JPH03109041A - Receiving coil for nuclear magnetic resonance imaging apparatus - Google Patents

Receiving coil for nuclear magnetic resonance imaging apparatus

Info

Publication number
JPH03109041A
JPH03109041A JP1245122A JP24512289A JPH03109041A JP H03109041 A JPH03109041 A JP H03109041A JP 1245122 A JP1245122 A JP 1245122A JP 24512289 A JP24512289 A JP 24512289A JP H03109041 A JPH03109041 A JP H03109041A
Authority
JP
Japan
Prior art keywords
coils
coil
sensitivity
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1245122A
Other languages
Japanese (ja)
Inventor
Yukihiro Yasugi
八杉 幸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP1245122A priority Critical patent/JPH03109041A/en
Publication of JPH03109041A publication Critical patent/JPH03109041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize a sensitivity distribution by arranging a high frequency receiving coil to comprise three coils disposed perpendicular to one another so that information established is obtained simultaneously from each thereof. CONSTITUTION:Solenoid type coils 3 are combined above orthogonal surface coils 2a and 2b in such a manner as to compensate a low sensitivity part 33. In such arrangement, the three coils have sensitivity at about 90 deg. to one another to be orthogonal so that independent signals can be detected simultaneously from the three coils. Then, outputs of surface coils 2a and 2b are connected to input terminals (a) and (b) of a receiving circuit 23 and when outputs of the coils 3 are connected to an input terminal (c), output levels of the surface coils 2a and 2b give almost equal values. As a phase difference becomes about 90 deg.. A phase shifter 30a is set to 0 deg. and the one 30b is set to about +90 deg. or about -90 deg.. An attenuators 31a and 31b are both set to -0dB. In contrast, the outputs of the coils 3 are adjusted to such a phase correction value as to make an image pickup part the best according thereto automatically or manually. Attenuation value of the attenuator 31c is adjusted to meet optimum adjusting conditions according to a sensitivity difference between the coils 3. This enables a higher sensitivity with the uniformization of a sensitivity distribution of the orthogonal coils.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴を利用して被検体の所望箇所を映
像化する核磁気共鳴イメージング装置用高周波受信コイ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-frequency receiving coil for a nuclear magnetic resonance imaging apparatus that images a desired location of a subject using nuclear magnetic resonance.

〔従来の技術〕[Conventional technology]

核磁気共鳴イメージング装置でま、原子核を高周波を照
射して励起し、共鳴した原子核より放出される高周波信
号(これをNMR信号という)を検出する。高周波信号
の照射、検出には通常、コイルが使用され、サドル型、
ソレノイド型及びそれらを変形した種々のコイルが考え
られている。
A nuclear magnetic resonance imaging device excites atomic nuclei by irradiating them with high frequency waves, and detects high frequency signals (called NMR signals) emitted from the resonated atomic nuclei. Coils are usually used to irradiate and detect high-frequency signals; saddle-type,
Solenoid type coils and various modified coils have been considered.

前記照射と検出は異なる時間帯で行なうため、両者を1
つのコイルで兼用する手法も知られている。
Since the irradiation and detection are performed in different time periods, both are
A method is also known in which one coil is used for both purposes.

しかし1人体を対象とする核磁気共鳴イメージング装置
では、空間的に広く−様な照射と、感度が高(SN比の
良い検出を実現するため、比較的大きな照射コイルと、
人体の近くに配置した比較的小さな検出コイルとがよく
用いられている。検出コイルと同方向に照射コイルを配
置すると1両者が高周波的に結合して検出感度が低下す
るため、通常は両者を直交する軸上に配置する。
However, nuclear magnetic resonance imaging equipment that targets a single human body uses a relatively large irradiation coil to achieve spatially wide and varied irradiation and high sensitivity (detection with a good signal-to-noise ratio).
Relatively small detection coils placed close to the human body are often used. If the irradiation coil is placed in the same direction as the detection coil, the two will be coupled at high frequencies and the detection sensitivity will be reduced, so they are usually placed on orthogonal axes.

ところで前記検出コイルは、その感度が再構成された画
像のSN比に直接影響するため、その研究改良が多くな
されている。励起されたスピンは。
Incidentally, since the sensitivity of the detection coil directly affects the S/N ratio of a reconstructed image, many studies and improvements have been made to the detection coil. The excited spins.

