JPH03108688A - Radiation detector sensitive to position - Google Patents

Radiation detector sensitive to position

Info

Publication number
JPH03108688A
JPH03108688A JP24760989A JP24760989A JPH03108688A JP H03108688 A JPH03108688 A JP H03108688A JP 24760989 A JP24760989 A JP 24760989A JP 24760989 A JP24760989 A JP 24760989A JP H03108688 A JPH03108688 A JP H03108688A
Authority
JP
Japan
Prior art keywords
charge
divided
electrodes
sawtooth
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24760989A
Other languages
Japanese (ja)
Other versions
JPH0619466B2 (en
Inventor
Tatsumi Mizokawa
溝川 辰巳
Yoko Awaya
粟屋 容子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP24760989A priority Critical patent/JPH0619466B2/en
Publication of JPH03108688A publication Critical patent/JPH03108688A/en
Publication of JPH0619466B2 publication Critical patent/JPH0619466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To facilitate manufacture of the title detector very much and to make a stray capacity between electrodes small by a method wherein at least one of parts divided in two electrically by a sawtooth-wave-shaped boundary part is divided at equal intervals in the direction intersecting perpendicularly the direction of extension of the boundary part. CONSTITUTION:Two divided areas are formed by a sawtooth-wave-shaped insulating slender wire 24, and moreover, each sawtooth is formed to be a small area 25 insulated from each other in one of the divided areas. Each small area is connected, one to one, electrically to each band-shaped area 16 of the surface of a charge divider 14, from the end sequentially, by a conductor 21, while the other area 26 is connected directly to a charge-sensitive preamplifier. A charge induced to a position detecting electrode 23 is divided in two in the direction Y first and further divided into many partial charges in the former area of the two. These partial charges are supplied through triangular electrodes 18 and 19 located at the back of the divider 14 and the position coordinates in the direction X are determined from the ratio of the quantities of electricity supplied from the electrodes 18 and 19. The position coordinates in the direction Y intersecting them perpendicularly can be determined from the ratio between the charges of the two areas divided by a sawtooth-shaped pattern.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、α線、β線、X線、T線等の放射線の入射位
置を検出する電気的な放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electric radiation detector that detects the incident position of radiation such as α-rays, β-rays, X-rays, T-rays, etc.

(従来の技術) 電気的な放射線検出器とは、放射線により検出器内部に
生成された電荷、又これを内部で増倍して生じた電荷、
或いはこれらにより電極上に誘起された電荷を電気的な
信号として取り出す放射線検出器のことを言う。放射線
入射位置は、複数の独立した検出素子(検出電極)を並
べて、各検出素子の出力を演算処理することにより求め
られる。
(Prior art) An electric radiation detector is an electric charge generated inside the detector due to radiation, or an electric charge generated by multiplying this internally.
Alternatively, it refers to a radiation detector that extracts charges induced on electrodes by these as electrical signals. The radiation incident position is determined by arranging a plurality of independent detection elements (detection electrodes) and processing the output of each detection element.

この際使用される演算処理回路は高分解能を得ようとす
るとかなり複雑なものとなると言う問題点を有している
。これに対して、検出器単体として複雑な演算回路を必
要せず、放射線入射位置を検出する位置有感放射線検出
器が提案されている。
The problem is that the arithmetic processing circuit used in this case becomes quite complex if high resolution is to be achieved. In contrast, a position-sensitive radiation detector has been proposed that detects the radiation incident position without requiring a complicated arithmetic circuit as a single detector.

位置有感放射線検出器としては、抵抗層型、分割電極型
が知られている。抵抗層型は、入射位置において発生し
た電荷が入射位置によって変化する抵抗値によって分割
されることを利用している。
As position-sensitive radiation detectors, resistance layer type and split electrode type are known. The resistive layer type utilizes the fact that charges generated at the incident position are divided by a resistance value that changes depending on the incident position.

