持つ。この継鉄板3は
被検体が測定空間に十分に入れるような空間を仕切るた
めの役割を持つ。上下の継鉄板は、継鉄枠4で磁気的、
且つ機構的に結合させである。Further, one side of each of the upper and lower permanent magnets is closely fixed to the yoke plate 3. The yoke plate 3 is rectangular and has a width that covers at least one entire surface of the permanent magnet. This yoke plate 3 has the role of partitioning a space such that the subject can fully enter the measurement space. The upper and lower yoke plates are magnetically connected by the yoke frame 4.
In addition, they are mechanically connected.
継鉄枠4は、矩形の継鉄板の4つの隅で継鉄板相互の磁
気的、機構的結合をなしている。The yoke frame 4 magnetically and mechanically connects the rectangular yoke plates at four corners thereof.
更に、継鉄枠4の一部は下部の継鉄板を貫通し外側に突
出し、磁気回路全体としての脚部14を形成する。Furthermore, a portion of the yoke frame 4 penetrates the lower yoke plate and protrudes outward to form a leg portion 14 of the entire magnetic circuit.
以上の構成で、上下の積層体にあっては、測定空間を挟
んで均一磁界の形成をはかるとともに、永久磁石の反対
側の面は、永久磁石−継鉄板一継鉄俸一他の継鉄板−他
の永久磁石の磁気回路の形成できた。かくして、全体と
して1個の磁気回路が形成できることになった。With the above configuration, in the upper and lower stacked bodies, a uniform magnetic field is formed across the measurement space, and the surface opposite to the permanent magnet is connected to the permanent magnet - the yoke plate, the yoke plate, and the other yoke plate. - Another permanent magnet magnetic circuit could be formed. In this way, one magnetic circuit could be formed as a whole.
上の継鉄板3の上側と、下の継鉄板3の下側に、加熱及
び冷却が可能な温度制御素子20を、継鉄板に敷き詰め
てはりつける。そして、この温度制御素子を除いた部分
の磁気回路を、発泡スチロールまたはスポンジ体等より
なる断熱材60でおおって断熱部6を形成する。断熱材
でおおう部分は、継鉄枠4の全体、継鉄板の一部及び積
層対全体である。ただし、積層体と継鉄板とは密着固定
させており、両者を併せて断熱材でおおう構成とさせた
。Temperature control elements 20 capable of heating and cooling are spread and attached to the upper side of the upper yoke plate 3 and the lower side of the lower yoke plate 3. Then, a portion of the magnetic circuit excluding the temperature control element is covered with a heat insulating material 60 made of styrene foam, sponge, or the like to form a heat insulating section 6. The parts covered with the heat insulating material are the entire yoke frame 4, a part of the yoke plate, and the entire laminated pair. However, the laminate and the yoke plate were fixed in close contact with each other, and both were covered with a heat insulating material.
また、温度制御素子20の表面(継鉄板に接触していな
い面)は、断熱材ではおおわずに、外気との通気性をよ
くする。断熱部の外側をおおう化粧カバーにおいても、
その温度制御素子の部分は密閉せずに穴を開ける等、外
気との通気性をよくする必要がある。Further, the surface of the temperature control element 20 (the surface not in contact with the yoke plate) is not covered with a heat insulating material, but is made to have good ventilation with the outside air. Even in the decorative cover that covers the outside of the insulation part,
The temperature control element should not be sealed, but should be made with holes to improve ventilation with the outside air.
第1図は、図面をわかりやすくするために断熱部の一部
のみを開示した。斜線部60は、その断面である。In FIG. 1, only a portion of the heat insulating section is shown for clarity of drawing. The shaded portion 60 is its cross section.
この断熱材60で仕切った空間9内には、図示しないが
、傾斜磁界用コイル、電磁波送信コイル、受信コイルを
設けていることは従来例と変わらない。Although not shown, a gradient magnetic field coil, an electromagnetic wave transmitting coil, and a receiving coil are provided in the space 9 partitioned off by the heat insulating material 60, as in the conventional example.