小さな磁極片が同一平面上を回転しているようにふるま
うため、この点に着目して、直交した2つのコイル系で
検出する直交コイルが提案されており、(「ジャーナル
・オブ・マグネティック・レゾナンスJ 53−324
−327.1983 C、N 、 CIIEN他参照)
原理的には、信号量は2倍となり、ノイズ量はランダム
ノイズであることから47倍となり、この結果SN比が
5倍に向」二すると言われている。ただし、これは組み
合わせる2つのコイルの感度が等しい場合に限り、感度
が異なる場合はSN比の向上量が4Σ倍より低下し、最
大向上を得るための加算条件が存在する。この加算条件
を満足するように、2つのコイル出力の位相差及びレベ
ル差を補正し、加算しなければならない(特開昭64−
17636号参照)。
Because small magnetic pole pieces behave as if they are rotating on the same plane, an orthogonal coil system has been proposed that uses two orthogonal coil systems to detect this problem. J53-324
-327.1983 C, N, CIIEN et al.)
In principle, the amount of signal is doubled, and since it is random noise, the amount of noise is 47 times greater, and as a result, it is said that the S/N ratio increases to 5 times. However, this is only possible if the sensitivities of the two coils to be combined are equal; if the sensitivities are different, the amount of improvement in the S/N ratio will be less than 4Σ times, and there is an addition condition for obtaining the maximum improvement. In order to satisfy this addition condition, the phase difference and level difference between the two coil outputs must be corrected and added (Japanese Patent Application Laid-Open No. 64-1999-
17636).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術による直交コイルでは、SN比の改善量の
点から、同一形状のコイルを2つ使用することが望まし
い。しかし、この場合、2つのコイルの感度分布が等し
いために、直交コイルとすると、感度の高い領域はより
高く、低い部分は相対的に低くなり、感度分布の均一性
という点においては低下してしまう。
In the orthogonal coils according to the prior art, it is desirable to use two coils of the same shape from the viewpoint of the amount of improvement in the S/N ratio. However, in this case, since the sensitivity distributions of the two coils are equal, if the two coils are used as orthogonal coils, the high sensitivity areas will be higher and the low sensitivity areas will be relatively lower, resulting in a decrease in the uniformity of the sensitivity distribution. Put it away.

被検体の局所的な撮影を行なうために1部分的に感度を
高めた表面コイルにおいては、この問題がより顕著に生
じる。
This problem occurs more prominently in a surface coil whose sensitivity is partially increased in order to perform local imaging of a subject.

本発明の目的は、従来技術による直交コイルの感度分布
の均一性が低下するといった問題を解決した、核磁気共
鳴イメージング装置用高周波受信コイルを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency receiving coil for a nuclear magnetic resonance imaging apparatus, which solves the problem of the prior art that the uniformity of the sensitivity distribution of the orthogonal coil decreases.

〔課題を解決するための手段〕[Means to solve the problem]

前述問題点は、従来の直交コイルを構成する2つのコイ
ルの感度分布に相関があり、感度の不均一性が強調され
てしまうことに起因している。そこで、本発明は、従来
の直交コイルに感度分布の異なる受信コイルを組み合わ
せ、このコイルの感度が、直交コイルの低感度部分を補
うように配置して、広い範囲で感度の均一性が保たれる
ように構成した。
The above-mentioned problem is caused by the fact that there is a correlation between the sensitivity distributions of the two coils constituting the conventional orthogonal coil, and the non-uniformity of the sensitivity is emphasized. Therefore, the present invention combines a conventional orthogonal coil with a receiving coil having a different sensitivity distribution, and arranges the coil so that the sensitivity of this coil compensates for the low sensitivity part of the orthogonal coil, thereby maintaining uniformity of sensitivity over a wide range. It was configured so that

このとき、従来の直交コイルに加える受信コイルは、同
時に独立した信号受信を行なうためしこ、直交コイルを
構成する2つのコイルとさらtこ、互いに直交状態に配
置されなければならなし)。もし、直交性がとれていな
いと、直交コイルと結合し、これの感度を低下させるこ
とになる。従って、直交コイルの2つの感度方向をX軸
、Y軸とすると、加える受信コイルの感度方向はZ軸と
しなければならない。
At this time, the receiving coil that is added to the conventional orthogonal coil must be arranged orthogonal to the two coils that make up the orthogonal coil in order to simultaneously receive independent signals. If the orthogonality is not achieved, it will couple with the orthogonal coil and reduce its sensitivity. Therefore, if the two sensitivity directions of the orthogonal coils are the X-axis and Y-axis, the sensitivity direction of the receiving coil to be added must be the Z-axis.

本発明による改良型直交コイルの原理図を第1図に示す
。静磁場方向をZ軸方向とすると、スピンの回転面はX
−Y平面となり、従来の直交コイルは受信コイルla(
感度方向X軸)と受信コイルlb(感度方向Y軸)の組
み合わせである。これらと直交した方向に感度を持つ受
信コイルIC(感度方向Z軸)を図のように配置する。
A principle diagram of the improved orthogonal coil according to the present invention is shown in FIG. If the direction of the static magnetic field is the Z-axis direction, the plane of rotation of the spin is
-Y plane, and the conventional orthogonal coil is the receiving coil la (
This is a combination of a receiving coil lb (sensitivity direction X-axis) and a receiving coil lb (sensitivity direction Y-axis). A receiving coil IC having sensitivity in a direction perpendicular to these (sensitivity direction Z-axis) is arranged as shown in the figure.

受信回路23はそれぞれのコイルに接続されたプリアン
プ5a、5b、5cおよび合成回路6より成り、出力端
子7に合成信号を出力する。
The receiving circuit 23 includes preamplifiers 5a, 5b, and 5c connected to the respective coils, and a combining circuit 6, and outputs a combined signal to an output terminal 7.

スピンの回転面がX−Y平面であることから。This is because the plane of rotation of spin is the X-Y plane.