この抵抗層型は、抵抗層を用いているため、出力パルス
の立ち上りが遅くなり、低い検出速度並びに低い計数効
率が問題となる。分割電極型の位置有感放射線検出器は
、放射線の吸収によって生じた電荷により信号読み出し
用の電極上の成る範囲に反対符号の電荷を誘導させ、こ
の誘導電荷の中心位置く電気的重心)を電荷有感検出器
で検出する形態であり、抵抗層型に対して高速、高計数
効率と言う特徴を有する。
Since this resistive layer type uses a resistive layer, the output pulse rises slowly, resulting in problems of low detection speed and low counting efficiency. A split-electrode position-sensitive radiation detector induces charges of opposite sign in a range on the signal readout electrode by charges generated by absorption of radiation, and the center position of this induced charge (electric center of gravity) is It is a type of detection using a charge-sensitive detector, and has the characteristics of high speed and high counting efficiency compared to the resistive layer type.

ここで、分割電極型の位置有感検出器の例として例えば
、パックギャモン型及びウェッジ−アンド−ストリップ
型が公知である。
Here, as examples of split electrode type position-sensitive detectors, for example, pack-gammon type and wedge-and-strip type are known.

バックギャモン型は以下のようなものである。The backgammon type is as follows.

第5図は、その原理を説明するための概念図である。入
射による電荷−Qが発生したとすると、その下方に置か
れた電極50上には、静電誘導により、これと異符号の
電荷51が誘起される。電極50は鋸歯状の細線状絶縁
部52により2つの領域53.54に分断されており、
誘導電荷51は、同図のX方向の座標に比例した比率で
各領域53.54へQA SQBとして分割される。誘
導電荷の重心のX座標は、 QA / (QA + QB ) で表される。
FIG. 5 is a conceptual diagram for explaining the principle. If a charge -Q is generated due to the incidence, a charge 51 having the opposite sign is induced on the electrode 50 placed below it due to electrostatic induction. The electrode 50 is divided into two regions 53 and 54 by a sawtooth thin wire insulating section 52,
The induced charge 51 is divided into regions 53 and 54 as QA SQB at a ratio proportional to the coordinate in the X direction in the figure. The X coordinate of the center of gravity of the induced charge is expressed as QA/(QA + QB).

また、ウェッジアンドストリップ型は以下のようなもの
である。第4図は、その原理を説明するための概念図で
ある。電極40は、鋸歯状の細線状絶縁部41及び矩形
波状の細線絶縁部42により相互に絶縁された3つの領
域、即ちウェッジ領域43、中間領域44、ストリップ
領域45に分割されている。鋸歯および矩形波のピッチ
は一定であり、相互に入り込んだ構造となっている。矩
形波の鋸歯(ウェッジ)の間に入り込んだ帯状の部分(
ストリップ)の幅は、同図の左から右に向かって徐々に
狭くなっている。ウェッジ領域43、中間領域44、ス
トリップ領域45に誘起される電荷量をQA、 Qa、
 Qcとすると、電荷分布の重心のX方向の位置は、バ
ックギャモン型の原理と同様に、 QA/ (QA+Q!l+Qc) で決定できる。一方、X方向の位置については、Qc 
/ (QA+ QB + QC)により決定できる。
Further, the wedge-and-strip type is as follows. FIG. 4 is a conceptual diagram for explaining the principle. The electrode 40 is divided into three regions, ie, a wedge region 43, an intermediate region 44, and a strip region 45, which are insulated from each other by a sawtooth-like thin wire insulating portion 41 and a rectangular wave-like thin wire insulating portion 42. The pitch of the sawtooth and square waves is constant and has an interdigitated structure. The band-shaped part between the sawtooth (wedge) of the square wave (
The width of the strip gradually decreases from left to right in the figure. The amount of charge induced in the wedge region 43, intermediate region 44, and strip region 45 is expressed as QA, Qa,
If Qc, the position of the center of gravity of the charge distribution in the X direction can be determined by QA/ (QA+Q!l+Qc), similar to the backgammon principle. On the other hand, regarding the position in the X direction, Qc
/ (QA+QB+QC).

