JPH03109028A - Eye sight detector having means for controlling quantity of irradiation light - Google Patents

Eye sight detector having means for controlling quantity of irradiation light

Info

Publication number
JPH03109028A
JPH03109028A JP1247332A JP24733289A JPH03109028A JP H03109028 A JPH03109028 A JP H03109028A JP 1247332 A JP1247332 A JP 1247332A JP 24733289 A JP24733289 A JP 24733289A JP H03109028 A JPH03109028 A JP H03109028A
Authority
JP
Japan
Prior art keywords
light
eyeball
line
sight
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247332A
Other languages
Japanese (ja)
Other versions
JP2964495B2 (en
Inventor
Tokuichi Tsunekawa
恒川 十九一
Akihiko Nagano
明彦 長野
Kazuki Konishi
一樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1247332A priority Critical patent/JP2964495B2/en
Publication of JPH03109028A publication Critical patent/JPH03109028A/en
Application granted granted Critical
Publication of JP2964495B2 publication Critical patent/JP2964495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To enable highly accurate detection of eye sight by controlling a quantity of irradiation light utilizing a signal based on an interval of a cornea reflection image to be detected to always set a quantity of irradiation light to an eye ball to an optimum value. CONSTITUTION:Cornea reflection images (e) and (f) based on a luminous flux reflected on the surface of cornea 1 among infrared rays lighting an eye ball is formed again at points e' and f' on an image sensor 9 through a light receiving lens 7. An eye sight computation circuit 401 records a signal corresponding to an interval between the two cornea reflection images e' and f' into a latch memory 402. A data of the latch memory 402 is converted in code with a decoder 403 and for example, when two terminals are selected, a transistor 407 is turned ON and a current determined by a resistor 411 flows through a resistor 413 to generate a voltage V0. Therefore, it is so arranged that a terminal 1 is selected when the interval of the cornea reflection images e' and f' is small while a terminal 7 is selected in sequence when it is large. With such an arrangement, as a light emitting element 416 as light source is driven by a constant current, when a resistance value of a resistor 417 is R, light is emitted with a power source of V0/R. Thus, the eye ball is always lighted with a minimum necessary quantity of light.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は照射光量制御手段を有した視線検出装置に関し
、例えばカメラのような光学装置において撮影系による
被写体像が形成されている観察面(ピント面)上の観察
者(撮影者)が観察している注視点方向の軸、所謂視線
(視軸)を観察者の眼球面上を照明手段からの光束で照
明したときに形成される反射像を利用して検出する際に
該眼球面上への照射光量を適切に制御するようにした照
射光量制御手段を有した視線検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a line of sight detection device having an irradiation light amount control means. Reflection that is formed when the axis of the direction of the gaze point observed by the observer (photographer) on the focal plane (the so-called line of sight (visual axis)) is illuminated on the observer's eyeball surface with the light beam from the illumination means. The present invention relates to a line of sight detection device having an irradiation light amount control means that appropriately controls the amount of irradiation light onto the eyeball surface when detecting using an image.

(従来の技術) 従来より観察者(被検者)が観察面上のどの位置を観察
しているかを検出する所謂視線(視軸)を検出する視線
検出装置が種々と提案されている。
(Prior Art) Various line-of-sight detection devices have been proposed that detect a so-called line of sight (visual axis) that detects which position on an observation surface an observer (subject) is observing.

例えば特開昭61−172552号公報においては、光
源からの平行光束を被検眼の前眼部へ投射し、角膜から
の反射光に基づく角膜反射像と瞳孔の結像位置を利用し
て視軸(注視点)を求めている。
For example, in Japanese Patent Application Laid-Open No. 61-172552, a parallel light beam from a light source is projected onto the anterior segment of the subject's eye, and the visual axis is (Point of attention) is being sought.

第6図は視線検出方法の原理説明図である。FIG. 6 is an explanatory diagram of the principle of the line of sight detection method.

同図において4は観察者に対して不感の赤外光を放射す
る発光ダイオード等の光源であり、投光レンズ6の焦点
面に配置されている。
In the figure, reference numeral 4 denotes a light source such as a light emitting diode that emits infrared light that is insensitive to the observer, and is arranged on the focal plane of the projection lens 6.

光源4より発光した赤外光は投光レンズ6により平行光
となりハーフミラ5で反射し、眼球101の角膜1を照
明する。このとき角膜1の表面で反射した赤外光の一部
に基づく角膜反射像dはハーフミラ5を透過し受光レン
ズ7により集光されイメージセンサ9上の位置d′に角
膜反射像dを再結像する。
The infrared light emitted from the light source 4 is turned into parallel light by the projection lens 6 and reflected by the half mirror 5 to illuminate the cornea 1 of the eyeball 101. At this time, a corneal reflection image d based on a part of the infrared light reflected on the surface of the cornea 1 is transmitted through the half mirror 5 and focused by the light receiving lens 7, and is re-formed as a corneal reflection image d at a position d' on the image sensor 9. Image.

また虹彩3の端部a、bからの光束はハーフミラ5、受
光レンズ7を介してイメージセンサ9上に導光され、そ
の位置a、b′に該端部a、bの像を結像する。受光レ
ンズ7の光軸アに文1する眼球の光軸イの回転角θが小
さい場合、虹彩3 (1)端部a、bの2座標をZa、
Zbとすると、虹彩3の中心位置Cの座標Zcは Za+Zb Za幻   2 と表わされる。
Further, the light beams from the ends a and b of the iris 3 are guided onto the image sensor 9 via the half mirror 5 and the light receiving lens 7, and images of the ends a and b are formed at the positions a and b'. . When the rotation angle θ of the optical axis A of the eyeball, which corresponds to the optical axis A of the light-receiving lens 7, is small, the iris 3 (1) The two coordinates of the ends a and b are Za,
When Zb, the coordinate Zc of the center position C of the iris 3 is expressed as Za+Zb Zaillus 2 .