Z軸方向に感度を持つ受信コイル1cは通常のソレノイ
ド型コイルとは異なった感度分布となる。
The receiving coil 1c having sensitivity in the Z-axis direction has a sensitivity distribution different from that of a normal solenoid coil.

コイルの中心部には感度を持たないが、コイルの近傍で
は、スピンからのフラックスを捉えることが可能であり
、結果的にこの受信コイルの感度分布は円環体状となる
。受信コイル1aと受信コイル1bより成る直交コイル
は、コイルの交差している部分(図中での上下)の感度
が最も高く、中心部およびコイルの近傍が、つぎに感度
の高い部分である。従って、コイル中心のX−Y平面上
でコイル導体から遠い4箇所で相対的に感度が低下し、
不均一な感度分布となる。そこで、図のように第3の直
交受信コイル1cを配置することによって、この部分の
感度を補うことが可能となる。
Although the center of the coil has no sensitivity, it is possible to capture flux from spins near the coil, and as a result, the sensitivity distribution of this receiving coil becomes torus-shaped. In the orthogonal coil made up of the receiving coil 1a and the receiving coil 1b, the part where the coils intersect (upper and lower in the figure) has the highest sensitivity, and the center and the vicinity of the coil have the next highest sensitivity. Therefore, the sensitivity decreases relatively at the four locations far from the coil conductor on the X-Y plane at the center of the coil.
This results in an uneven sensitivity distribution. Therefore, by arranging the third orthogonal receiving coil 1c as shown in the figure, it is possible to compensate for the sensitivity of this part.

3つの受信コイルから、独立して得られる受信信号は1
合成回路6によって合成されるが、このとき、従来の直
交コイルであるコイル1aおよび1bの受信信号は、約
90度の位相差を伴って同一レベルで検出されるため、
これを移相器によって補正して加算すればよいが、コイ
ルICからの受信信号は、定まった位相差を持たず、ま
た、検出レベルも感度分布が違うために、他の2つのコ
イルとは異なったものとなる。従って、前述のように、
撮像部位に応じた最適な加算条件が存在することになり
、合成回路6はこれを実現できるように、任意の位相差
補正量と合成比に調整できなければならない。
The number of received signals obtained independently from the three receiving coils is 1.
The signals received by the coils 1a and 1b, which are conventional orthogonal coils, are combined by the combining circuit 6, but at this time, the signals received by the coils 1a and 1b, which are conventional orthogonal coils, are detected at the same level with a phase difference of about 90 degrees.
This can be corrected by a phase shifter and added, but the received signal from the coil IC does not have a fixed phase difference, and the detection level has a different sensitivity distribution, so it is different from the other two coils. It will be different. Therefore, as mentioned above,
There is an optimal addition condition depending on the imaged region, and the synthesis circuit 6 must be able to adjust to an arbitrary phase difference correction amount and synthesis ratio in order to realize this.

また、それぞれの受信コイルは、核磁気共鳴信号周期数
に共振するように、同調をとる必要があり、この調整の
ために合成回路6は、それぞれのコイルからの受信出力
を単独に出力できるような機能も必要である。
In addition, each receiving coil must be tuned so that it resonates with the number of cycles of the nuclear magnetic resonance signal, and for this adjustment, the combining circuit 6 is configured so that the receiving output from each coil can be output independently. functions are also necessary.

(作用〕 本発明によれば、従来技術による核磁気共鳴イメージン
グ装置における、直交コイルの感度分布が不均一となる
問題を改善し、SN比を向上することが可能となるため
、良質な画像を得ることができる。
(Operation) According to the present invention, it is possible to improve the problem of non-uniform sensitivity distribution of orthogonal coils in conventional nuclear magnetic resonance imaging apparatuses and improve the S/N ratio, thereby producing high-quality images. Obtainable.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第5図は本発明に係る核磁気共鳴イメージング装置の全
体構成例を示す構成図である。この核磁気共鳴イメージ
ング装置は、核磁気共鳴(NMR)現象を利用して被検
体9の断層画像を得るもので。
FIG. 5 is a configuration diagram showing an example of the overall configuration of a nuclear magnetic resonance imaging apparatus according to the present invention. This nuclear magnetic resonance imaging apparatus obtains a tomographic image of the subject 9 using the nuclear magnetic resonance (NMR) phenomenon.