更に、磁極片−2の周辺部の一部に温度センサ1.OA
を、断熱部とその外側の化粧カバーとの間にIOBを取
付ける。温度センサLOAは磁界中の温度検出を行ない
、IOBは断熱部外部の温度検出を行なう。Furthermore, a temperature sensor 1. OA
Then, install the IOB between the insulation part and the outer decorative cover. The temperature sensor LOA detects the temperature in the magnetic field, and the IOB detects the temperature outside the heat insulating section.
従来、磁気回路の保温制御機構は、冷却機能を持たない
ために、その設定温度は磁気回路の設定される測定室内
で予測される最高温度以上に設定する必要があった。Conventionally, a heat retention control mechanism for a magnetic circuit does not have a cooling function, and therefore, its set temperature needs to be set to a temperature higher than the maximum temperature expected in the measurement chamber where the magnetic circuit is set.
本発明では、冷却と加熱が可能な温度制御機構を用いる
ことによって、室温に関係なく任意の温度に磁気回路を
保温制御することができる。また、設定温度を低くする
ことによって、磁場強度を大きくすることが可能である
。更に、設定温度を室温に近い温度にすることによって
、保温に要する消費電力を減少させることができる。In the present invention, by using a temperature control mechanism capable of cooling and heating, the magnetic circuit can be kept at an arbitrary temperature regardless of the room temperature. Furthermore, by lowering the set temperature, it is possible to increase the magnetic field strength. Furthermore, by setting the set temperature to a temperature close to room temperature, the power consumption required for keeping warm can be reduced.
ここで、加熱及び冷却可能な温度制御機構の一例として
、ベルチェ効果を用いた素子について、第3図を用いて
説明する。Here, as an example of a temperature control mechanism capable of heating and cooling, an element using the Beltier effect will be described using FIG. 3.
2つの異なった導体もしくは半導体をつないで、これに
直流電流を流すと、それぞれの接合部においてジュール
熱以外の熱の吸収、または発生が生じる現象をベルチェ
効果と言う。When two different conductors or semiconductors are connected and a direct current is passed through them, the phenomenon in which heat other than Joule heat is absorbed or generated at each junction is called the Bertier effect.
この効果を利用して、直流電流により冷却・加熱温度制
御を自由に行なうことが可能である。この温度制御素子
は、電気的な温度制御であるため温度応答が非常に早く
、高精度な温度制御が可能である。Utilizing this effect, it is possible to freely control cooling and heating temperatures using direct current. Since this temperature control element performs electrical temperature control, the temperature response is very fast and highly accurate temperature control is possible.
第3図において、P型半導体43と、N型半導体44と
を金属で接合し、図のように電流を流すと、左側の接合
部41が低温となり、この接合部で吸熱が生じる。同時
に右側の接合部42A、 42Bは高温となり、この接
合部で発熱が生じる。即ち、低温部から高温部への熱の
移動でヒートポンプ的な役割をする。この効果は可逆的
で電流の向きを逆にすると、高温部と低温部が逆になり
、吸熱、発熱も逆に生じる。この温度制御素子は、平板
の形状で温度制御の対象物にねじで固定することもでき
る。In FIG. 3, when a P-type semiconductor 43 and an N-type semiconductor 44 are bonded with metal and a current is passed as shown in the figure, the temperature of the bonded portion 41 on the left becomes low, and heat absorption occurs at this bonded portion. At the same time, the right joints 42A and 42B become hot, and heat is generated in these joints. In other words, it acts like a heat pump by transferring heat from a low-temperature area to a high-temperature area. This effect is reversible; if the direction of the current is reversed, the high-temperature and low-temperature regions will be reversed, and heat absorption and heat generation will also occur in the opposite direction. This temperature control element can also have a flat plate shape and be fixed to the object to be temperature controlled with screws.
この温度制御素子を用いて、磁気回路を一定温度に制御
するためには、温度制御をする側とその反対側の温度差
を検知して制御する必要がある。In order to control the magnetic circuit to a constant temperature using this temperature control element, it is necessary to detect and control the temperature difference between the temperature-controlled side and the opposite side.