また、角膜反射像の発生位置dのZ座標をZd、角ll
5i1の曲率中心0と虹彩3の中心Cまでの距離をoC
とすると眼球光軸イの回転角θは0C−5inθ4Zc
−Zd ・・・・(1)の関係式を略満足する。このた
めイメージセンサ9上に投影された各特異点(角膜反射
像d及び虹彩の端部a、b)の位置を検出することによ
り眼球光軸イの回転角θを求めることができる。この時
(1)式は β−QC−sinθ、Za”+Zb’   :zci′
・ ・ ・ ・ ・ (2) とかきかえられる。但し、βは角膜反射像の発生位置d
と受光レンズ7との距離1と受光レンズ7とイメージセ
ンサ9との距all n oで決まる倍率で、通常はぼ
一定の値となっている。
In addition, the Z coordinate of the position d of the corneal reflection image is Zd, and the angle ll is
The distance between the center of curvature 0 of 5i1 and the center C of iris 3 is oC
Then, the rotation angle θ of the eyeball optical axis I is 0C-5inθ4Zc
-Zd...approximately satisfies the relational expression (1). Therefore, by detecting the position of each singular point (the corneal reflected image d and the ends a and b of the iris) projected onto the image sensor 9, the rotation angle θ of the eyeball optical axis i can be determined. At this time, equation (1) is β-QC-sinθ, Za"+Zb':zci'
・ ・ ・ ・ ・ (2) can be replaced. However, β is the occurrence position d of the corneal reflection image.
It is a magnification determined by the distance 1 between the light receiving lens 7 and the light receiving lens 7 and the distance all no between the light receiving lens 7 and the image sensor 9, and is usually a nearly constant value.

このように観察者の被検眼の視線の方向(注視点)を検
出することにより、例えば−眼レフカメラにおいては撮
影者がピント面上のどの位置な観察しているかを知るこ
とができる。
By detecting the direction of the line of sight (point of gaze) of the observer's eye to be examined in this manner, it is possible to know which position on the focal plane the photographer is observing in, for example, an eye reflex camera.

これは例えば自動焦点検出装置において測距点を画面中
心のみならず画面内の複数箇所に設けた場合、観察者が
そのうちの1つの測距点を選択して自動焦点検出を行う
とする場合、その1つを選択人力する手間を省き観察者
が観察している点を測距点と見なし、該測距点な自動的
に選択して自動焦点検出を行うのに有効である。
For example, when an automatic focus detection device has distance measuring points not only at the center of the screen but also at multiple locations within the screen, and an observer selects one of the distance measuring points to perform automatic focus detection, This is effective in eliminating the need to manually select one of the points, treating the point observed by the observer as the distance measurement point, automatically selecting the distance measurement point, and performing automatic focus detection.

(発明が解決しようとしている問題点)前記特開昭61
−172552号公報で提案されている視線検出装置で
は眼球と視線検出装置との間隔(距離)に応じてイメー
ジセンサ面上に結像される照明手段からの光束に基づく
角膜反射像や虹彩像の光強度は大きく変化してくる。
(Problem to be solved by the invention) Said JP-A-61
The line of sight detection device proposed in Publication No. 172552 generates a corneal reflection image or an iris image based on the light flux from the illumination means that is imaged on the image sensor surface according to the interval (distance) between the eyeball and the line of sight detection device. The light intensity changes greatly.

例えば眼球と視線検出装置との間隔が大きくなると、こ
れらの像の光強度は少なくなる。この九間隔が大きいと
きでも良好なる視線検出を可能とする為には照明手段か
ら比較的大きな光量で眼球を照明する必要がある。
For example, as the distance between the eyeball and the line-of-sight detection device increases, the light intensity of these images decreases. In order to enable good line-of-sight detection even when this distance is large, it is necessary to illuminate the eyeball with a relatively large amount of light from the illumination means.

一方、間隔が大きい状態で設定した照射光量は眼球と視
線検出装置との間隔が狭くなると、これらの像の光強度
は強すぎ、又眼球への照射光量が過大となり眼の安全上
の点からも問題となってくる。
On the other hand, if the distance between the eyeball and the line-of-sight detection device becomes narrower, the light intensity set when the distance is large becomes too strong, and the amount of light irradiated to the eyeball becomes too high, resulting in problems from the viewpoint of eye safety. is also becoming a problem.

一般には視線検出可能な最小限度の略一定の光量で眼球
を照明するのが良い。しかしながら一般には眼球と視線
検出装置との間隔はその都度変化するので視線検出可能
の一定光量で照明することは大変能しい。
Generally, it is preferable that the eyeball be illuminated with a substantially constant amount of light that is the minimum amount that allows line of sight detection. However, since the distance between the eyeball and the line-of-sight detection device generally changes each time, it is very effective to illuminate with a constant amount of light that allows line-of-sight detection.

本発明は視線検出の際に必要とされる眼球への照射光量
を常に最適値に設定することが出来、高精度な視線検出
を可能とした照射光量制御手段を有した視線検出装置の
提供を目的とする。
The present invention provides a line-of-sight detection device having an irradiation light amount control means that can always set the amount of light irradiated to the eyeball required for line-of-sight detection to an optimal value, and enables highly accurate line-of-sight detection. purpose.

(問題点を解決するための手段) 本発明の照射光量制御手段を有した視線検出装置、被検
者の眼球を複数の照明手段で照明し、該複数の照明手段
の該眼球の角膜からの反射光に基つ゛く複数の角膜反射
像と該眼球の虹彩像の所定面上における結像位置を検出
手段により検出し、該検出手段からの出力信号を利用し
て該被検者の視線を求める際、該検出手段により検出さ
れる角膜反射像の間隔に基づく信号を利用して光量制御
手段により該照明手段の照射光量を制御したことを特徴
としている。
(Means for Solving the Problems) A line of sight detection device having an irradiation light amount control means of the present invention illuminates the eyeball of a subject with a plurality of illumination means, When a detection means detects the image formation position of a plurality of corneal reflection images based on reflected light and an iris image of the eyeball on a predetermined plane, and the line of sight of the subject is determined using an output signal from the detection means. , the amount of light irradiated by the illumination means is controlled by the light amount control means using a signal based on the interval between the corneal reflection images detected by the detection means.

又本発明では、被検者の眼球を照明手段で照明し、該照
明手段の該眼球の角膜からの反射光に基づく角膜反射像
と該眼球の虹彩像の所定面上における結像位置を検出手
段により検出し、該検出手段からの出力信号を利用して
該被検者の視線を求める際、スイッチ手段により該照明
手段の照射光量を制御したことを特徴としている。
Further, in the present invention, the eyeball of the subject is illuminated with an illumination means, and the imaging position of a corneal reflection image and an iris image of the eyeball based on light reflected from the cornea of the eyeball of the illumination means on a predetermined plane is detected. The present invention is characterized in that the amount of light irradiated by the illumination means is controlled by the switch means when the line of sight of the subject is detected using the output signal from the detection means.