静磁場発生磁石10と、中央処理装置(以下CPUとい
う)11と、シーケンサ−12と、送信系13と、磁場
勾配発生系14と、受信系15と、信号処理系16とか
らなる。上記静磁場発生磁石10は、被検体9の周りに
強く均一な静磁場を発生させるもので、上記被検体9の
周りのある広がりをもった空間に永久磁石方式又は常電
導方式あるいは超電導方式の磁場発生手段が配置されて
いる。上記シーケンサ12は、CPUIIの制御で動作
し、被検体9の断層画像のデータ収集に必要な種々の命
令を送信系13及び磁場勾配発生系14並びに受信系1
5に送るものである。上記送信系13は、高周波発生器
17と変調器18と高周波増幅器19と送信側の高周波
コイル20とからなり、上記高周波発信機17から出力
された高器18で振幅変調し、この振幅変調された高周
波パルスを高周波増幅器19で増幅した後に被検体9に
近接して配置された高周波コイル20に供給することに
より、電磁波が被検体9に照射されるようになっている
。上記磁場勾配発生系14は、x、y、zの三軸方向に
巻かれた傾斜磁場コイル21と、それぞれのコイルを駆
動する傾斜磁場型122とからなり、上記シーケンサ1
2からの命令に従ってそれぞれのコイルの傾斜磁場電源
22を駆動することにより、X、Y、Zの三軸方向の傾
斜磁場Gx、Gy、Qzを被検体9に印加するようにな
っている。この傾斜磁場の加え方により、被検体9に対
するスライス面を設定することができる。上記受信系1
5は、受信側の高周波コイル1と受信回路23と直交位
相検波器24とA/D変換器25とからなり、上記送信
側の高周波コイル20から照射された電磁波による被検
体9の応答の電磁波(NMR信号)は被検体9に近接し
て配置された高周波コイル1で検出され、受信回路23
及び直交位相検波器24を介してA/D変換器25に入
力してデジタル量に変換され、さらにシーケンサ12か
らの命令によるタイミンクテ直交位相検波器24により
サンプリングされた二系組の収集データとされ、その信
号が信号処理系16に送られるようになっている。この
信号処理系16は、CP U ]、 1と、データメモ
リ8.磁気ディスク26及び磁気テープ27等の記録装
置と、CRT等のデイスプレィ28とからなり、上記C
PUIIでフーリエ変換、補正係数計算1画像再構成等
の処理を行ない、任意断面の信号強度分布あるいは複数
の信号に適当な演算を行なって得られた分布を画像化し
てデイスプレィ28に表示するようになっている。なお
、第5図において。
It consists of a static magnetic field generating magnet 10, a central processing unit (hereinafter referred to as CPU) 11, a sequencer 12, a transmitting system 13, a magnetic field gradient generating system 14, a receiving system 15, and a signal processing system 16. The static magnetic field generating magnet 10 generates a strong and uniform static magnetic field around the subject 9. The magnet 10 generates a strong and uniform static magnetic field around the subject 9, and applies a permanent magnet type, normal conductivity type, or superconducting type to a certain expanse of space around the subject 9. A magnetic field generating means is arranged. The sequencer 12 operates under the control of the CPU II, and sends various commands necessary for data collection of tomographic images of the subject 9 to the transmitting system 13, the magnetic field gradient generating system 14, and the receiving system 1.
5. The transmission system 13 includes a high-frequency generator 17, a modulator 18, a high-frequency amplifier 19, and a high-frequency coil 20 on the transmitting side. The subject 9 is irradiated with electromagnetic waves by amplifying the high-frequency pulses in a high-frequency amplifier 19 and then supplying the high-frequency pulses to a high-frequency coil 20 placed close to the subject 9 . The magnetic field gradient generation system 14 is composed of gradient magnetic field coils 21 wound in the three axes directions of x, y, and z, and a gradient magnetic field type 122 that drives each coil.
By driving the gradient magnetic field power supply 22 of each coil in accordance with the command from 2, gradient magnetic fields Gx, Gy, and Qz in three axial directions of X, Y, and Z are applied to the subject 9. A slice plane for the subject 9 can be set by applying this gradient magnetic field. Above receiving system 1
5 consists of a high-frequency coil 1 on the receiving side, a receiving circuit 23, a quadrature phase detector 24, and an A/D converter 25, and the electromagnetic wave of the response of the subject 9 due to the electromagnetic wave irradiated from the high-frequency coil 20 on the transmitting side. (NMR signal) is detected by the high frequency coil 1 placed close to the subject 9, and is detected by the receiving circuit 23.
and is inputted to the A/D converter 25 via the quadrature phase detector 24 and converted into a digital quantity, and further made into two sets of collected data sampled by the quadrature phase detector 24 according to a timing instruction from the sequencer 12. , the signal is sent to a signal processing system 16. This signal processing system 16 includes a CPU], 1, and a data memory 8. It consists of a recording device such as a magnetic disk 26 and a magnetic tape 27, and a display 28 such as a CRT.
Processing such as Fourier transformation, correction coefficient calculation 1 image reconstruction, etc. is performed using PUII, and the signal intensity distribution of an arbitrary cross section or the distribution obtained by performing appropriate calculations on multiple signals is converted into an image and displayed on the display 28. It has become. In addition, in FIG.

送信側及び受信側の高周波コイル20,1と傾斜磁場コ
イル21は、被検体9の周りの空間に配置された静磁場
発生磁石10の磁場空間内に配置されている。
The high-frequency coils 20 and 1 and the gradient magnetic field coil 21 on the transmitting side and the receiving side are arranged in a magnetic field space of a static magnetic field generating magnet 10 arranged in a space around the subject 9.

ここで、本発明に係る高周波コイル1の一実施例を垂直
磁場方式核磁気共鳴イメージング装置における表面コイ
ルを例にあげて説明する。
Here, one embodiment of the high-frequency coil 1 according to the present invention will be described using a surface coil in a vertical magnetic field type nuclear magnetic resonance imaging apparatus as an example.