(発明が解決しようとする課題) 上述の分割電極型の位置有感放射線検出器は、測定器固
有の信号立ち上がり時間を全く劣化させず、1つの放射
線描たりの信号処理時間を延長させる要因もないため高
速・高計数率の測定において抵抗方式より優れている。
(Problems to be Solved by the Invention) The above-mentioned split electrode type position-sensitive radiation detector does not degrade the signal rise time inherent to the measuring device at all, and there are no factors that extend the signal processing time for one radiation drawing. This makes it superior to the resistance method in high-speed, high-counting rate measurements.

しかしながら、分割電極型は分割パターンが入り込んだ
形状を有しており、高分解能を目指す場合や、小面積の
検出器に応用する場合作成が困難になると言う問題、及
び入り込んだ構造のパターンを有することは浮遊容量の
増加をもたらし、位置分解能を制限してしまうという問
題があった。
However, the split electrode type has a shape with a segmented pattern, which makes it difficult to create when aiming for high resolution or when applying to a small area detector, and it has a pattern with an intricate structure. This results in an increase in stray capacitance, which poses a problem of limiting positional resolution.

(課題を解決するための手段) 上述した課題は、一定の間隔で配置された等幅の複数の
帯状電極、及びこれら帯状電極と絶縁体を介して対向し
て配置され、前記電極との重なり面積が、前記帯状面積
の配列方向に沿って線型に増大及び減少する2枚の3角
状電極からなる放射線入射位置読み出し用電荷分割器を
用いることにより解決する。
(Means for Solving the Problem) The above-mentioned problem is solved by a plurality of strip-shaped electrodes having the same width arranged at regular intervals, and which are arranged opposite to these strip-shaped electrodes with an insulator interposed therebetween, and which overlap with the electrodes. This problem is solved by using a charge divider for reading the radiation incident position, which is composed of two triangular electrodes whose area increases and decreases linearly along the direction in which the strip areas are arranged.

(作 用) 本発明の荷電分割器の帯状電極に、放射線入射に基づい
た電荷を流入することにより、各3角状電極に発生する
電荷量の比率を求めることにより簡単に放射線の入射位
置を求めることができる。
(Function) By flowing charges based on incident radiation into the strip electrodes of the charge divider of the present invention, the incident position of the radiation can be easily determined by determining the ratio of the amount of charges generated in each triangular electrode. You can ask for it.

この電荷分割器は、フレキシブルな両面基板ニ前記パタ
ーンを描き、これを小さく折り畳むことにより、小型す
ることができる。
This charge divider can be made smaller by drawing the above pattern on a flexible double-sided substrate and folding it into a small size.

また、電荷分割器の帯状電極に流入する電荷は、複数の
帯状電極に誘起された電荷であってもよいし、半導体、
ボロメータからなる個別の放射線検出素子により発生さ
れた電荷としてもよい。このようにしてすぐれたエネル
ギー分解能を有する素子を並べて位置検出を行えば、極
めて簡単なエレクトロニクスにより高度な位置検出が行
われる。
Further, the charge flowing into the strip electrode of the charge divider may be the charge induced in a plurality of strip electrodes, or may be a semiconductor,
The charge may be generated by an individual radiation detection element consisting of a bolometer. By arranging elements with excellent energy resolution and performing position detection in this manner, sophisticated position detection can be performed using extremely simple electronics.

更に、電荷分割器の電極をマイクロチャンネルプレート
や平行平板アバランシェカウンタのアノード、マルチワ
イヤ比例計数管のカソードに接続して用いることもでき
る。
Furthermore, the electrode of the charge divider can be connected to the anode of a microchannel plate, a parallel plate avalanche counter, or the cathode of a multiwire proportional counter.

(発明の効果) 本発明の電荷分割器においては、分割電極型の様な入り
込んだ形状の電極分割が行わないので、制作が極めて容
易になるとともに、電極間の浮遊容量が小さい。
(Effects of the Invention) In the charge divider of the present invention, since the electrodes are not divided into complicated shapes as in the divided electrode type, manufacturing is extremely easy and the stray capacitance between the electrodes is small.