この他、本発明では例えば前記照明手段による眼球への
照射光量は前記検出手段による角膜反射像の検出前では
少なく、検出後に所定光量で照射するようにしている。
In addition, in the present invention, for example, the amount of light irradiated onto the eyeball by the illumination means is small before the corneal reflection image is detected by the detection means, and is irradiated with a predetermined amount of light after detection.

(実施例) 第1図は本発明の第1実施例における眼球の視線検出を
行う際の要部概略図である。第2図は第1図のイメージ
センサ9からの出力状態を示す説明図である。
(Example) FIG. 1 is a schematic diagram of the main parts when detecting the line of sight of an eyeball in a first example of the present invention. FIG. 2 is an explanatory diagram showing the output state from the image sensor 9 of FIG. 1.

図中101は被検者(観察者)の眼球、1は被検者の眼
球の角膜、2は同じく強膜、3は虹彩である。e′は眼
球101の回転中心、0は角膜1の曲率中心、a、bは
各々虹彩3の端部、e、  fは各々後述する光源4a
、4bに基づく角膜反射像の発生位置である。4a、4
bは各々光源で被検者に不感である赤外光を放射する発
光ダイオード等である。又光源4a (4b)は投光レ
ンズ6a (6b)の焦点面よりも投光レンズ6a(6
b)側に配置されている。投光レンズ6a。
In the figure, 101 is the eyeball of the subject (observer), 1 is the cornea of the subject's eyeball, 2 is the sclera, and 3 is the iris. e' is the center of rotation of the eyeball 101, 0 is the center of curvature of the cornea 1, a and b are the ends of the iris 3, and e and f are the light sources 4a, which will be described later.
, 4b is the generation position of the corneal reflection image. 4a, 4
Each light source b is a light emitting diode or the like that emits infrared light that is insensitive to the subject. Furthermore, the light source 4a (4b) is located closer to the focal plane of the light emitting lens 6a (6b) than the focal plane of the light emitting lens 6a (6b).
b) located on the side; Projection lens 6a.

6bは光源4a、4bからの光束を発散光束として角膜
1面上を広く照明している。ここで光源4aは投光レン
ズ6aの光軸上にあり、光源4bは投光レンズ6bの光
軸上にあり、光軸アに対してZ方向に対称に配置されて
いる。尚、光源4a、4bと投光レンズ6a、6bは照
明手段の要素を構成している。
Reference numeral 6b illuminates a wide area of the cornea by using the light beams from the light sources 4a and 4b as a diverging light beam. Here, the light source 4a is on the optical axis of the light projection lens 6a, and the light source 4b is on the optical axis of the light projection lens 6b, and is arranged symmetrically in the Z direction with respect to the optical axis A. Note that the light sources 4a, 4b and the projection lenses 6a, 6b constitute elements of illumination means.

7は受光レンズであり角膜1近傍に形成された角膜反射
像e、fと虹彩3の端部a、bをイメージセンサ9面上
に結像している。尚、受光レンズ7、イメージセンサ9
は受光手段の一要素を構成している。
Reference numeral 7 denotes a light-receiving lens which images the corneal reflection images e and f formed near the cornea 1 and the ends a and b of the iris 3 on the surface of the image sensor 9. In addition, the light receiving lens 7 and the image sensor 9
constitutes one element of the light receiving means.

10は演算手段であり、後述するようにイメージセンサ
9からの出力信号を利用して、被検者の視線を演算し求
めている。
Reference numeral 10 denotes a calculating means, which calculates and determines the line of sight of the subject using the output signal from the image sensor 9, as will be described later.

アは受光レンズ7の光軸で図中のX軸と一致している。A indicates the optical axis of the light receiving lens 7, which coincides with the X axis in the figure.

イは眼球の光軸でX軸に対して角度θ傾いている。A is the optical axis of the eyeball, which is tilted at an angle θ with respect to the X axis.

本実施例では光源4a (4b)より発光した赤外光は
投光レンズ6a (6b)を透過後、発散しながら眼球
101の角膜1を広く照明する。角膜1を透過した赤外
光は虹彩3を照明する。
In this embodiment, the infrared light emitted from the light source 4a (4b) passes through the projection lens 6a (6b) and then widely illuminates the cornea 1 of the eyeball 101 while diverging. The infrared light transmitted through the cornea 1 illuminates the iris 3.

このとき眼球を照明する赤外光のうち角II!21の表
面で反射した光束に基づく角膜反射像e、fを受光レン
ズ7を介してイメージセンサ9上の点e、f′に再結像
する。このとき第1図と第2図中のe′及びf′は1組
の光源4a、4bにより発生した角膜反射像(虚像)e
及びfの投影像である。投影像e′及びf′の中点は光
軸ア上に照明手段を配置した際に発生する角膜反射像の
イメージセンサ9への投影位置(第6図の点d′の位置
)と略一致している。
At this time, angle II of the infrared light illuminating the eyeball! Corneal reflection images e and f based on the light beam reflected on the surface of the image sensor 21 are re-imaged at points e and f' on the image sensor 9 via the light receiving lens 7. At this time, e' and f' in FIGS. 1 and 2 are corneal reflection images (virtual images) e generated by a pair of light sources 4a and 4b.
and a projected image of f. The midpoint of the projected images e' and f' is approximately the same as the projection position of the corneal reflected image onto the image sensor 9 (the position of point d' in FIG. 6) that occurs when the illumination means is placed on the optical axis A. We are doing so.

又、虹彩3の表面で拡散反射した赤外光は受光レンズ7
を介してイメージセンサ9上に導光され、虹彩像を結像
する。一方、眼球の瞳孔を通った赤外光は網膜を照明し
てそこで吸収されるが、照明される領域は中心窩から離
れた視細胞の疎な領域であるため被検者はこの光源4a
、4bを視認し得えない。
In addition, the infrared light diffusely reflected on the surface of the iris 3 is transmitted to the light receiving lens 7.
The light is guided onto the image sensor 9 via the iris to form an iris image. On the other hand, the infrared light that passes through the pupil of the eye illuminates the retina and is absorbed there, but since the illuminated area is a sparse area of photoreceptor cells away from the fovea, the subject cannot use the light source 4a.
, 4b cannot be visually recognized.