垂直磁場方式は、第6図に示すように被検体9の上下方
向に静磁場発生磁石10を配置し、への方向に静磁場を
印加する。すると、第7図に示すように、静磁場方向(
Z軸方向)に対して、スピンSはX−Y平面上で回転す
るので、核磁気共鳴信号は第6図のBあるいはCの方向
で検出される。
In the vertical magnetic field method, as shown in FIG. 6, static magnetic field generating magnets 10 are arranged in the vertical direction of the subject 9, and a static magnetic field is applied in the direction. Then, as shown in Figure 7, the direction of the static magnetic field (
Since the spin S rotates on the XY plane with respect to the Z-axis direction, the nuclear magnetic resonance signal is detected in the direction B or C in FIG.

通常は性能がよいソレノイド型コイルを受信コイル1と
して使用し、Bの方向の信号を検出している。被検体9
の頭部あるいは腹部を撮像する際は、この方式の受信コ
イルで問題ないが、を椎などの被検体背部の一部分を高
画質で撮像したいという要求があり、このために局所的
に感度を高めた表面コイルが開発されている。第8図は
特開昭63−153055号記載の垂直磁場方式核磁気
共鳴イメージング装置用表面コイル2の原理図である。
Usually, a solenoid type coil with good performance is used as the receiving coil 1 to detect the signal in the direction B. Subject 9
When imaging the head or abdomen of a subject, there is no problem with this type of receiving coil, but there is a demand for high-quality imaging of parts of the subject's back, such as the vertebrae, and for this purpose, it is necessary to locally increase the sensitivity. surface coils have been developed. FIG. 8 is a diagram showing the principle of a surface coil 2 for a vertical magnetic field type nuclear magnetic resonance imaging apparatus described in Japanese Patent Application Laid-Open No. 63-153055.

この形状にコイルを巻くことによって、被検体の背部に
装着して、スピンSからのフラックスを捉え、信号を検
出することができる。このコイルの上に被検体が仰向け
になり、撮像を行なう。
By winding the coil in this shape, it can be attached to the back of the subject to capture the flux from the spin S and detect the signal. The subject lies supine on this coil and images are taken.

このコイルの感度分布は、下の図に示すように、中心部
のa点で最も高く、対向導体の中心部す点では感度が零
となる。この感度の零点は、コイル長手方向に垂直面状
に存在する。
As shown in the figure below, the sensitivity distribution of this coil is highest at point a at the center, and the sensitivity is zero at point a at the center of the opposing conductor. This zero point of sensitivity exists in a plane perpendicular to the longitudinal direction of the coil.

第9図は円形ソレノイド型コイル3を同様に垂直磁場用
表面コイルとして使用した場合であるが。
FIG. 9 shows a case where the circular solenoid coil 3 is similarly used as a surface coil for vertical magnetic field.

コイル全体としての感度方向は垂直方向であり、静磁場
方向と一致してしまう、このため、コイル中心部の広い
範囲で感度をほとんど持たない。しかし、コイル導体の
近傍では、一部のスピンからのフラックスを捉えること
ができるため、下に示したようなコイル導体に添った円
環体状の感度分布となる。
The sensitivity direction of the coil as a whole is vertical and coincides with the direction of the static magnetic field, so there is almost no sensitivity in a wide range at the center of the coil. However, in the vicinity of the coil conductor, flux from some spins can be captured, resulting in a toroidal sensitivity distribution along the coil conductor as shown below.

第10図は、第8図に示した垂直磁場用表面コイル2a
および2bを直交状態に2つ組み合わせた直交表面コイ
ルである(実願平01−49500号記載)。図ではわ
かりやすくするために、2つのコイルを離しであるが、
実際はこの2つのコイルは密着している。
FIG. 10 shows the vertical magnetic field surface coil 2a shown in FIG.
and 2b in an orthogonal state (described in Utility Model Application No. 01-49500). In the diagram, the two coils are separated for clarity, but
Actually, these two coils are in close contact with each other.

このように表面コイルを直交コイルとして構成すること
によって、中心部の感度を向上することができるが、第
8図に示した感度零部分(b点)が重なり、第11図に
示すようにコイルの周辺4箇所に低感度部分33を生じ
る。このため、この直交コイルは著しい感度不均一とな
り、コイル導体のある中央部では、良好な画像を得るこ
とができるが、周辺部では低感度部分33の影響を受け
、不均一な画像となる。従って、撮像部位に応じて、被
検体9への設置を最適位置にしなければならないという
問題を生じる。
By configuring the surface coil as an orthogonal coil in this way, the sensitivity at the center can be improved, but the zero-sensitivity portion (point b) shown in FIG. 8 overlaps, and the coil Low-sensitivity areas 33 are generated at four locations around the area. For this reason, this orthogonal coil has a markedly non-uniform sensitivity, and although a good image can be obtained in the central part where the coil conductor is located, the peripheral part is influenced by the low-sensitivity part 33, resulting in a non-uniform image. Therefore, a problem arises in that the installation on the subject 9 must be optimally positioned depending on the region to be imaged.