第4図に示す温度制御のための概略化した回路図で、具
体的な制御方法を説明する。第4図において、45は直
流電源、46は温度制御回路、20は温度制御素子、1
0A、 IOBは温度センサ(サーミスタまたは熱電対
なと)である。まず、磁気回路の温度をセンサ1.OA
で、断熱部外部の温度を温度センサIOBで検知する。A specific control method will be explained with reference to a schematic circuit diagram for temperature control shown in FIG. In FIG. 4, 45 is a DC power supply, 46 is a temperature control circuit, 20 is a temperature control element, 1
0A and IOB are temperature sensors (such as thermistors or thermocouples). First, measure the temperature of the magnetic circuit with sensor 1. OA
Then, the temperature outside the heat insulating part is detected by the temperature sensor IOB.
そして、この磁気回路の温度と断熱部外部の温度差によ
って、温度制御回路46で温度制御素子の吸熱、発熱を
判断し、その電流値と電流の向きの制御を行ない、磁気
回路の温度を一定に保つ。Based on the difference between the temperature of the magnetic circuit and the temperature outside the heat insulating section, the temperature control circuit 46 determines whether the temperature control element absorbs heat or generates heat, and controls the current value and direction of the current to keep the temperature of the magnetic circuit constant. Keep it.
本発明の主旨は、温度制御素子の枚数、取付は場所に制
限されるものではない。また、温度制御素子は加熱及び
冷却が可能であればよく、ベルチェ効果を利用した素子
に限定しない。The gist of the present invention is that the number and location of temperature control elements are not limited. Further, the temperature control element is not limited to an element that utilizes the Beltier effect, as long as it is capable of heating and cooling.
[発明の効果]
本発明によれば、磁気回路の温度を室温に関係なく一定
に保つことができ、画像の歪みがなく、S / Nの向
上した画像を得ることができる。[Effects of the Invention] According to the present invention, the temperature of the magnetic circuit can be kept constant regardless of the room temperature, and an image with no image distortion and improved S/N can be obtained.
第1図は本発明の一実施例の斜視図、第2図は第1図の
縦断面図、第3図はベルチェ効果の説明図、第4図は温
度制御回路図である。
1・・・永久磁石、2・・・磁極片、3・・・継鉄板、
4・・・継鉄枠、6・・・断熱部、10・・・温度セン
サ、20・・・温度制御素子、46・温度制御回路。
茅 / ロ
第 2 口
/
0
0
ぎOFIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of FIG. 1, FIG. 3 is an explanatory diagram of the Bertier effect, and FIG. 4 is a temperature control circuit diagram. 1... Permanent magnet, 2... Magnetic pole piece, 3... Yoke plate,
4...Yoke frame, 6...Insulating section, 10...Temperature sensor, 20...Temperature control element, 46.Temperature control circuit. Kaya / Ro 2nd mouth / 0 0 Gi O
Claims (1)
、磁極片と永久磁石とより成る静磁界用磁気回路と、上
記均一磁界に加算する傾斜磁界を発生する傾斜磁場コイ
ルと、測定空間内の被検体に核磁気共鳴を起させる周波
数の電磁場を印加する照射コイルと、測定空間内の被検
体からの核磁気共鳴信号を受信する受信コイルと、を備
えるとともに、加熱及び冷却が可能な機構を設けること
により、静磁界用磁気回路の温度を設定温度に保持せし
めることを特徴とする磁気共鳴イメージング装置におけ
る温度制御装置。 2、温度調整機構にペルチエ効果を利用した温度制御素
子を設け、その電流を制御して加熱及び冷却を行うこと
で、静磁界用磁気回路の温度を設定温度に保持せしめる
制御手段とを設けて成る、請求項1記載の核磁気共鳴イ
メージング装置における温度制御装置。[Claims] 1. A static magnetic field magnetic circuit consisting of a magnetic pole piece and a permanent magnet for generating a uniform magnetic field, facing each other across a measurement space, and generating a gradient magnetic field to be added to the uniform magnetic field. It includes a gradient magnetic field coil, an irradiation coil that applies an electromagnetic field with a frequency that causes nuclear magnetic resonance to a subject in the measurement space, and a receiving coil that receives a nuclear magnetic resonance signal from the subject in the measurement space. A temperature control device for a magnetic resonance imaging apparatus, characterized in that the temperature of a static magnetic field magnetic circuit is maintained at a set temperature by providing a mechanism capable of heating and cooling. 