尚、第2図の縦軸はイメージセンサ9の2方向の出力■
を示したものである。同図においては瞳孔を通った赤外
光はほとんど反射してかえってこない為、瞳孔と虹彩3
の境界には出力差が生じその結果、虹彩端部の虹彩像a
、b’か検出される。
The vertical axis in Fig. 2 represents the output of the image sensor 9 in two directions.
This is what is shown. In the figure, the pupil and iris 3, because almost no infrared light passes through the pupil and is reflected back.
There is an output difference at the boundary of the iris, and as a result, the iris image a
, b' are detected.

そこで本実施例では演算装置10においてイメージセン
サ9上での眼球の各特異点(ab′及びe”、f’)の
座標(Za′、Zb”及びZe  、Zf′)を検出す
るとともに(2)式に基づいた β・0C−8inθ与 Z8′+Zb′Ze  ’  
+Zf  ” ・  ・ ・ ・ (3) に従って眼球と回転角θの算出を行う。
Therefore, in this embodiment, the arithmetic unit 10 detects the coordinates (Za', Zb', Ze, Zf') of each singular point (ab', e'', f') of the eyeball on the image sensor 9, and ) Based on the formula β・0C−8inθ given Z8′+Zb′Ze '
+Zf ” ・ ・ ・ ・ (3) Calculate the eyeball and rotation angle θ.

このときの回転角θより眼球の視軸を求め、これより被
検者の視線を検出している。
The visual axis of the eyeball is determined from the rotation angle θ at this time, and the subject's line of sight is detected from this.

旦。Dan.

但し、βは受光光学系の倍率(〜□)であJ2゜ る。However, β is the magnification (~□) of the receiving optical system and is J2° Ru.

本発明に係る視線検出装置において、角膜反射像の発生
位置と受光レンズ7のとき距Rx lは・ ・ ・ ・
 ・ (4) の関係式を満足する。このため視線検出装置と眼球まで
の距離が変化しても2つの角膜反射像の間隔lZe  
−Zf’lより距5I11を算出可能である。
In the line-of-sight detection device according to the present invention, the distance Rx l between the generation position of the corneal reflection image and the light receiving lens 7 is...
- Satisfies the relational expression (4). Therefore, even if the distance between the line of sight detection device and the eyeball changes, the interval lZe between the two corneal reflection images
The distance 5I11 can be calculated from -Zf'l.

但し、Zoは1組の光源4a (4b)のZ方向の間隔
、λ2は光源4a (4b)と受光レンズ7とのX方向
の間隔である。
However, Zo is the distance between the pair of light sources 4a (4b) in the Z direction, and λ2 is the distance between the light sources 4a (4b) and the light receiving lens 7 in the X direction.

第3図は本発明に係る視線検出装置を一眼レフカメラに
適用したときの一実施例の要部概略図である。
FIG. 3 is a schematic diagram of a main part of an embodiment in which the line of sight detection device according to the present invention is applied to a single-lens reflex camera.

同図において第1図で示した要素と同一要素には同符番
を付している。尚、演算装置とピント板は省略している
In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals. Note that the arithmetic unit and focus plate are omitted.

本実施例では撮影レンズ14により被写体像を跳ね上げ
ミラー13を介し、不図示のピント板上に形成している
。そしてペンタダハプリズム12を介し、正立正像とし
てダイクロイックミラー面11aを有する接眼レンズ1
1でピント板上の被写体像を観察している。
In this embodiment, the image of the subject is raised by the photographing lens 14 and is formed on a focusing plate (not shown) via the flip-up mirror 13. Then, an eyepiece 1 having a dichroic mirror surface 11a as an erect normal image is passed through a pentagonal roof prism 12.
1, the subject image on the focus plate is observed.

一般に一眼レフレックスカメラのファインダー視野をの
ぞく観察者(被検者)は撮影レンズ14を透過し、跳ね
上げミラー13で反射しピント板上に形成した被写体光
(像)をペンタダハプリズム12及び接眼レンズ11を
介して受光・観察する。このとき観察者はファインダー
視野内の注視する被写体に対して視線を向けるために眼
球を回転させる。
Generally, an observer (subject) looking into the viewfinder field of a single-lens reflex camera captures the object light (image) that passes through the photographic lens 14, is reflected by the flip-up mirror 13, and is formed on the focusing plate, and then passes through the penta-roof prism 12 and the eyepiece. 11 to receive and observe light. At this time, the observer rotates his/her eyeball to direct his or her line of sight to the object to be watched within the viewfinder field of view.

接眼レンズ11の側方(2方向)には1対の照明手段(
光源4a (4b)及び投光レンズ6a(6b)により
構成)が配置され、不図示の観察者の眼球を照明する。
A pair of illumination means (
A light source 4a (4b) and a projection lens 6a (6b) is arranged to illuminate the eyeballs of an observer (not shown).

このとき観察者は眼球の側方から照明する光源4a (
4b)を視認し得ない。眼球の角膜及び虹彩にて反射し
た赤外光は接眼レンズ11に入射するとともに接眼レン
ズ11のダイクロイックミラ一部11aで反射し、受光
レンズ7を介してイメージセンサ9上に各々の像を結像
する。ここで接眼レンズ11のダイクロイックミラ一部
11aは、例えば誘電体多層膜を塗膜した直角プリズム
を2枚貼り合わせることにより形成され、該誘電体多層
膜は可視光は透過し赤外光は反射するように設定されて
いる。
At this time, the observer sees a light source 4a (
4b) cannot be visually recognized. The infrared light reflected by the cornea and iris of the eyeball enters the eyepiece 11 and is reflected by the dichroic mirror portion 11a of the eyepiece 11, forming respective images on the image sensor 9 via the light receiving lens 7. do. Here, the dichroic mirror portion 11a of the eyepiece 11 is formed, for example, by bonding two rectangular prisms coated with a dielectric multilayer film, and the dielectric multilayer film transmits visible light and reflects infrared light. is set to.