各種の高感度検出素子を複数個用いて、これを本発明の
電荷分割器の帯状電極に接続して、簡単な演算回路によ
り位置検出を行うことができる。
By using a plurality of various high-sensitivity detection elements and connecting them to the strip electrode of the charge divider of the present invention, position detection can be performed by a simple arithmetic circuit.

電荷分割器によって構成される容量のネットワークは、
帯状電極間の浮遊容量とは直列になっており、且つこれ
より十分大きいため、電荷有感検出器に対する負荷容量
としては寄与しない。従って、電気的雑音を増やすこと
はない。
The network of capacitance formed by the charge divider is
Since it is in series with the stray capacitance between the strip electrodes and is sufficiently larger than this, it does not contribute as a load capacitance to the charge-sensitive detector. Therefore, it does not increase electrical noise.

抵抗や遅延線を使用しないため、高速、高計数率の位置
有感放射線検出器を構成できる等の利点を有する。
Since no resistor or delay line is used, it has advantages such as being able to construct a position-sensitive radiation detector with high speed and high counting rate.

(実施例) 以下に、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1A図及び第1B図は、本発明の電荷分割器を用いる
1次元放射線位置検出器の平面図及び側面図である。放
射線の入射位置は、位置検出方向に直交し、絶縁体12
によって多数の相互に絶縁された平行な一定幅の帯状電
極13から成る位置検出電極10に誘導される電荷の重
心位置を検出することに寄って達成される。この電荷の
重心位置は、本発明の電荷分割器14によって検出され
る。この電荷分割器14は、表には、絶縁体15によっ
て相互に絶縁された多数の平行な一定幅の帯状領域に分
割された帯状電極16があり、−様な厚さの絶縁体層1
7 (第1B図)を介してその裏面には、長方形がその
1つの対角線で分割された形の相互に絶縁された2つの
三角状電極18.19を設けた構造になっている。
1A and 1B are a plan view and a side view of a one-dimensional radiation position detector using the charge splitter of the present invention. The incident position of the radiation is perpendicular to the position detection direction, and the insulator 12
This is achieved by detecting the position of the center of gravity of the charges induced in the position detection electrode 10, which is composed of a large number of mutually insulated parallel band-shaped electrodes 13 having a constant width. The position of the center of gravity of this charge is detected by the charge divider 14 of the present invention. This charge splitter 14 has a strip electrode 16 divided into a large number of parallel strip regions of a constant width which are mutually insulated by an insulator 15, and an insulator layer 1 with a thickness of -.
7 (FIG. 1B) is provided with two mutually insulated triangular electrodes 18 and 19 in the form of a rectangle divided by one diagonal.

位置検出電極10上の各帯状電極13と電荷分割器14
の各帯状電極16とは1対1に導体22によって端から
順次電気的に接続されている。電荷分割器14の各帯状
電極16は、位置検出電極に収集されてくるイオンまた
は電子、正孔による電荷を最終的に中和するために、測
定器固有の信号立ち上がり時間に比べ充分長い時定数を
与えるような高抵抗で、アースまたは所要の高電圧端子
に接続する。
Each strip electrode 13 on the position detection electrode 10 and the charge divider 14
The strip electrodes 16 are sequentially electrically connected one-to-one through conductors 22 from the ends. Each strip electrode 16 of the charge divider 14 has a time constant that is sufficiently long compared to the signal rise time specific to the measuring device in order to ultimately neutralize the charge due to ions, electrons, or holes collected on the position detection electrode. Connect to ground or the required high voltage terminal with a high resistance such that

電荷分割器14において、n番目の帯状電極16と3角
状電極18との間の容量をChA、3角状電極19との
間の容量をC7,とするとChaltnの増加につれて
線型に増加し、C,、Bはnの増加につれて線型的に減
少する。即ち、変化量をaとすると、CI、A=an十
す、 CIl、=−an+Cと表されることになる。C
hA+CI、llはnによらず一定である。Cl1A+
CIIBは各帯状電極間の浮遊容量と比して充分に大き
いことが条件であるが、本発明の電荷分割器においては
、電極間の分割が単純な直線により行われているので、
従来のものと比較して浮遊容量が小さくこの条件は充分
に満たされる。
In the charge divider 14, if the capacitance between the n-th strip electrode 16 and the triangular electrode 18 is ChA, and the capacitance between the triangular electrode 19 is C7, it increases linearly as Chaltn increases, C,,B decrease linearly as n increases. That is, if the amount of change is a, it will be expressed as CI,A=an+C, CIl,=-an+C. C
hA+CI,ll is constant regardless of n. Cl1A+
CIIB must be sufficiently large compared to the stray capacitance between each strip electrode, but in the charge divider of the present invention, the division between the electrodes is done by a simple straight line, so
The stray capacitance is smaller than that of the conventional one, and this condition is fully satisfied.