広い範囲で感度が高いことが理想であり、この問題を解
決した本発明による改良型垂直磁場用直交表面コイル1
の原理図を第2図に示す。従来の直交表面コイル2a、
2bの上部に第9図に示したソレノイド型コイル3を低
感度部分33を補償するような形状で組み合わせる(3
つのコイルは密着している)。この3つのコイルは感度
方向が互いに約90度をなし、直交状態とすることがで
きる。この結果、3つのコイルから同時に独立した信号
を検出することが可能となる。
It is ideal to have high sensitivity over a wide range, and the improved perpendicular magnetic field orthogonal surface coil 1 of the present invention solves this problem.
The principle diagram of this is shown in Fig. 2. Conventional orthogonal surface coil 2a,
2b is combined with the solenoid type coil 3 shown in FIG. 9 in a shape that compensates for the low sensitivity part 33 (3
two coils are in close contact). The sensitivity directions of these three coils are at about 90 degrees to each other and can be orthogonal. As a result, it becomes possible to simultaneously detect independent signals from the three coils.

改良型直交表面コイル1の検出出力を、第3図に示した
受信回路23に接続する。受信回路23はプリアンプ5
a、、5b、5cと、位相差を補正するための移相器3
0a、30b、30cおよび。
The detection output of the improved orthogonal surface coil 1 is connected to a receiving circuit 23 shown in FIG. The receiving circuit 23 is the preamplifier 5
a, 5b, 5c, and a phase shifter 3 for correcting the phase difference.
0a, 30b, 30c and.

出力レベル差を前述の最適加算条件に調整するための減
衰器31a、31b、31cさらに、これら3つの出力
を加算するための加算器32から構成され、出力端子7
に出力する。
It consists of attenuators 31a, 31b, 31c for adjusting the output level difference to the above-mentioned optimal addition conditions, and an adder 32 for adding these three outputs, and an output terminal 7.
Output to.

表面コイル2a及び2bの出力を入力端子a及びbに接
続し、ソレノイド型コイル3の出力を入力端子Cに接続
すると1表面コイル2a及び2bは同一形状であるため
、感度が等しく、出力レベルはほぼ等しい値となる。ま
た、位相差は約90度となるため、移相器30aは0度
、30bは約+90度あるいは、約−90度に設定し、
減衰器31a、31bは共に一〇dBに設定することに
よって、最適加算条件となる。これに対し、ソレノイド
型コイル3の出力は、他の2つのコイルと比較して、特
定の位相差を持たないため、移相器30cの位相補正量
を一定値に設定することができない。このため、撮像部
位に応じて、その部分が最良となるような位相補正量に
、ソフトウェアによって自動、あるいは手動で調整を行
なう。また、減衰器31cの減衰量はソレノイド型コイ
ル3の感度差に応じて、最適加算条件となるように調整
する。
When the outputs of surface coils 2a and 2b are connected to input terminals a and b, and the output of solenoid type coil 3 is connected to input terminal C, since surface coils 2a and 2b have the same shape, the sensitivity is equal and the output level is The values are almost equal. Also, since the phase difference is about 90 degrees, the phase shifter 30a is set to 0 degrees, and the phase shifter 30b is set to about +90 degrees or -90 degrees.
By setting both the attenuators 31a and 31b to 10 dB, the optimum addition condition is achieved. On the other hand, since the output of the solenoid coil 3 does not have a specific phase difference compared to the other two coils, the phase correction amount of the phase shifter 30c cannot be set to a constant value. For this reason, depending on the imaged region, the amount of phase correction is automatically or manually adjusted using software so that the amount of phase correction is optimal for that region. Further, the amount of attenuation of the attenuator 31c is adjusted according to the sensitivity difference between the solenoid coils 3 so as to obtain the optimum addition condition.