イメージセンサ9上に形成された眼球の反射に基づく各
機より各特異点を検出し、さらに(3)式に従った演算
を不図示の演算装置によって行うことにより観察者の視
線を検出している。
Each singular point is detected by each device based on the reflection of the eyeball formed on the image sensor 9, and the line of sight of the observer is detected by performing calculation according to equation (3) by a calculation device (not shown). There is.

第4図は本発明の第1実施例に係る電気回路の要部ブロ
ック図である。同図は2つの角膜反射像の間隔に基づく
信号を利用し、照明手段からの照射光量を制御する場合
を示している。
FIG. 4 is a block diagram of essential parts of an electric circuit according to the first embodiment of the present invention. This figure shows a case where the amount of light emitted from the illumination means is controlled using a signal based on the interval between two corneal reflection images.

同図において401は第1図の演算手段10に対応する
視線演算回路であり、第2図の2つの角膜反射像e、f
’の間隔に相当する信号を一時記録型のラッチメモリー
402に記録する。ラッチメモリー402には視線演算
回路401で視線の情報を演算し、角膜反射像e、f′
の間隔が検知出来た時だけ、基本的にはその情報を記録
すルヨうに構成し、角膜反射像e、f’の間隔が検知出
来ない時には、例えば1隅0に相当する別の情報を人力
する様に構成している。
In the same figure, 401 is a line of sight calculation circuit corresponding to the calculation means 10 in FIG.
A signal corresponding to the interval ' is recorded in the temporary recording type latch memory 402. In the latch memory 402, the line of sight information is calculated by the line of sight calculation circuit 401, and the corneal reflection images e, f' are stored in the latch memory 402.
Basically, only when the interval between the corneal reflection images e and f' can be detected, that information is recorded.When the interval between the corneal reflection images e and f' cannot be detected, for example, another piece of information corresponding to one corner 0 is recorded manually. It is configured to do so.

403はデコーダーであり、ラッチメモリー402に記
録された情報をコード変換して端子0、・・・・、7の
いずれかを高レベル側に反転する。トランジスタ404
〜408、抵抗409〜413、演算増幅器414とに
よりデコーダ403でデコードされた情報をアナログ電
圧に変換している。
A decoder 403 converts the information recorded in the latch memory 402 into codes and inverts any one of terminals 0, . . . , 7 to a high level side. transistor 404
408, resistors 409 to 413, and an operational amplifier 414 convert the information decoded by the decoder 403 into an analog voltage.

ここでKVcは演算増幅器414の非反転入力端子に印
加される定電圧電源である。演算増幅器414の出力は
演算増幅器415の非反転入力端子に印加され、発光素
子(光源)416は演算増幅器415と抵抗417,4
18、トランジスタ419とで定電流駆動される。42
0は角膜反射像が検出されない場合の電流制御回路であ
る。
Here, KVc is a constant voltage power supply applied to the non-inverting input terminal of the operational amplifier 414. The output of the operational amplifier 414 is applied to the non-inverting input terminal of the operational amplifier 415, and the light emitting element (light source) 416 is connected to the operational amplifier 415 and resistors 417, 4.
18 and a transistor 419 to drive with a constant current. 42
0 is a current control circuit when no corneal reflection image is detected.

まず全系に電源が投入され、被検者の眼球が視線検出装
置にセットされるまで、即ち被検者が視線検出装置の所
定面上をのぞくまでは角膜反射像が検出されないのでラ
ッチメモリー402にn1述した様に0の情報が書き込
まれる。この時にはデコーダ403は出力端子0を選択
して高レベル側に反転し、トランジスタ405がオンし
、抵抗409で決められる微小な角膜反射像形成用のア
イドリング用演算電流の発生が可能となる。
First, the power is turned on to the entire system, and the corneal reflection image is not detected until the examinee's eyeball is set in the line-of-sight detection device, that is, until the examinee looks onto a predetermined surface of the line-of-sight detection device, so the latch memory 402 0 information is written to n1 as described above. At this time, the decoder 403 selects the output terminal 0 and inverts it to the high level side, the transistor 405 turns on, and it becomes possible to generate an idling calculation current determined by the resistor 409 for forming a minute corneal reflection image.

このときの電流は電流制御回路420の出力により制御
されるトランジスタ404を介して最終的にはオン・オ
フ制御される。
The current at this time is finally controlled on/off via the transistor 404 which is controlled by the output of the current control circuit 420.

電流制御回路420は1つ目のモードとしては出力が常
に高レベルであり、角膜反射像が検知出来なかりた時に
常に抵抗409で決まる角膜反射像形成用のアイドリン
グ用演算電流を流すモードである。
The first mode of the current control circuit 420 is a mode in which the output is always at a high level, and when a corneal reflection image cannot be detected, an idling calculation current for forming a corneal reflection image determined by the resistor 409 is always supplied. .

2つ目のモードとしては視線検出装置をカメラ等に使用
した場合に好都合なモードで電源スィッチをオンした時
、一定時間の聞出カを高レベルにするモードである。
The second mode is convenient when the line of sight detection device is used in a camera or the like, and is a mode in which the output power is set to a high level for a certain period of time when the power switch is turned on.

3つ目のモードとしては一定時間毎に周期的に出力を高
レベルにするモード等が考えられる。これらのモードは
それぞれのシステムに応じて選択されている。
A third mode may be a mode in which the output is periodically raised to a high level at regular intervals. These modes are selected depending on each system.

次に角膜反射像e、f’の位置が検知され、その間隔の
コードデータがラッチメモリー402に入るとデコーダ
403でコート変換され、例えば2端子が選択されると
トランジスタ407がオンし、抵抗411で決まる電流
が抵抗413を流れ対応する電圧V。が生ずる。この角
膜反射像e、f’の間隔は眼球と視線検出装置との距離
(間隔)が大きい程小さく、距離が小さい程、大きくな
る。
Next, the positions of the corneal reflection images e and f' are detected, and when the code data of the interval is entered into the latch memory 402, it is code-converted by the decoder 403. For example, when 2 terminals are selected, the transistor 407 is turned on, and the resistor 411 A current determined by flows through the resistor 413 and the corresponding voltage V. occurs. The interval between the corneal reflection images e and f' decreases as the distance (interval) between the eyeball and the line of sight detection device increases, and increases as the distance decreases.