n番目の帯状電極13上に誘起された電荷q。とすると
、Σq、 =Q (誘導電荷の総量)となる。
Charge q induced on the nth strip electrode 13. Then, Σq, =Q (total amount of induced charges).

容量CnA+CIIBが帯状電極間浮遊容量に比べて十
分大きいため、qoはClnA及びC,、I+から供給
されたことになり、結果として、 Cf1Aの帯状電極側には Qh xchA/ (cnA+cr、n)Chllの帯
状電極側には Q h X CR11/ (CWA÷C,a)だけの電
荷が割り当てられたことになり、結局三角状電極18か
ら供給される電荷は、Σ−q。xcnA/ (Cr、A
−!−Cr、a) =Q。
Since the capacitance CnA+CIIB is sufficiently larger than the stray capacitance between the strip electrodes, qo is supplied from ClnA and C,,I+, and as a result, on the strip electrode side of Cf1A, Qh xchA/ (cnA+cr, n)Chll This means that a charge equal to Q h X CR11/(CWA÷C,a) is allocated to the strip-shaped electrode side, and the charge supplied from the triangular electrode 18 is Σ-q. xcnA/ (Cr, A
-! -Cr,a)=Q.

三角状電極19から供給される電荷は、Σ−q。X C
rv/ (chA: Chll) = QBとなる。
The charge supplied from the triangular electrode 19 is Σ-q. X C
rv/ (chA: Chll) = QB.

QA+Q、 =Σ−q。=−Q Q^/ (Qa 十〇11) = b/d−”、 a/
d XNこのN=Σ−q、z/Qが電気的重心に他なら
ない(Zは帯状電極の数)。つまり、位置情報がQA、
QB により取り出されたことになる。
QA+Q, =Σ-q. =-Q Q^/ (Qa 1011) = b/d-”, a/
d In other words, location information is QA,
This means it was taken out by the QB.

従って、裏面の2つの3角状電極18.19を各々電荷
有感型前置増幅器に接続し、その2つの出力値に基づい
て演算を行うことにより目的とする1次元位置が決定で
きる。
Therefore, the target one-dimensional position can be determined by connecting the two triangular electrodes 18 and 19 on the back surface to charge-sensitive preamplifiers and performing calculations based on their two output values.

第2図は、本発明の電荷分割器を用いる2次元放射線位
置検出器の平面図である。ここに示される位置検出電極
18鋸歯状の絶縁細線24で2つの領域に大きく分ける
と共に、さらに一方の領域において、鋸歯の1つ1つを
相互に絶縁された小領域25とする。その各々は、電荷
分割器14表面の各帯状領域16と1対lに端から導体
21によって順次電気的に接続される。他の一方の領域
26は、直接電荷有感前置増幅器に接続され、また、電
荷分割器14裏面の2つの3角状電極18.19は、各
々やはり電荷を感装置増幅器に接続される。
FIG. 2 is a plan view of a two-dimensional radiation position detector using the charge splitter of the present invention. The position detection electrode 18 shown here is roughly divided into two regions by serrated thin insulating wires 24, and in one region, each of the serrations is made into a small region 25 that is insulated from each other. Each of them is sequentially electrically connected to each band-shaped region 16 on the surface of the charge divider 14 in a one-to-one manner from one end to the other by a conductor 21 . The other region 26 is directly connected to a charge-sensitive preamplifier, and the two triangular electrodes 18, 19 on the back side of the charge divider 14 are each also connected to a charge-sensitive preamplifier.