このようにすると、撮像部位に応じて、その部分の感度
が最も高くなるように、表面コイルの感度分布をコント
ロールすることが可能である。しかし、広い範囲で感度
を均一にすることができない。そこで、第4図に示すよ
うに受信回路23を3系統(5a+ 5b、5c)に分
離し、直交位相検波器24、A/D変換器25を別系統
として、信号処理系16内部のデータメモリ8に検出デ
ータをそれぞれ格納し、画像再構成時に画像上で合成す
ることによって、受信信号の位相差や、レベル差の問題
もなく、情報量を最大限有効に活用した信号合成が可能
となる。この場合は、従来の直交表面コイルに存在する
4箇所の低感度部分33をソレノイド型コイル3が補償
することになるので、感度の均一性に優れた表面コイル
とすることができる。
In this way, it is possible to control the sensitivity distribution of the surface coil depending on the imaging region so that the sensitivity of that region is the highest. However, it is not possible to make the sensitivity uniform over a wide range. Therefore, as shown in FIG. 4, the receiving circuit 23 is separated into three systems (5a + 5b, 5c), the quadrature phase detector 24 and the A/D converter 25 are separated, and the data memory inside the signal processing system 16 is separated. By storing the detected data in 8 and composing them on the image during image reconstruction, there is no problem with the phase difference or level difference of the received signals, and it is possible to synthesize signals that make the most effective use of the amount of information. . In this case, the solenoid-type coil 3 compensates for the four low-sensitivity portions 33 that exist in the conventional orthogonal surface coil, so it is possible to obtain a surface coil with excellent uniformity of sensitivity.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、核磁気共鳴イメージング装
置における従来型直交コイルの感度分布を均一化し、感
度を向上し、さらに、感度領域を変化させることも可能
となるため、従来の直交コイルの感度分布が不均一であ
ることに起因する問題を解決することができ、SN比の
高い、良質の画像が得られるという効果がある。
As described above, the present invention equalizes the sensitivity distribution of the conventional orthogonal coil in a nuclear magnetic resonance imaging system, improves the sensitivity, and also makes it possible to change the sensitivity region. It is possible to solve problems caused by non-uniform sensitivity distribution, and there is an effect that a high quality image with a high SN ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による改良型直交コイルの原理を示す説
明図、第2図は本発明による直交表面コイルの一実施例
を示す説明図、第3図は直交表面コイルに伴う受信回路
の構成図、第4図は直交表面コイルに伴う分離型受信系
の構成図、第5図は本発明に係る核磁気共鳴イメージン
グ装置の全体構成を示す構成図、第6図は垂直磁場方式
での受信方向を示す説明図、第7図はスピン回転面を示
す説明図、第8図は垂直磁場用表面コイルを示す説明図
、第9図は垂直磁場用ソレノイド型表面コイルを示す説
明図、第10図は従来方式による直交表面コイルを示す
説明図、第11図は従来方式による直交表面コイルにお
ける低感度部分を示す説明図である。 1・・・受信コイル、2・・・垂直磁場用表面コイル、
3・・・ソレノイド型コイル、5・・・プリアンプ、6
・・・合成回路、7・・・出力端子、8・・・データメ
モリ、9・・被検体、10・・・静磁場発生磁石、23
・・・受信回路、24・・・直交位相検波器、25・・
・A/D変換器。 30・・・移相器、31・・・減衰器、32・・・加算
器、33・・・低感度部分。 茶 ■ 図 3 #2 図 第3 図 3 茶4図 し−Y= わ 目 堺 刀 第 図 第10[D 某11 困 3 第9 図
Fig. 1 is an explanatory diagram showing the principle of an improved orthogonal surface coil according to the present invention, Fig. 2 is an explanatory diagram showing an embodiment of the orthogonal surface coil according to the present invention, and Fig. 3 is a configuration of a receiving circuit accompanying the orthogonal surface coil. Fig. 4 is a block diagram of a separate receiving system with orthogonal surface coils, Fig. 5 is a block diagram showing the overall structure of the nuclear magnetic resonance imaging apparatus according to the present invention, and Fig. 6 is a block diagram of a reception system using a vertical magnetic field method. FIG. 7 is an explanatory diagram showing the spin rotation surface. FIG. 8 is an explanatory diagram showing a surface coil for vertical magnetic field. FIG. 9 is an explanatory diagram showing a solenoid type surface coil for vertical magnetic field. FIG. 11 is an explanatory diagram showing a conventional orthogonal surface coil, and FIG. 11 is an explanatory diagram showing a low sensitivity portion in the conventional orthogonal surface coil. 1... Receiving coil, 2... Surface coil for vertical magnetic field,
3... Solenoid type coil, 5... Preamplifier, 6
. . . Synthesis circuit, 7. Output terminal, 8. Data memory, 9. Test object, 10. Static magnetic field generating magnet, 23.
... Receiving circuit, 24... Quadrature phase detector, 25...
・A/D converter. 30... Phase shifter, 31... Attenuator, 32... Adder, 33... Low sensitivity part. Brown ■ Figure 3 #2 Figure 3 Figure 3 Tea 4 Figure Shi-Y= Wame Sakai Sword Figure 10 [D Certain 11 Trouble 3 Figure 9

Claims (1)