この為、例えば角膜反射像e、f’の間隔が小さい時に
端子工、大きい時に端子7が順次選択されるように構成
しておく。そうすると端子1は眼球が遠くにある時に選
択されるので照明光の光量を大きくするため、抵抗41
0の値を小さくして演算電流を大きくしている。
For this reason, the configuration is such that, for example, when the interval between the corneal reflection images e and f' is small, the terminal is selected, and when it is large, the terminal 7 is selected in sequence. In this case, terminal 1 is selected when the eyeball is far away, so in order to increase the amount of illumination light, resistor 41 is selected.
The calculation current is increased by decreasing the value of 0.

また逆に端子7は眼球が近くにある時に選択されるので
照明光の光量を小さくするため、抵抗412の値を大き
くして演算電流を小さくして演算増幅器414の出力V
。の値を小さくし照明光量を減している。
Conversely, since terminal 7 is selected when the eyeball is nearby, in order to reduce the amount of illumination light, the value of resistor 412 is increased to reduce the operational current, and the output V of operational amplifier 414 is
. The value of is reduced to reduce the amount of illumination light.

本実施例では光源として発光素子416は定電流駆動さ
れており、抵抗417の抵抗値をRとするとvo/Rの
電源で発光していることになる。
In this embodiment, the light emitting element 416 as a light source is driven with a constant current, and if the resistance value of the resistor 417 is R, it emits light using a power source of vo/R.

尚、抵抗409はアイドリング用の演算電流を流すため
に抵抗412よりも、かなり大きい抵抗値を有している
Note that the resistor 409 has a considerably larger resistance value than the resistor 412 in order to flow a calculation current for idling.

以上の如く本実施例によれば角膜反射像の間隔、即ち眼
球と視線検出装置との距離に対応する光量で眼球を照明
出来るので眼球は、常に必要最小限の光量で照明される
ことになる。
As described above, according to this embodiment, the eyeball can be illuminated with the amount of light corresponding to the interval between the corneal reflection images, that is, the distance between the eyeball and the line of sight detection device, so the eyeball is always illuminated with the minimum necessary amount of light. .

尚、本実施例では被検者がまばたきすると角膜反射像が
消失するので照明光量はアイドリンク状態の弱い光量に
戻ってしまうが、連続的に角膜反射像が検知出来ている
内には、まばたき程度の短い時間角膜反射像が消失して
も、消失前の照明光量を維持出来るように構成すること
により、まばたきの影響を取り除くことがでてきる。
In this example, when the subject blinks, the corneal reflection image disappears, so the illumination light intensity returns to the weak light intensity of the idle link state. However, while the corneal reflection image can be continuously detected, Even if the corneal reflection image disappears for a relatively short period of time, the influence of blinking can be removed by configuring the system so that the amount of illumination light before the image disappears can be maintained.

第5図は本発明の第2実施例に係る電気回路の要部ブロ
ック図である。本実施例は例えば被検者(カメラの撮影
者)がメガネをかけている場合と裸眼のときでは視線検
出装置をのぞいた場合の眼球と視線検出装置との間隔が
著しく異なるため、この時の照明光量を簡単なメガネ、
裸眼切換え用のスイッチ手段で切換えて制御している。
FIG. 5 is a block diagram of essential parts of an electric circuit according to a second embodiment of the present invention. In this embodiment, for example, the distance between the eyeball and the line-of-sight detection device is significantly different when the subject (camera photographer) looks through the line-of-sight detection device when the subject (camera photographer) wears glasses and when he/she is naked. Easy glasses to adjust the amount of lighting,
It is controlled by switching with a switch means for switching to the naked eye.

同図において501は第1図の演算手段10に対応する
視線演算回路、502はメガネ、裸眼切換え用のスイッ
チ手段1.503はメガネデータメモリー、504は裸
眼データメモリー、505はアイドリングデータメモリ
ー、506はSP端子への信号に基づいて入力データを
選択するデータセレクタである。507はデコーダであ
り、データセレクタ506で選択された情報をコート変
換して端子0,1.2のいすかを高レベル側に反転する
。トランジスタ508〜511、抵抗512〜515、
演算増幅器516でデコーダ507でデコードされた情
報をアナログ電圧に変換している。演算増幅器516の
出力は演算増幅器517の非反転入力端子に印加され・
発光素子518は演算増幅器517と抵抗519゜52
0、トランジスタ521とで定電流駆動される。522
は電流制御回路である。
In the figure, 501 is a line of sight arithmetic circuit corresponding to the arithmetic means 10 in FIG. is a data selector that selects input data based on the signal to the SP terminal. 507 is a decoder which performs code conversion on the information selected by the data selector 506 and inverts the signals of terminals 0, 1.2 to the high level side. transistors 508-511, resistors 512-515,
An operational amplifier 516 converts the information decoded by the decoder 507 into an analog voltage. The output of operational amplifier 516 is applied to the non-inverting input terminal of operational amplifier 517.
The light emitting element 518 includes an operational amplifier 517 and a resistor 519°52.
0 and a transistor 521 to drive the transistor 521 at a constant current. 522
is the current control circuit.

まず全系の電源が投入され、被検者の眼球が視線検出装
置にセットされるまでは、即ち被検者が視線検出装置の
所定面上をのぞきこむまでは角膜反射像が検出されない
のでデータセレクタ506のSPi子を介してアイドリ
ンクデータメモリー505が選択される。この時デコー
ダ507は出力端子0を選択して高レベル側に反転し、
トランジスタ509がオンし、抵抗512で決められる
微小な角膜反射像形成用のアイドリンク用演算電流の発
生が可能となる。
First, the power of the entire system is turned on, and the corneal reflection image is not detected until the examinee's eyeball is set in the line-of-sight detection device, that is, until the examinee looks over the predetermined surface of the line-of-sight detection device. Idle link data memory 505 is selected via SPi child 506 . At this time, the decoder 507 selects output terminal 0 and inverts it to the high level side,
The transistor 509 is turned on, and it becomes possible to generate an idle link calculation current determined by the resistor 512 for forming a minute corneal reflection image.

次に角膜反射像が検知されるとデータセレクタ506は
メガネ、裸眼切換え用のスイッチ手段502で選択され
るメガネデータメモリー503が裸眼データメモリー5
04のいずれかを選択する。
Next, when a corneal reflection image is detected, the data selector 506 selects the glasses data memory 503 selected by the switch means 502 for switching between glasses and the naked eye data memory 5.
Select one of 04.