位置検出電極23に誘導された電荷は、その上の鋸歯状
のパターンによりまずX方向で大きく2つに分割される
と同時に、一方の領域では、各鋸歯が相互に絶縁された
小領域を成しているため、それらに対応した多数の部分
電荷にさらに分割される。これらの部分電荷は、電荷分
割器14裏面の3角状電極18.19介して供給される
ことになり、それら3角状電極18.19から供給され
る電気量の比率QA / (QA +QB )から、1
次元の場合と同様な原理により、鋸歯状のパターンの繰
り返し方向(X方向)の位置座標が決定される。また、
これに直交するX方向の位置座標は鋸歯状のパターンに
より2つに分割された両方の電荷の間の比率Qc / 
(QA+ QB + Qc )によりバックギャセン法
と同様の原理により決定できる。
The charge induced in the position detection electrode 23 is first divided into two in the X direction by the sawtooth pattern thereon, and at the same time, in one region, each sawtooth forms a small region insulated from each other. Therefore, it is further divided into many corresponding partial charges. These partial charges are supplied via the triangular electrodes 18.19 on the back side of the charge divider 14, and the ratio of the amount of electricity supplied from these triangular electrodes 18.19 is QA / (QA + QB) From, 1
The position coordinates of the sawtooth pattern in the repeating direction (X direction) are determined by the same principle as in the dimension case. Also,
The position coordinate in the X direction perpendicular to this is the ratio Qc / between both charges divided into two by the sawtooth pattern.
(QA+QB+Qc) can be determined using the same principle as the Backgasen method.

2次元位置読み出しのための別の実施例を第3図に示す
。位置検出電極30上の導体を鋸歯状の絶縁細線31で
2つの領域でX方向で大きく分けると共に、さらに両領
域において、鋸歯の1つ1つを相互に絶縁された三角形
状小領域32.32′とする。その各々は、両側の2つ
の電荷分割器14.14′表面の帯状電極16.16′
と1対1に端から導体19.19′によって順次電気的
に接続される。電荷分割器裏面の各3角状電極18.1
9.18’  19’計4つの電荷有感前置増幅器に各
々接続される。位置検出電極30に誘導された電荷は、
その上の鋸歯状のパターンによりX方向に大きく2つに
分かれると同時に、各鋸歯が相互に絶縁された小領域を
成しているため、それらに対応した多数の部分電荷にX
方向でさらに分割される。これらの部分電荷は、電荷分
割器裏面の計4つの3角状電極15.16.15′16
′から容量ネットワークを介して供給されることになる
Another embodiment for two-dimensional position reading is shown in FIG. The conductor on the position detection electrode 30 is roughly divided into two regions in the X direction by a sawtooth insulated thin wire 31, and in both regions, each sawtooth is divided into triangular small regions 32, 32 insulated from each other. '. Each of them has a strip electrode 16.16' on the surface of the two charge dividers 14.14' on both sides.
The conductors 19 and 19' are sequentially electrically connected from the ends in a one-to-one manner. Each triangular electrode 18.1 on the back side of the charge divider
9.18' and 19' each connected to a total of four charge-sensitive preamplifiers. The charge induced in the position detection electrode 30 is
The sawtooth pattern on it divides it into two large areas in the
It is further divided by direction. These partial charges are transferred to a total of four triangular electrodes 15.16.15'16 on the back side of the charge divider.
′ will be supplied via the capacity network.

鋸歯状のパターンの繰り返し方向(X方向)の位置座標
は、2つの電荷分割器の3角電極18.18′から取り
出される電荷の和と、全誘導電荷量の比、即ち(QA 
+QC) / (QA +QB +Qc−i−Qo)に
より決定できる。また、これに直交するX方向の位置座
標は、鋸歯状のパターンにより2つに分かれた両方の電
荷の間の比率(Q c÷Qo ) / (QA +QB
 +Qc +Qo )によりパックギャモン型と同様の
原理により決定できる。
The position coordinate of the sawtooth pattern in the repeating direction (X direction) is determined by the ratio of the sum of charges extracted from the triangular electrodes 18 and 18' of the two charge dividers to the total amount of induced charge, that is, (QA
+QC) / (QA +QB +Qc-i-Qo). In addition, the position coordinate in the X direction perpendicular to this is the ratio between both charges divided into two by the sawtooth pattern (Q c ÷ Qo) / (QA + QB
+Qc +Qo) can be determined using the same principle as the packgammon type.