2. The temperature adjustment mechanism is provided with a temperature control element that utilizes the Peltier effect, and a control means is provided that controls the current to perform heating and cooling to maintain the temperature of the static magnetic field magnetic circuit at a set temperature. A temperature control device in a nuclear magnetic resonance imaging apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1245128A JPH03109043A (en) | 1989-09-22 | 1989-09-22 | Magnetic resonance imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1245128A JPH03109043A (en) | 1989-09-22 | 1989-09-22 | Magnetic resonance imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03109043A true JPH03109043A (en) | 1991-05-09 |
Family
ID=17129045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1245128A Pending JPH03109043A (en) | 1989-09-22 | 1989-09-22 | Magnetic resonance imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03109043A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999065392A1 (en) * | 1998-06-19 | 1999-12-23 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
JP2001326118A (en) * | 1999-11-16 | 2001-11-22 | Sumitomo Special Metals Co Ltd | Magnetic pole unit, its assembling method, and magnetic field generating apparatus |
JP2014039868A (en) * | 2008-10-03 | 2014-03-06 | Toshiba Corp | Magnetic resonance imaging apparatus |
-
1989
- 1989-09-22 JP JP1245128A patent/JPH03109043A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999065392A1 (en) * | 1998-06-19 | 1999-12-23 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
KR100370444B1 (en) * | 1998-06-19 | 2003-01-30 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Mri magnetic field generator |
JP2001326118A (en) * | 1999-11-16 | 2001-11-22 | Sumitomo Special Metals Co Ltd | Magnetic pole unit, its assembling method, and magnetic field generating apparatus |
JP2014039868A (en) * | 2008-10-03 | 2014-03-06 | Toshiba Corp | Magnetic resonance imaging apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5652517A (en) | Magnet assembly for MRI apparatus | |
JP4203615B2 (en) | Magnetic field generator for MRI | |
EP1112507B1 (en) | Temperature stabilisation of permanent magnet assemblies in an mri apparatus | |
EP1043598B1 (en) | Magnetic field stabilization method, magnetic field generating apparatus and magnetic resonance imaging apparatus | |
CN115113126A (en) | Device and method for testing and calibrating metal Hall probe | |
JPH03109043A (en) | Magnetic resonance imaging apparatus | |
JPS6343649A (en) | Nuclear magnetic resonance imaging apparatus | |
JP2566410B2 (en) | Nuclear magnetic resonance imaging device | |
JPH05212012A (en) | Magnetic resonance imaging system | |
JP3339880B2 (en) | Magnetic resonance imaging equipment | |
JPH05285118A (en) | Magnetic resonance imaging device | |
JP3446973B2 (en) | Magnetic resonance imaging equipment | |
JPH03109042A (en) | Static magnetic field generation equipment for nuclear magnetic resonance imaging apparatus | |
CN111721427A (en) | Thermopile sensor and control method thereof | |
KR100824094B1 (en) | Electric-power-energied heat glass apparatus | |
JP3392182B2 (en) | Magnetic resonance imaging equipment | |
JP2000030937A (en) | Magnetic field generator for mri | |
JP3112292B2 (en) | Magnetic resonance imaging equipment | |
JP2003317919A (en) | Induction heating cooking device | |
JP4694678B2 (en) | Magnetic field generator and magnetic resonance imaging apparatus | |
JP3209583B2 (en) | Magnetic resonance imaging equipment | |
JPH0356005Y2 (en) | ||
JPS6136645A (en) | Method and device for thermal circumstance control | |
JP2727904B2 (en) | Pyroelectric infrared sensor | |
JPH0497740A (en) | Magnetic field generator |