被検者がメガネをかけていてメガネスイッチを同図の位
置にセットするとメガネデータメモリー503の内容が
デコーダ507でデコートされ端t1が高レベル側に反
転し5 トランジスタ510かオンし、抵抗513で決
まる演算、電流に基づいて演算増幅器516の出力V。
When the subject wears glasses and sets the glasses switch to the position shown in the figure, the contents of the glasses data memory 503 are decoded by the decoder 507, the end t1 is inverted to the high level side, and the transistor 510 is turned on, and the resistor 513 is turned on. The output V of the operational amplifier 516 is determined based on the operation and current.

か演算される。被検者かメガネをかけている場合には、
眼球と視線検出装置との距離(間隔)が大きいので照明
光量を大きくする必要かあるので抵抗513の値は小さ
く設定されている。
is calculated. If the subject wears glasses,
Since the distance (interval) between the eyeball and the line of sight detection device is large, it is necessary to increase the amount of illumination light, so the value of the resistor 513 is set small.

次に裸眼の人が使う場合には切換え用のスイッチ手段5
02を図示と反対側に切換え、裸眼データメモリー50
4を選択し、このメモリーの内容をデコーダ507でデ
コートすると端子2が高レベル側に反転し、トランジス
タ511がオンし抵抗514で決まる演算電流に基づい
て演算増幅器516の出力V。が演算される。
Next, when used by a person with the naked eye, switch means 5 for switching
02 to the opposite side as shown in the diagram, and the naked eye data memory 50
4 is selected and the contents of this memory are decoded by the decoder 507, the terminal 2 is inverted to the high level side, the transistor 511 is turned on, and the output V of the operational amplifier 516 is determined based on the operational current determined by the resistor 514. is calculated.

この場合には眼球と視線検出装置との距m<間隔)は小
さいので照明光量は小さくする必要があり、抵抗514
の値は大きく設定し、演算電流を小さくして演算増幅器
516の出力であるvoを小さくしている。電流制御回
路522の動作は第4図の電流制御回路420と同等で
あるのでここでは省略する。
In this case, since the distance m<interval between the eyeball and the line of sight detection device is small, the amount of illumination light needs to be small, and the resistor 514
The value of is set large, and the calculation current is made small to make vo, which is the output of the operational amplifier 516, small. The operation of current control circuit 522 is the same as that of current control circuit 420 in FIG. 4, and therefore will not be described here.

またこれらの実施例で眼球が視線検出装置とセットされ
ていない時は、角膜反射像検出用の微剥な照明を行い、
眼球がセットされると規定の照明光量に制御出来るのは
角膜反射率が2′、5%程で虹彩等の眼球の他の組織に
比べて著しく大きいことによる。
In addition, in these embodiments, when the eyeball is not set with the line of sight detection device, slight illumination is performed to detect the corneal reflection image,
Once the eyeball is set, the amount of illumination light can be controlled to a specified level because the corneal reflectance is about 2'.5%, which is significantly larger than other tissues of the eyeball such as the iris.

更に本実施例は角膜反射像が1つしか形成されない視線
検出装置の照明光量の制御に簡便な方法であり特に有効
である。
Furthermore, this embodiment is a simple method and is particularly effective for controlling the amount of illumination light in a line-of-sight detection device in which only one corneal reflection image is formed.

(発明の効果) 本発明によれば被検者の眼球を照明手段で照明し、眼球
からの角膜反射像や虹彩像の所定面上における結像点を
検出することにより被検者の視線を検出する際、前述の
如く各要素を構成することにより眼球への照射光量を視
線検出可能な最適な光量に制御し、良好なる状態で視線
検出をすることができる照射光量制御手段を有した視線
検出装置を達成することができる。
(Effects of the Invention) According to the present invention, the eyeball of the examinee is illuminated by the illumination means, and the line of sight of the examinee is determined by detecting the focal point of the corneal reflection image and iris image from the eyeball on a predetermined plane. When detecting the line of sight, by configuring each element as described above, the amount of light irradiated to the eyeball is controlled to the optimum light amount for detecting the line of sight, and the line of sight is equipped with a means for controlling the amount of irradiated light that can detect the line of sight in good conditions. A detection device can be achieved.

又、本発明によれば眼球の角膜反射像が検知出来るまで
は弱い光で照明し、角膜反射像が検知出来てから所定の
光量で照明することにより、視線検出系全体の電力消費
の無駄をなくすと共に不必要な光が外部に射出する事を
防止することができる等の安全対策上からも好ましい照
射光量制御手段を有した視線検出装置を達成することか
できる。
Furthermore, according to the present invention, by illuminating with weak light until the corneal reflection image of the eyeball can be detected, and then illuminating with a predetermined amount of light after the corneal reflection image can be detected, wasteful power consumption of the entire line of sight detection system can be avoided. It is possible to achieve a line-of-sight detection device having an irradiation light amount control means that is preferable from the viewpoint of safety measures, such as being able to eliminate unnecessary light and prevent unnecessary light from being emitted to the outside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例における眼球の視線検出を
行う際の要部概略図、第2図は第1図のイメージセンサ
からの出力状態の説明図、i 3 [Iiは本発明に係
る視線検出装置を一眼レフカメラに適用したときの要部
概略図、第4図、第5図は各々本発明の第1.第2実施
例に係る電気回路の要部ブロック図、第6図は従来の視
線検出装置の概略図である。 図中、101は眼球、1は角膜、2は強11i、3は虹
彩、4a、4bは光源、6a、6bは投光レンズ、7は
受光レンズ、9はセンサー、10は演算手段、401,
501は視線演算回路、403.507はデコーダ、4
16,518は発光素子、402はラッチメモリー、4
20゜522は電流制御回路、414,415は演算増
幅器である。
FIG. 1 is a schematic diagram of the main parts when detecting the line of sight of the eyeball in the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the output state from the image sensor of FIG. 1, i 3 [Ii is the invention 4 and 5 are schematic diagrams of main parts when the line of sight detection device according to the above is applied to a single-lens reflex camera, respectively. FIG. 6 is a block diagram of a main part of an electric circuit according to a second embodiment, and is a schematic diagram of a conventional line of sight detection device. In the figure, 101 is an eyeball, 1 is a cornea, 2 is a strong 11i, 3 is an iris, 4a, 4b are light sources, 6a, 6b are projecting lenses, 7 is a light receiving lens, 9 is a sensor, 10 is a calculation means, 401,
501 is a line of sight calculation circuit, 403.507 is a decoder, 4
16,518 is a light emitting element, 402 is a latch memory, 4
20° 522 is a current control circuit, and 414 and 415 are operational amplifiers.