第2図に示される方式だと検出電荷が検出電極の右端に
寄った時、QA+QBが小さくなり、X方向の位置分解
能が劣化する可能性があるが、第3図に示される方式だ
と、分母が両方向とも全誘導電荷となるのでこの様な問
題は生じない。
In the method shown in Fig. 2, when the detected charge approaches the right end of the detection electrode, QA + QB becomes small and the position resolution in the X direction may deteriorate, but with the method shown in Fig. 3, This problem does not occur because the denominator is the total induced charge in both directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図は、それぞれ本発明の電荷分割器
を用いる1次元放射線位置検出器の平面図及び断面図、 第2図は、本発明の電荷分割器を用いる2次元放射線位
置検出器の平面図、 第3図は、本発明の電荷分割器を用いる別の2次元放射
線位置検出器の平面図、 第4図は、パックギャモン型の位置有感放射線検出器の
説明図、 第5図は、ウェッジアンドストリップ型の位置有感放射
線検出器の説明図。 (符号の説明) Q・・・・・・発生電荷、51・・・・・・誘導電荷領
域、51、41.42.15.24.31・曲・細線状
絶縁部、10・・・・・・1次元位置検出電極、14.
14’・・・・・・電荷分割器、16.16’・・・・
・・電荷分割器の帯状導体、17・・・・・・絶縁体層
、 18.19・・・・・・三角状電極、 21.21′・・・・・・導体、 23.30・・・・・・2次元位置検出電極、25.3
2.32’・・・・・・小領域導体。 第2図 図面の浄書(内容に変!なし) 第1A図 18.19 第4図 QB 手 続 補 正 書 (方式) 1、事件の表示 平成1年特許願第247609号 2、発明の名称 位置有感放射線検出器 3、補正をする者 事件との関係 出 願 人 名 称 (679) 理 化 学 研 究 所 4、代 理 人 5、補正命令の日付 平成1年12月26日 6、補正の対象 図 面 7、補正の内容 手続補正書 2.ぼ19 平成  年  月 日
1A and 1B are a plan view and a sectional view, respectively, of a one-dimensional radiation position detector using the charge divider of the present invention, and FIG. 2 is a two-dimensional radiation position detector using the charge divider of the present invention. FIG. 3 is a plan view of another two-dimensional radiation position detector using the charge splitter of the present invention; FIG. 4 is an explanatory diagram of a pack-gammon type position-sensitive radiation detector; The figure is an explanatory diagram of a wedge-and-strip type position-sensitive radiation detector. (Explanation of symbols) Q... Generated charge, 51... Induced charge region, 51, 41.42.15.24.31, curved/thin wire-shaped insulating part, 10... ...One-dimensional position detection electrode, 14.
14'...Charge divider, 16.16'...
...Strip conductor of charge divider, 17...Insulator layer, 18.19...Triangular electrode, 21.21'...Conductor, 23.30... ...Two-dimensional position detection electrode, 25.3
2.32'...Small area conductor. Figure 2: Engraving of drawings (no change in content) Figure 1A Figure 18.19 Figure 4 QB Procedural amendment (method) 1. Indication of the case 1999 Patent Application No. 247609 2. Title of the invention Position is sensitive Radiation detector 3, Person making the amendment Name of applicant related to the case (679) RIKEN 4, Agent 5, Date of amendment order December 26, 1999 6, Drawing subject to amendment 7, Contents of amendment Procedural amendment 2. Bo19 Heisei year month date

Claims (2)