【特許請求の範囲】 1、静磁場、傾斜磁場の各磁場発生手段と、検査対象に
電磁波を照射したり、検査対象からの核磁気共鳴信号を
検出する高周波受信コイルと、前記検出信号を使つて対
象物体の物理的性質をあらわす画像を得る画像再構成手
段とを備えた核磁気共鳴イメージング装置において、前
記核磁気共鳴信号を検出する高周波コイルが、直交状態
に配置された3つのコイルより成り、それぞれから成立
した情報を同時に得られるように構成したことを特徴と
する核磁気共鳴イメージング装置用受信コイル。 2、前記の3つの核磁気共鳴信号受信コイルが、スイッ
チを切り替えることにより、それぞれ単独に使用できる
ようにした特許請求の範囲第1項記載の核磁気共鳴イメ
ージング装置用受信コイル。 3、前記の3つの核磁気共鳴信号受信コイルからの出力
を位相差及びレベル差を補正し、加算する手段を具備し
た特許請求の範囲第1項記載の核磁気共鳴イメージング
装置用受信コイル。 4、前記の3つの核磁気共鳴信号受信コイルからの出力
を加算するときに、撮像部位に応じた最適な加算条件に
設定可能である特許請求の範囲第1項及び第3項記載の
核磁気共鳴イメージング装置用受信コイル。 5、前記の3つの核磁気共鳴信号受信コイルからの出力
をそれぞれ独立した受信系で検出してデータを格納し、
画像再構成段階でデータの合成を行なう手段を具備した
特許請求の範囲第1項記載の核磁気共鳴イメージング装
置用受信コイル。
[Claims] 1. Magnetic field generating means for a static magnetic field and a gradient magnetic field, a high-frequency receiving coil for irradiating electromagnetic waves onto an object to be examined and detecting a nuclear magnetic resonance signal from the object to be examined, and using the detection signal In the nuclear magnetic resonance imaging apparatus, the high-frequency coil for detecting the nuclear magnetic resonance signal is composed of three coils arranged orthogonally. , a receiving coil for a nuclear magnetic resonance imaging apparatus, characterized in that it is configured to simultaneously obtain information established from each of them. 2. The receiving coil for a nuclear magnetic resonance imaging apparatus according to claim 1, wherein each of the three nuclear magnetic resonance signal receiving coils can be used independently by switching a switch. 3. The receiving coil for a nuclear magnetic resonance imaging apparatus according to claim 1, further comprising means for correcting the phase difference and level difference of the outputs from the three nuclear magnetic resonance signal receiving coils and adding them together. 4. Nuclear magnetism according to claims 1 and 3, wherein when adding the outputs from the three nuclear magnetic resonance signal receiving coils, the optimum addition conditions can be set depending on the imaging region. Receiving coil for resonance imaging equipment. 5. Detecting the outputs from the three nuclear magnetic resonance signal receiving coils with independent receiving systems and storing the data;
2. A receiving coil for a nuclear magnetic resonance imaging apparatus according to claim 1, further comprising means for synthesizing data in an image reconstruction step.
JP1245122A 1989-09-22 1989-09-22 Receiving coil for nuclear magnetic resonance imaging apparatus Pending JPH03109041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245122A JPH03109041A (en) 1989-09-22 1989-09-22 Receiving coil for nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245122A JPH03109041A (en) 1989-09-22 1989-09-22 Receiving coil for nuclear magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPH03109041A true JPH03109041A (en) 1991-05-09

Family

ID=17128950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245122A Pending JPH03109041A (en) 1989-09-22 1989-09-22 Receiving coil for nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPH03109041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116620A (en) * 1998-10-15 2000-04-25 Ge Yokogawa Medical Systems Ltd Rf coil and magnetic resonance imaging method and apparatus
WO2002039896A1 (en) * 2000-11-20 2002-05-23 Hitachi Medical Corporation Magnetic resonance imaging system
CN113945876A (en) * 2020-07-15 2022-01-18 西门子(深圳)磁共振有限公司 Hybrid quadrature signal generator, coil transmission front-end device, radio frequency coil system and magnetic resonance imaging system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116620A (en) * 1998-10-15 2000-04-25 Ge Yokogawa Medical Systems Ltd Rf coil and magnetic resonance imaging method and apparatus
US6259251B1 (en) 1998-10-15 2001-07-10 Ge Yokogawa Medical Systems, Limited RF coil and magnetic resonance imaging method and apparatus
WO2002039896A1 (en) * 2000-11-20 2002-05-23 Hitachi Medical Corporation Magnetic resonance imaging system
CN113945876A (en) * 2020-07-15 2022-01-18 西门子(深圳)磁共振有限公司 Hybrid quadrature signal generator, coil transmission front-end device, radio frequency coil system and magnetic resonance imaging system
CN113945876B (en) * 2020-07-15 2024-02-20 西门子(深圳)磁共振有限公司 Hybrid quadrature signal generator, coil transmit front-end device, radio frequency coil system, and magnetic resonance imaging system

Similar Documents

Publication Publication Date Title
JP3825685B2 (en) Magnetic resonance imaging equipment using high frequency coils
JP3562902B2 (en) RF probe for magnetic resonance imaging equipment
JP3411936B2 (en) NMR equipment
JPH05300895A (en) Selective excitation method of nuclear spin in mri apparatus
JP2001104284A (en) Module type gradient system for mri system
JP2945048B2 (en) Magnetic resonance imaging equipment
JPH03109041A (en) Receiving coil for nuclear magnetic resonance imaging apparatus
US20050007113A1 (en) Magnetic resonance imaging method involving sub-sampling
JPH07163543A (en) High-frequency signal receiving coil of magnetic resonance imaging system
JP3033851B2 (en) Magnetic resonance imaging equipment
JP2860668B2 (en) Receiving coil for nuclear magnetic resonance imaging equipment
US4804919A (en) Nuclear magnetic resonance imaging method and apparatus for realizing same
JP3154002B2 (en) Receiving coil of quadrature receiving method and magnetic resonance imaging apparatus using this receiving coil
JP2860682B2 (en) Method for stabilizing static magnetic field uniformity of magnetic resonance imaging apparatus
JP3478887B2 (en) Irradiation coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
JP3422559B2 (en) RF coil and MRI apparatus for MRI
JPH0376136B2 (en)
Prost et al. How does an MR scanner operate?
JPH06254063A (en) Magnetic resonance imaging system
JPH0630165Y2 (en) Receiver coil for nuclear magnetic resonance imaging
JPH07231881A (en) Rf coil for mri, and mri device
JPH0549617A (en) Reception circuit for mri device
JP4545870B2 (en) Receiver coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus
JP3003709B2 (en) Nuclear magnetic resonance imaging equipment
JPH0576514A (en) Nuclear magnetic resonance imaging device