Claims (2)

【特許請求の範囲】[Claims] (1)被検者の眼球を複数の照明手段で照明し、該複数
の照明手段の該眼球の角膜からの反射光に基づく複数の
角膜反射像と該眼球の虹彩像の所定面上における結像位
置を検出手段により検出し、該検出手段からの出力信号
を利用して該被検者の視線を求める際、該検出手段によ
り検出される角膜反射像の間隔に基づく信号を利用して
光量制御手段により該照明手段の照射光量を制御したこ
とを特徴とする照射光量制御手段を有した視線検出装置
(1) A subject's eyeball is illuminated with a plurality of illumination means, and a plurality of corneal reflection images and an iris image of the eyeball are formed on a predetermined plane based on light reflected from the cornea of the eyeball by the plurality of illumination means. When the image position is detected by a detection means and the line of sight of the subject is determined using an output signal from the detection means, the amount of light is determined using a signal based on the interval of corneal reflection images detected by the detection means. A line of sight detection device having an irradiation light amount control means, characterized in that the irradiation light amount of the illumination means is controlled by a control means.
(2)被検者の眼球を照明手段で照明し、該照明手段の
該眼球の角膜からの反射光に基づく角膜反射像と該眼球
の虹彩像の所定面上における結像位置を検出手段により
検出し、該検出手段からの出力信号を利用して該被検者
の視線を求める際、スイッチ手段により該照明手段の照
射光量を制御したことを特徴とする照射光量制御手段を
有した視線検出装置。(3)前記照明手段による眼球へ
の照射光量は前記検出手段による角膜反射像の検出前で
は少なく、検出後に所定光量で照射するようにしたこと
を特徴とする請求項1又は請求項2記載の照射光量制御
手段を有した視線検出装置。
(2) The eyeball of the subject is illuminated by an illumination means, and the detection means detects the imaging position of a corneal reflection image based on light reflected from the cornea of the eyeball of the illumination means and an iris image of the eyeball on a predetermined plane. A line of sight detection having an irradiation light amount control means, characterized in that when detecting the line of sight of the subject using an output signal from the detection means, the amount of irradiation light of the illumination means is controlled by a switch means. Device. (3) The amount of light irradiated to the eyeball by the illumination means is small before the detection of the corneal reflection image by the detection means, and after the detection, the eyeball is irradiated with a predetermined amount of light. A line of sight detection device having an irradiation light amount control means.
JP1247332A 1989-09-22 1989-09-22 Eye gaze detection device and camera Expired - Lifetime JP2964495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247332A JP2964495B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247332A JP2964495B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device and camera

Publications (2)

Publication Number Publication Date
JPH03109028A true JPH03109028A (en) 1991-05-09
JP2964495B2 JP2964495B2 (en) 1999-10-18

Family

ID=17161833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247332A Expired - Lifetime JP2964495B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device and camera

Country Status (1)

Country Link
JP (1) JP2964495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532784A (en) * 1992-09-14 1996-07-02 Nikon Corporation Eye-gaze detecting adapter
JP2006280938A (en) * 2005-03-31 2006-10-19 Avago Technologies General Ip (Singapore) Private Ltd Safe detection of eyeball
US9759613B2 (en) 2010-04-26 2017-09-12 Hme Co., Ltd. Temperature sensor device and radiation thermometer using this device, production method of temperature sensor device, multi-layered thin film thermopile using photo-resist film and radiation thermometer using this thermopile, and production method of multi-layered thin film thermopile
CN113589533A (en) * 2018-06-01 2021-11-02 脸谱科技有限责任公司 Head mounted display and method for determining line of sight of user wearing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532784A (en) * 1992-09-14 1996-07-02 Nikon Corporation Eye-gaze detecting adapter
JP2006280938A (en) * 2005-03-31 2006-10-19 Avago Technologies General Ip (Singapore) Private Ltd Safe detection of eyeball
US9759613B2 (en) 2010-04-26 2017-09-12 Hme Co., Ltd. Temperature sensor device and radiation thermometer using this device, production method of temperature sensor device, multi-layered thin film thermopile using photo-resist film and radiation thermometer using this thermopile, and production method of multi-layered thin film thermopile
CN113589533A (en) * 2018-06-01 2021-11-02 脸谱科技有限责任公司 Head mounted display and method for determining line of sight of user wearing the same

Also Published As

Publication number Publication date
JP2964495B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JPH0265836A (en) Visual axis detector and camera equipped therewith
JPH0820666B2 (en) Finder equipment
JP2910258B2 (en) Eye gaze detection device
JPH04242630A (en) Optical device having visual axis detecting device
JP2939988B2 (en) Eye gaze detection device
JPH11338041A (en) Optical device and camera provided with line-of-sight detecting function
JPH0323431A (en) Photography device with gaze point detecting means
JPH02189128A (en) Optical apparatus having close observation point detecting means
JPH03109028A (en) Eye sight detector having means for controlling quantity of irradiation light
JP2995876B2 (en) Eye gaze detection device
US5619739A (en) Diopter correcting apparatus
JP2995877B2 (en) Eye gaze detection device
JP2677393B2 (en) Eye gaze detection device
JPH02206425A (en) Glance detection apparatus
JPH02213322A (en) Method and apparatus for detecting visual axis
JP2995878B2 (en) Optical device having line-of-sight detection device
JP2925147B2 (en) Eye gaze detection device and optical equipment
JP2753527B2 (en) Eye refractive power measuring device
JP2004024471A (en) Ophthalmic instrument
JP2938488B2 (en) Surgical microscope
JP2744407B2 (en) Eye gaze detection device
JP2744405B2 (en) Eye gaze detection device
JP2744406B2 (en) Eye gaze detection device
JP2941847B2 (en) Eye gaze detection device
JPS60190930A (en) Light quantity controller of medical machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11