【特許請求の範囲】[Claims] (1)一定の間隔で配置された等幅の複数の帯状電極、
及び これら帯状電極と絶縁体を介して対向して配置され、前
記各電極との重なり面積が、前記帯状電極の配列方向に
沿って線型に増大及び減少する2枚の3角状電極からな
る放射線入射位置読み出し用電荷分割器。
(1) Multiple strip electrodes of equal width arranged at regular intervals,
and a radiation beam consisting of two triangular electrodes arranged opposite to these strip electrodes via an insulator, and whose overlapping area with each electrode increases and decreases linearly along the arrangement direction of the strip electrodes. Charge divider for reading the incident position.
(2)鋸波によって2分されており、少なくとも一方の
部分が前記鋸波の延びる方向と直交する方向にさらに等
間隔で分割されている、請求項(1)記載の電荷分割器
と組み合わせて使用される放射線入射位置検出用電極。
(2) In combination with the charge divider according to claim (1), which is divided into two parts by a sawtooth wave, and at least one part is further divided at equal intervals in a direction perpendicular to the direction in which the sawtooth wave extends. Electrode used to detect the position of radiation incidence.
JP24760989A 1989-09-22 1989-09-22 Two-dimensional charge position detection electrode Expired - Lifetime JPH0619466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24760989A JPH0619466B2 (en) 1989-09-22 1989-09-22 Two-dimensional charge position detection electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24760989A JPH0619466B2 (en) 1989-09-22 1989-09-22 Two-dimensional charge position detection electrode

Publications (2)

Publication Number Publication Date
JPH03108688A true JPH03108688A (en) 1991-05-08
JPH0619466B2 JPH0619466B2 (en) 1994-03-16

Family

ID=17166054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24760989A Expired - Lifetime JPH0619466B2 (en) 1989-09-22 1989-09-22 Two-dimensional charge position detection electrode

Country Status (1)

Country Link
JP (1) JPH0619466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510299A (en) * 2009-11-05 2013-03-21 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Capacitive diffusion readout board
JP2013516609A (en) * 2009-12-30 2013-05-13 ゼネラル・エレクトリック・カンパニイ System and method for providing a shared charge in a pixelated image detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510299A (en) * 2009-11-05 2013-03-21 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Capacitive diffusion readout board
US8575561B2 (en) 2009-11-05 2013-11-05 Cern-European Organization For Nuclear Research Capacitive spreading readout board
JP2013516609A (en) * 2009-12-30 2013-05-13 ゼネラル・エレクトリック・カンパニイ System and method for providing a shared charge in a pixelated image detector

Also Published As

Publication number Publication date
JPH0619466B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US6002134A (en) Cross-strip semiconductor detector with cord-wood construction
US6037595A (en) Radiation detector with shielding electrode
EP1116047B1 (en) Pixelated photon detector
US3529161A (en) Semiconductor device for detecting and/or measuring radiation
US6069360A (en) Method and apparatus for electron-only radiation detectors from semiconductor materials
US8853643B2 (en) Protected readout electrode assembly
Battistoni et al. Resistive cathode detectors with bidimensional strip readout: Tubes and drift chambers
JPS5853470B2 (en) Ionization chamber with grid
US4392057A (en) Position-sensitive radiation detector
US8575561B2 (en) Capacitive spreading readout board
EP2496966B1 (en) Charge read-out structure for a photon/particle detector
Mizogawa et al. New readout technique for two-dimensional position-sensitive detectors
JPH03108688A (en) Radiation detector sensitive to position
Lapington et al. A novel imaging readout with improved speed and resolution
US3676676A (en) Low energy particle counter with two-dimensional position sensing
Knibbeler et al. Novel two‐dimensional position‐sensitive detection system
Charpak et al. Some properties of spherical drift chambers
Yu et al. Investigation of chevron cathode pads for position encoding in very high rate gas proportional chambers
CN101881658B (en) High-resolution position-sensitive anode detector and anode decoding method thereof
Luke et al. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity
US11823881B2 (en) Elementary particle detector
Mathieson et al. The graded-density cathode
Luke et al. Proximity charge sensing with semiconductor detectors
Jared et al. A simple position-sensitive parallel-plate avalanche detector with 2-dimensional readout
Bellazzini et al. A novel type of parallel plate chamber with resistive germanium anode and a two-dimensional readout

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 16